Skip to main content

Disturbance of Hereditary Material Reserves Is the Main Instrument of Stress

  • Chapter
  • First Online:
Radiation-Induced Processes of Adaptation

Abstract

This review presents data on the low-dose radiation effects and their mathematical models. Its purpose is to demonstrate that radiation stress leads to processes of instability that can be revealed as different phenomena. The phenomena of radioadaptation, nonlinear response induced by low-dose irradiation, hormetic effect, and continued instability across generations, and stimulation of proliferation are considered. Our special interest is the investigation of the bystander effect which clarified some of these phenomena. The regularities of the bystander effect, genomic and transgenerational instability are considered. The modelling of these radiation effects is discussed: the models offered by Yu.G. Kapultsevich (probabilistic), D.J. Brenner et al. (“Bystander and Direct”), H. Nikjoo and I.K. Khvostunov (Diffusion model), and B.E. Leonard (“Microdose Model”) are presented. The investigations of Russian scientists and the Timofeeff-Ressovsky school are presented as being of special interest to Western scientists owing to this information not having been published in the West due to the cold war.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here we consider the changes of cells and chromosomes.

References

  • Aghajanyan A, Kuzmina N, Sipyagyna A et al (2011) Analysis of genomic instability in the offspring of fathers exposed to low doses of ionizing radiation. Environ Mol Mutagen 52:538–546

    CAS  Google Scholar 

  • Auerbach C, Kilbey BJ (1971) Mutation in eukaryotes. Annu Rev Genet 5:163–218

    CAS  Google Scholar 

  • Averbeck D (2010) Non-targeted effects as a paradigm breaking evidence. Mutat Res 687:7–12

    CAS  Google Scholar 

  • Aypar U, Morgan WF, Baulch JE (2011) Radiation-induced epigenetic alterations after low and high LET irradiations. Mutat Res 707:24–33

    CAS  Google Scholar 

  • Barber RC, Hickenbotham P, Hatch T et al (2006) Radiation-induced transgenerational alterations in genome stability and DNA damage. Oncogene 25:7336–7342

    CAS  Google Scholar 

  • Belyakov OV, Folkard M, Mothersill CE et al. (2000) Bystander effect and genomic instability. Challenging the classic paradigm of radiobiology. In: Proceedings Timofeeff-Ressovsky centennial conference “Modern problems of Radiobiology, Radioecology and Evolution”. JINR Press, Dubna

    Google Scholar 

  • Belyakov OV, Hall EJ, Marino SA et al. (2002) Studies of bystander effects in artificial human 3d tissue systems using a microbeam irradiation. Annual report. Center for Radiological Research, Columbia University, Irvington

    Google Scholar 

  • Bliznik KM, Kapultsevich YG, Korogodin VI et al (1974) Formation of radioraces by yeasts. Comm. 4. The dependence of the saltant yield on postirradiation cultivation conditions. Radiologiya 14:230–236 (Russian)

    Google Scholar 

  • Boei JJ, Vermeulen S, Natarajan AT (1996) Detection of chromosomal aberrations by fluorescence in situ hybridization in the first three postirradiation divisions of human lymphocytes. Mutat Res 349:127–135

    Google Scholar 

  • Brenner DJ, Little JB, Sachs RK (2001) The bystander effect in radiation oncogenesis: II. A quantitative model. Radiat Res 155:402–408

    CAS  Google Scholar 

  • Brenner DJ, Sachs KD (2002) Do low dose-rate bystander effects influence domestic radon risks? Int J Radiat Biol 78:593–604

    CAS  Google Scholar 

  • Burlakova EB (1994) Effect of the minute doses. Bull Russ Acad Sci 4:80–95 (Russian)

    Google Scholar 

  • Burlakova EB, Goloschapov AN, Gorbunova NV et al (1996) Features of the low-dose-radiation biological effects. Radiats Biol Radioecol 36:610–631 (Russian)

    CAS  Google Scholar 

  • Burlakova EB, Goloschapov AN, Zhizhina GP et al (1999) New view on the regularities of low-dose-rate irradiation at the low doses irradiation. Radiats Biol Radioecol 39:26–34 (Russian)

    CAS  Google Scholar 

  • Burlakova EB, Mikhailov VF, Mazurik VK (2000) System of the oxidation-reduction homeostasis at radiation- inducible genome instability. Radiats Biol Radioecol 41:489–499 (Russian)

    Google Scholar 

  • Cherezhanova LV, Alexakhin RM (1971) To the question of cytogenetic many-year influence of high artificial radiation on populations. Russ J Gen Biol 32:494–500 (Russian)

