Skip to main content

Part of the book series: SpringerBriefs in Astronomy ((BRIEFSASTRON))

  • 748 Accesses

Abstract

Vigorous lightning has been observed on both Jupiter and Saturn but these gas giant planets are not expected to have global circuits, as the deep lower atmosphere is too dense for cosmic ray ionisation. Where cosmic ray ionisation occurs, charged aerosol particles are generated, making the air weakly conductive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • K.L. Aplin, R.G. Harrison, M.J. Rycroft, Investigating earth’s atmospheric electricity: a role model for planetary studies. Space Sci. Rev. 137, 1–4, 11–27 (2008). doi:10.1007/s11214-008-9372-x

    Google Scholar 

  • S.K. Atreya, Atmospheres and ionospheres of the outer planets and their satellites (Springer, Berlin, 1986)

    Book  Google Scholar 

  • K. Baines, A.A. Simon-Miller, G.S. Orton et al., Polar lightning and decadal-scale cloud variability on Jupiter. Science 318, 226 (2007). doi:10.1126/science.1147912

    Article  ADS  Google Scholar 

  • G.A. Bazilevskaya, I.G. Usoskin, E.O. Flückiger et al., Cosmic ray induced ion production in the atmosphere. Space Sci. Revs. (2008). doi:10.1007/s11214-008-9339-y

  • L.A. Capone, R.C. Whitten, S.S. Prasad, J. Dubach, The ionospheres of Saturn, Uranus and Neptune. Ap. J. 215, 977–983 (1977). doi:10.1086/155434

    Article  ADS  Google Scholar 

  • L.A. Capone, J. Dubach, R.C. Whitten, S.S. Prasad, Cosmic ray ionisation of the Jovian atmosphere. Icarus 39, 433–449 (1979). doi:10.1016/0019-1035(79)90151-9

    Article  ADS  Google Scholar 

  • S.J. Desch, W.J. Borucki, C.T. Russell, A. Bar-Nun, Progress in planetary lightning. Rep. Prog. Phys. 65, 955–997 (2002). doi:10.1088/0034-4885/65/6/202

    Article  ADS  Google Scholar 

  • U.A. Dyudina, A.P. Ingersoll, S.P. Ewald et al., Detection of visible lightning on Saturn. Geophys. Res. Letts. 37, L09205 (2010)

    Google Scholar 

  • G. Fischer, D.A. Gurnett, W.S. Kurth et al., Atmospheric electricity at Saturn. Space Sci. Revs. (2008). doi:10.1007/s11214-008-9370-z

  • D.A. Gurnett, W.S. Kurth, G.B. Hospodarsky, A.M. Persoon, T.F. Averkamp, B. Cecconi, A. Lecacheux, P. Zarka, P. Canu, N. Cornilleau-Wehrlin, P. Galopeau, A. Roux, C. Harvey, P. Louarn, R. Bostrom, G. Gustafsson, J.E. Wahlund, M.D. Desch, W.M. Farrell, M.L. Kaiser, K. Goetz, P.J. Kellogg, G. Fischer, H.P. Ladreiter, H. Rucker, H. Alleyne, A. Pedersen, Radio and plasma wave observations at Saturn from Cassini’s approach and first orbit. Science 307(5713), 255–1259 (2005). doi:10.1126/science.1105356

    Article  Google Scholar 

  • R. Hooke, Some observations lately made at London concerning the planet Jupiter. Phil. Trans. 1(14), 245–247 (1666)

    Google Scholar 

  • W.H. Ip, A. Kopp, L.M. Lara, R. Rodrigo, Pluto’s ionospheric models and solar wind interaction. Adv. Space Res. 26(10), 1559–1563 (2000). doi:10.1016/s0273-1177(00)00098-3

    Article  ADS  Google Scholar 

  • G.H. Jones et al., Formation of Saturn’s ring spokes by lightning-induced electron beams. Geophys. Res. Lett. 33, L21202 (2006). doi:10.1029/2006GL028146

    Article  ADS  Google Scholar 

  • J.S. Lewis, Physics and chemistry of the solar system (Academic Press, San Diego, 1997)

