Skip to main content

A Water Vapor Scaling (WVS) Method for Improving Atmospheric Correction of Thermal Infrared (TIR) Data

  • Chapter
  • First Online:

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 17))

Abstract

The thermal infrared (TIR) radiance at sensor measured by any spaceborne or airborne instrument will include atmospheric emission, scattering, and absorption by the Earth’s atmosphere. These atmospheric effects need to be removed from the observation in order to isolate the land-leaving surface radiance contribution and retrieve important surface variables such as land surface temperature (LST) and emissivity. The accuracy of the atmospheric correction is dependent upon accurate characterization of the atmospheric state using independent atmospheric profiles of temperature, water vapor, and other gas constituents. The profiles are typically input to a radiative transfer model for estimating atmospheric transmittance, path, and sky radiances. Residual errors from incomplete atmospheric correction constitute one of the largest uncertainties in derived LST and emissivity products from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on NASA’s Terra satellite. This chapter will describe a technique for improving the accuracy of the atmospheric parameters on a pixel-by-pixel basis using the Water Vapor Scaling (WVS) method. We have shown that using WVS can improve the accuracy of LST retrievals by up to 5 K for MODIS and 3 K for ASTER data in humid conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Barton IJ, Zavody AM, Obrien DM, Cutten DR, Saunders RW, Llewellyn-Jones DT (1989) Theoretical algorithms for satellite-derived sea-surface temperatures. J Geophys Res-Atmos 94:3365–3375

    Article  Google Scholar 

  • Berk A, Anderson GP, Acharya PK, Bernstein LS, Muratov L, Lee J, Fox M, Adler-Golden SM, Chetwynd JH, Hoke ML, Lockwood RB, Gardner JA, Cooley TW, Borel CC, Lewis PE (2005) MODTRANTM 5, a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update. In Sylvia SS, Lewis PE (eds) Algorithms and technologies for multispectral, hyperspectral, and ultraspectral imagery XI. Proceedings of SPIE, Bellingham

    Google Scholar 

  • Coll C, Caselles V (1997) A split-window algorithm for land surface temperature from advanced very high resolution radiometer data: validation and algorithm comparison. J Geophys Res-Atmos 102:16697–16713

    Article  Google Scholar 

  • Coll C, Caselles V, Valor E, Niclos R, Sanchez JM, Galve JM, Mira M (2007) Temperature and emissivity separation from ASTER data for low spectral contrast surfaces. Remote Sens Environ 110:162–175

    Article  Google Scholar 

  • Deschamps PY, Phulpin T (1980) Atmospheric correction of infrared measurements of sea-surface temperature using channels at 3.7, 11 and 12 Mu-M. Bound-Layer Meteorol 18:131–143

    Article  Google Scholar 

  • Francois C, Ottle C (1996) Atmospheric corrections in the thermal infrared: global and water vapor dependent split-window algorithms – applications to ATSR and AVHRR data. IEEE Trans Geosci Remote Sens 34:457–470

    Article  Google Scholar 

  • Galve JA, Coll C, Caselles V, Valor E (2008) An atmospheric radiosounding database for generating land surface temperature algorithms. IEEE Trans Geosci Remote Sens 46:1547–1557

    Article  Google Scholar 

  • Gillespie A, Rokugawa S, Matsunaga T, Cothern JS, Hook S, Kahle AB (1998) A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Trans Geosci Remote Sens 36:1113–1126

    Article  Google Scholar 

  • Gustafson WT, Gillespie AR, Yamada GJ (2006) Revisions to the ASTER temperature/emissivity separation algorithm. In: 2nd international symposium on recent advances in quantitative remote sensing, Torrent (Valencia), Spain

    Google Scholar 

  • Hook SJ, Gabell AR, Green AA, Kealy PS (1992) A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies. Remote Sens Environ 42:123–135

    Article  Google Scholar 

  • Hulley GC, Hook SJ (2009) The North American ASTER Land Surface Emissivity Database (NAALSED) version 2.0. Remote Sens Environ 113:1967–1975

    Article  Google Scholar 

  • Hulley GC, Hook SJ (2011) Generating consistent land surface temperature and emissivity products between ASTER and MODIS data for earth science research. IEEE Trans Geosci Remote Sens 49:1304–1315

    Article  Google Scholar 

  • Hulley GC, Hook SJ, Baldridge AM (2009) Validation of the North American ASTER Land Surface Emissivity Database (NAALSED) version 2.0 using pseudo-invariant sand dune sites. Remote Sens Environ 113:2224–2233

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Baker WE (1990) Global numerical weather prediction at the National-Meteorological-Center. Bull Am Meteorol Soc 71:1410–1428

    Article  Google Scholar 

  • Kneizys FX, Abreu LW, Anderson GP, Chetwynd JH, Shettle EP, Berk A, Bernstein LS, Robertson DC, Acharya PK, Rothman LA, Selby JEA, Gallery WO, Clough SA (1996b) The MODTRAN 2/3 report & LOWTRAN 7 model, F19628-91-C-0132. Phillips Laboratory Hanscom AFB, Bedford

    Google Scholar 

  • Li ZL, Becker F, Stoll MP, Wan ZM (1999) Evaluation of six methods for extracting relative emissivity spectra from thermal infrared images. Remote Sens Environ 69:197–214

    Article  Google Scholar 

  • Prata AJ (1994) Land-surface temperatures derived from the advanced very high-resolution radiometer and the along-track scanning radiometer.2. Experimental results and validation of Avhrr algorithms. J Geophys Res-Atmos 99:13025–13058

    Article  Google Scholar 

  • Price JC (1984) Land surface temperature measurements from the split window channels of the NOAA 7 advanced very high resolution radiometer. J Geophys Res 89:7231–7237

    Article  Google Scholar 

  • Snyder WC, Wan Z, Zhang Y, Feng YZ (1998) Classification-based emissivity for land surface temperature measurement from space. Int J Remote Sens 19:2753–2774

    Article  Google Scholar 

  • Tonooka H (2001) An atmospheric correction algorithm for thermal infrared multispectral data over land – a water-vapor scaling method. IEEE Trans Geosci Remote Sens 39:682–692

    Article  Google Scholar 

  • Tonooka H (2005a) Accurate atmospheric correction of ASTER thermal infrared imagery using the WVS method. IEEE Trans Geosci Remote Sens 43:2778–2792

    Article  Google Scholar 

  • Tonooka H (2005b) Atmospheric correction of MODIS thermal infrared bands by water vapor scaling method. IEEE Trans Geosci Remote Sens 5979:152–163

    Google Scholar 

  • Wan ZM, Dozier J (1996) A generalized split-window algorithm for retrieving land-surface temperature from space. Proc SPIE 34:892–905

    Google Scholar 

  • Yu Y, Privette JL, Pinheiro AC (2008) Evaluation of split-window land surface temperature algorithms for generating climate data records. IEEE Trans Geosci Remote Sens 46:179–192

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glynn Hulley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hulley, G. (2013). A Water Vapor Scaling (WVS) Method for Improving Atmospheric Correction of Thermal Infrared (TIR) Data. In: Kuenzer, C., Dech, S. (eds) Thermal Infrared Remote Sensing. Remote Sensing and Digital Image Processing, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6639-6_13

Download citation

Publish with us

Policies and ethics