    Google Scholar 

  • Deshpande A, Goodwin EH, Bailey SM et al (1996) α-particle-induced sister chromatid exchange in normal human lung fibroblasts: evidence for an extranuclear target. Radiat Res 145:260–267

    CAS  Google Scholar 

  • Dubrova YE (2003) Radiation-induced transgenerational instability. Oncogene 22:7087–7093

    CAS  Google Scholar 

  • Dubrova YE (2012) Genomic instability in the offspring of irradiated parents. In: Mothersill C, Korogodina V, Seymour C (eds) Radiobiology and environmental security. Springer, Dordrecht, pp 127–140

    Google Scholar 

  • Dubrova YE, Plumb M, Brown J et al (2000) Induction of minisatellite mutations in the mouse germline by low-dose chronic exposure to γ-radiation and fission neutrons. Mutat Res 453:17–24

    CAS  Google Scholar 

  • Ellegren H, Lindgren G, Primmer CR et al (1997) Fitness loss and germline mutations in barn swallows breeding in Chernobyl. Nature 389:593–596

    CAS  Google Scholar 

  • Emerit I, Oganesian N, Arutyunian R et al (1997) Oxidative stress-related clastogenic factors in plasma from Chernobyl liquidators: protective effects of antioxidant plant phenols, vitamins and oligoelements. Mutat Res 377:239–246

    CAS  Google Scholar 

  • Feinendegen LE (2005) Evidence for beneficial low level radiation effects and radiation hormesis. Br J Radiol 78:3–7

    CAS  Google Scholar 

  • Florko BV, Korogodina VL (2007) Analysis of the distribution structure as exemplified by one cytogenetic problem. PEPAN Lett 4:331–338

    Google Scholar 

  • Fomenko LA, Vasil'eva GV, Bezlepkin VG (2001) Micronucleus frequency is increased in bone marrow erythrocytes from offspring of male mice exposed to chronic low-dose gamma irradiation. Biol Bull 28:419–423

    Google Scholar 

  • Geras’kin SA, Oudalova AA, Kim JK et al (1998) Analysis of cytogenetic effects of low dose chronic radiation in agricultural crops. Radiats Biol Radioecol 38:367–374 (Russian)

    Google Scholar 

  • Goh K, Sumner H (1968) Breaks in normal human chromosomes: are they induced by a transferable substance in the plasma of persons exposed to total body irradiation? Radiat Res 35:171–181

    CAS  Google Scholar 

  • Gudkov IN (1985) Cell mechanisms of postradiation repair in plants. Naukova Dumka, Kiev (Russian)

    Google Scholar 

  • Hickman A, Jaramillo R, Lechner J et al (1994) Alpha-particle-induced p53 protein expression in a rat lung epithelial cell strain. Cancer Res 54:5797–5800

    CAS  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    CAS  Google Scholar 

  • Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8:253–262

    CAS  Google Scholar 

  • Kadhim MA, Hill MA, Moore SR (2006) Genomic instability and the role of radiation quality. Radiat Prot Dosimetry 122:221–227

    CAS  Google Scholar 

  • Kapultsevich YG (1978) Quantitative regularities of cell radiation injury. Atomizdat, Moscow (Russian)

    Google Scholar 

  • Kapultsevich YG, Petin VG (1977) Probability model for cell responses to irradiation. Studia Biophysika 62:151

    CAS  Google Scholar 

  • Kashino G, Prise KM, Suzuki K et al (2007) Effective suppression of bystander effects by DMSO treatment of irradiated CHO cells. J Radiat Res (Tokyo) 48:327–333

    Google Scholar 

  • Kaup S, Grandjean V, Mukherjee R et al (2006) Radiation-induced genomic instability is associated with DNA methylation changes in cultured human keratinocytes. Mutat Res 597:87–97

    CAS  Google Scholar 

  • Korogodin VI (1993) The school of N. W. Timofeeff-Ressovsky. In: Vorontsov NN (Ed) Nikolay Wladimirovich Timofeeff-Ressovsky. Stories, recollections, materials. Nauka, Moscow, pp 252–269 (Russian)

    Google Scholar 

  • Korogodin VI, Bliznik KM, Kapultsevich YG (1977) Regularities of radioraces formation in yeasts. Comm. 11. Facts and hypotheses. Radiologiya 17:492–499 (Russian)

    CAS  Google Scholar 

  • Korogodin VI, Bliznik КМ (1972) Formation of radioraces by yeasts. Comm. 1. Radioraces of diploid yeasts Saccaromyces ellipsoideus vini. Radiologiya 12:163–170 (Russian)