    Google Scholar 

  • L.J. Lanzerotti, K. Rinnert, E.P. Krider, M.A. Uman, G. Dehmel, F.O. Gliem, W.I. Axford, Planetary lightning and lightning measurements on the Galileo probe to Jupiter’s atmosphere, in Proceedings in Atmospheric Electricity, Hampton, Virginia, 1983, ed. by L.H. Ruhnke, J. Latham, A. Deepak

    Google Scholar 

  • B. Little, C.D. Anger, A.P. Ingersoll, A.R. Vasavada, D.A. Senske, H.H. Breneman, W.J. Borucki, The Galileo SSI Team, Galileo images of lightning on Jupiter. Icarus 142, 306–323 (1999). doi:10.1006/icar.1999.6195

    Google Scholar 

  • M.L. Kaiser, J.E.P Connerney, M.D. Desch, Atmospheric storm explanation of saturnian electrostatic discharges. Nature 303, 50–53 (1983). doi:10.1038/303050a0

    Google Scholar 

  • W.J. Nellis, Metallization of fluid hydrogen at 140 GPa (1.4 Mbar): implications for Jupiter. Planet. Space Sci. 48(7–8), 671–677 (2000). doi:10.1016/S0032-0633(00)00031-3

    Article  ADS  Google Scholar 

  • C.C. Porco, E. Baker, J. Barbara, K. Beurle, A. Brahic, J.A. Burns, S. Charnoz, N. Cooper, D.D. Dawson, A.D. Del Genio, T. Denk, L. Dones, U. Dyudina, M.W. Evans, B. Giese, K. Grazier, P. Helfenstein, A.P. Ingersoll, R.A. Jacobson, T.V. Johnson, A. McEwen, C.D. Murray, G. Neukum, W.M. Owen, J. Perry, T. Roatsch, J. Spitale, S. Squyres, P. Thomas, M. Tiscareno, E. Turtle, A.R. Vasavada, J. Veverka, R. Wagner, R. West, Cassini imaging science: initial results on Saturn’s atmosphere. Science 307(5713), 1243–1247 (2005). doi:10.1126/science.1107691

    Article  ADS  Google Scholar 

  • D. Sentman, Electrical conductivity of Jupiter’s shallow interior and the formation of a resonant planetary-ionospheric cavity. Icarus 88, 73–86 (1990). doi:10.1016/0019-1035(90)90177-B

    Article  ADS  Google Scholar 

  • R. Smoluchowski, Origin of the magnetic fields in the giant planets. Phys. Earth Planet. Interiors 20(2–4), 247–254 (1979)

    Article  ADS  Google Scholar 

  • D.J. Stevenson, Planetary magnetic fields. Earth Planet. Sci. Lett. 208(1–2), 1–11 (2003). doi:10.1016/S0012-821X(02)01126-3

    Article  ADS  Google Scholar 

  • S.T. Weir, A.C. Mitchell, W.J. Nellis, Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar). Phys. Rev. Lett. 76(11), 1860–1863 (1996). doi:10.1007/978-94-007-6633-4_4

    Article  ADS  Google Scholar 

  • R.C. Whitten et al., Predictions of the electrical conductivity and charging of the cloud particles in Jupiter’s atmosphere. J. Geophys. Res. 113, E04001 (2008). doi:10.1029/2007JE002975

    Article  ADS  Google Scholar 

  • Y. Yair, Z. Levin, S. Tzivion, Model interpretation of Jovian lightning activity and the Galileo probe results. J. Geophys. Res. 103(D12), 14157–14166 (1998). doi:10.1029/98JD00310

    Google Scholar 

  • Y. Yair, New results on planetary lightning. Adv. Space Res. 50, 293–310 (2012). doi:10.1016/j.asr.2012.04.013

    Article  ADS  Google Scholar 

  • P. Zarka, W.M. Farrell, G. Fischer, K. Konovalenko, Ground-based and space-based observations of planetary lightning. Space Sci. Revs. (2008). doi:10.1007/s11214-008-9366-8

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen L. Aplin .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Aplin, K.L. (2013). Jupiter and Saturn. In: Electrifying Atmospheres: Charging, Ionisation and Lightning in the Solar System and Beyond. SpringerBriefs in Astronomy. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6633-4_5

Download citation

Publish with us

Policies and ethics