    CAS  Google Scholar 

  • Korogodin VI, Bliznik КМ, Kapultsevich YG et al (1972) Formation of radioraces by yeasts. Comm. 3. The quantitative regularities of radiorace formation by diploid yeasts. Radiologiya 12:857–863 (Russian)

    CAS  Google Scholar 

  • Korogodina VL, Florko BV, Osipova LP (2010) Adaptation and radiation-induced chromosomal instability studied by statistical modeling. Open Evol J 4:12–22

    Google Scholar 

  • Kovalchuk O, Baulch JE (2008) Epigenetic changes and nontargeted radiation effects – is there a link? Environ Mol Mutagen 49:16–25

    CAS  Google Scholar 

  • Kovalchuk O, Dubrova YE, Arkhipov A et al (2000) Wheat mutation rate after Chernobyl. Nature 407:583–584

    CAS  Google Scholar 

  • Kovalchuk O, Kovalchuk I, Arkhipov A et al (2003) Extremely complex pattern of microsatellite mutation in the germline of wheat exposed to the post-Chernobyl radioactive contamination. Mutat Res 525:93–101

    CAS  Google Scholar 

  • Kuzin AM (1993) The key mechanisms of radiation hormesis. Izv Akad Nauk Ser Biol 6:824–832

    Google Scholar 

  • Lacassagne A, Schoen M, Beraud P (1939) Contribution à l’étude des radio-races de levures. II. Caracté res physiologiques de quelques radio-races d’une levure de vin. Ann Fermentations 5:129–152 (French)

    Google Scholar 

  • Lea DE (1946) Action of radiations on living cells. Cambridge University Press, Cambridge

    Google Scholar 

  • Leonard BE (2008a) A review: development of a microdose model for analysis of adaptive response and bystander dose response behavior dose response. Int J Radiat Biol 6(2):113–183

    CAS  Google Scholar 

  • Leonard BE (2008b) A composite microdose adaptive response (AR) and bystander effect (BE) model-application to low LET and high LET AR and BE data. Int J Radiat Biol 84:681–701

    CAS  Google Scholar 

  • Liang X, So YH, Cui J et al (2011) The low-dose ionizing radiation stimulates cell proliferation via activation of the MAPK/ERK pathway in rat cultured mesenchymal stem cells. J Radiat Res (Tokyo) 52(3):380–386

    CAS  Google Scholar 

  • Little JB (2000) Radiation carcinogenesis. Carcinogenesis 21:397–404

    CAS  Google Scholar 

  • Little JB, Morgan WF (guest eds) (2003) Special issue on Genomic instability. Oncogene 13(22): 6977

    Google Scholar 

  • Little JB, Nagasawa H, Pfenning T et al (1997) Radiation-induced genomic instability: delayed mutagenic and cytogenetic effects of X-rays and alpha particles. Radiat Res 148:299–307

    CAS  Google Scholar 

  • Little MP (2010) Do non-targeted effects increase or decrease low dose risk in relation to the linear-non-threshold (LNT) model? Mutat Res 687:17–27

    CAS  Google Scholar 

  • Liu Z, Mothersill CE, McNeill FE et al (2006) A dose threshold for a medium transfer bystander effect for a human skin cell line. Radiat Res 166(1 Pt 1):9–23

    Google Scholar 

  • Longerich S, Galloway AM, Harris RS et al (1995) Adaptive mutation sequences reproduced by mismatch repair deficiency. Proc Natl Acad Sci USA 92:12017–12020

    CAS  Google Scholar 

  • Lorimore SA, Coates PJ, Wright EG (2003) Radiation-induced genomic instability and bystander effects: inter-related nontargeted effects of exposure to ionizing radiation. Oncogene 22:7058–7069

    CAS  Google Scholar 

  • Lorimore SA, Wright EG (2003) Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A review. Int J Radiat Biol 79:15–25

    CAS  Google Scholar 

  • Luchnik NV (1958) Influence of low-dose irradiation on mitosis of pea. Bull MOIP Ural Department 1:37–49 (Russian)

    Google Scholar 

  • Luckey TD (1980) Hormesis with ionizing radiation. CRC Press, Boca Raton

    Google Scholar 

  • Luke GA, Riches AC, Bryant PE (1997) Genomic instability in haematopoietic cells of F1 generation mice of irradiated male parents. Mutagenesis 12:147–152

    CAS  Google Scholar 

  • Luning KG, Frolen H, Nilsson A (1976) Genetic effects of 239Pu salt injections in male mice. Mutat Res 34:539–542

    CAS  Google Scholar 

  • Lyng FM, Maguire P, McClean B et al (2006) The involvement of calcium and MAP kinase signaling pathways in the production of radiation induced bystander effects. Radiat Res 165:400–409

    CAS  Google Scholar 

  • McClintock B (1938) The production of homozygous deficient tissues with mutant characteristics by means of the aberrant mitotic behavior of ring-shaped chromosomes. Genetics 23:315–376

    CAS  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    CAS  Google Scholar 

  • Morgan WF (2003a) Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro. Radiat Res 159:567–580

    CAS  Google Scholar 

  • Morgan WF (2003b) Non-targeted and delayed effects of exposure to ionizing radiation. II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiat Res 159:581–596

    CAS  Google Scholar 

  • Morgan WF (2011) Radiation induced genomic instability. Health Phys 100:280–281

    CAS  Google Scholar 

  • Mothersill CE, Seymour CB (1997) Medium from irradiated human epithelial cells but not human fibroblasts reduces the clonogenic survival of unirradiated cells. Int J Radiat Biol 71:421–427

    CAS  Google Scholar 

  • Mothersill C, Seymour CB (1998) Cell–cell contact during γ-irradiation is not required to induce a bystander effect in normal human keratinocytes: evidence for release of a survival controlling signal into medium. Radiat Res 149:256–262

    CAS  Google Scholar 

  • Mothersill CE, Seymour CB (2000) Genomic instability, bystander effect and radiation risks: implications for development of protection strategies for man and environment. Radiats Biol Radioecol 40:615–620

    CAS  Google Scholar 

  • Mothersill CE, Seymour CB (2001) Radiation-induced bystander effects: past history and future directions. Radiat Res 155:759–767

    CAS  Google Scholar 

  • Mothersill CE, Seymour CB (2002) Relevance of radiation-induced bystander effect for environmental risk assessment. Radiats Biol Radioecol 42:585–587

    CAS  Google Scholar 

  • Mothersill CE, Seymour CB (2004) Radiation-induced bystander effects and adaptive responses – the Yin and Yang of low dose radiobiology? Mutat Res 568:121–128

    CAS  Google Scholar 

  • Mothersill C, Seymour RJ, Seymour CB (2004) Bystander effects in repair-deficient cell lines. Radiat Res 161:256–263

    CAS  Google Scholar 

  • Mothersill C, Seymour CB (2005) Radiation-induced bystander effects: are they good, bad or both? Med Confl Surviv 21:101–110

    Google Scholar 

  • Mothersill C, Seymour CB (2006) Radiation-induced bystander effects and the DNA paradigm: an “out of field” perspective. Mutat Res 597(1–2):5–10

    CAS  Google Scholar 

  • Nadson GA, Filippov GS (1925) Influence des rayons X sur la sexualite’ et la formation des mutantes chez les champignons infe’rieurs (Mucoriné es). Compt Rend Soc Biol 93:473–475 (French)

    Google Scholar 

  • Nadson GA, Filippov GS (1932) Formation of new resistant races of microorganisms under the action of X-rays. Radioraces of Sporobolomyces. Vestn Rentgenol Radiolog 10:275–299 (Russian)

    Google Scholar 

  • Nagar S, Smith LE, Morgan WF (2003) Characterization of a novel epigenetic effect of ionizing radiation: the death-inducing effect. Cancer Res 63:324–328

    CAS  Google Scholar 

  • Nagasawa H, Huo L, Little B (2003) Increased bystander mutagenic effect in double strand break repair-deficient mammalian cells. Int J Radiat Biol 79:35–41

    CAS  Google Scholar 

  • Nagasawa H, Little JB (1992) Induction of sister chromatid exchanges by extremely low doses of α-particles. Cancer Res 52:6394–6396

    CAS  Google Scholar 

  • Nikjoo H, Khvostunov IK (2004) A theoretical approach to the role and critical issues associated with bystander effect in risk estimation. Hum Exp Toxicol 23:81–86

    Google Scholar 

  • Okada M, Okabe A, Uchihori Y et al (2007) Single extreme low dose/low dose rate irradiation causes alteration in lifespan and genome instability in primary human cells. Br J Cancer 96:1707–1710

    CAS  Google Scholar 

  • Parsons WB, Watkins CH, Pease GL et al (1954) Changes in sternal bone marrow following roentgen-ray therapy to the spleen in chronic granulocytic leukaemia. Cancer 7:179–189

    Google Scholar 

  • Petin VG, Morozov II, Kabakova NM et al (2003) Some features of radiation hormesis in bacteria and yeast cells. Radiats Biol Radioecol 43:176–178 (Russian)

    CAS  Google Scholar 

  • Pfeiffer P (1998) The mutagenic potential of DNA double-strand break repair. Toxicol Lett 96–97:119–129

    Google Scholar 

  • Portess DI, Bauer G, Hill MA et al (2007) Low-dose irradiation of nontransformed cells stimulates the selective removal of precancerous cells via intercellular induction of apoptosis. Cancer Res 67:1246–1253

    CAS  Google Scholar 

  • Pozolotina VN (1996) Radiation-induced adaptation processes in plants. Ecology 2:111–116 (Russian)

    Google Scholar 

  • Prise KM (2006) New advances in radiation biology. Occup Med (Lond) 56(3):156–161

    Google Scholar 

  • Prise KM, Belyakov OV, Folkard M et al (1998) Studies of bystander effects in human fibroblasts using a charged particle microbeam. Int J Radiat Biol 74:793–798

    CAS  Google Scholar 

  • Rigaud O, Moustacchi E (1996) Radioadaptation for gene mutation and the possible molecular mechanisms of the adaptive response. Mutat Res 358:127–134

    Google Scholar 

  • Sawant SG, Randers-Pehrson G, Geard CR et al (2001) The bystander effect in radiation oncogenesis: I. Transformation in C3H 10 T1/2 cells in vitro can be initiated in the unirradiated neighbors of irradiated cells. Radiat Res 155:397–401

    CAS  Google Scholar 

  • Schettino G, Folkard M, Prise KM et al (2003) Low-dose studies of bystander cell killing with targeted soft X-rays. Radiat Res 160:505–511

    CAS  Google Scholar 

  • Schettino G, Folkard M, Michael BD et al (2005) Low-dose binary behavior of bystander cell killing after microbeam irradiation of a single cell with focused C(k) X-rays. Radiat Res 163:332–336

    CAS  Google Scholar 

  • Sedelnikova OA, Nakamura A, Kovalchuk O et al (2007) DNA double-strand breaks form in bystander cells after microbeam irradiation of three-dimensional human tissue models. Cancer Res 67:4295–4302

    CAS  Google Scholar 

  • Seymour CB, Mothersill CE (1997) Delayed expression of lethal mutations and genomic instability in the progeny of human epithelial cells that survived in a bystander killing environment. Radiat Oncol Investig 5:106–110

    CAS  Google Scholar 

  • Shao C, Lyng FM, Folkard M et al (2006) Calcium fluxes modulate the radiation-induced bystander responses in targeted glioma and fibroblast cells. Radiat Res 166:479–487

    CAS  Google Scholar 

  • Shao C, Folkard M, Prise KM (2008) Role of TGF-beta1 and nitric oxide in the bystander response of irradiated glioma cells. Oncogene 27:434–440

    CAS  Google Scholar 

  • Shevchenko VA, Pechkurenkov VL, Abramov VI (1992) Radiation genetics of the native populations. Genetic consequences of the Kyshtym accident. Nauka, Moscow

    Google Scholar 

  • Shevchenko VA, Kal'chenko VA, Abramov VI et al (1999) Genetic effects in populations of plants growing in the zone of Kyshtym and Chernobyl accidents. Radiats Biol Radioecol 39:162–176 (Russian)

    CAS  Google Scholar 

  • Sigg M, Crompton NE, Burkart W (1997) Enhanced neoplastic transformation in an inhomogeneous radiation field: an effect of the presence of heavily damaged cells. Radiat Res 148:543–547

    CAS  Google Scholar 

  • Timofeeff-Ressovsky NW (1939) Genetik und evolution. Z Inductive Abstammungs Vererbungslehre 76:158–218 (German)

    Google Scholar 

  • Timofeeff-Ressovsky NW (1956) Biophysics interpretation of the radiostimulation phenomenon in plant. Biophysics 1:616–627 (Russian)

    Google Scholar 

  • Timofeeff-Ressovsky NW, Poryadkova NA, Preobrazhenskaya EI (1950–1954) Influence of low dose irradiation on growth of plants. Reports. Fund of the Urals Department of the Academy of Sciences of USSR (Russian)

    Google Scholar 

  • Timofeeff-Ressovsky NW, Timofeeff-Ressovskaya EA (2006) The principle types of planned experiments on radiation biogeocenology of freshwater communities. In: Korogodina VL, Cigna AA, Durante M (eds) Proceedings of the second international conference dedicated to NW Timofeeff-Ressovsky. JINR Press, Dubna, vol 2, pp 14–16 (Russian)

    Google Scholar 

  • Timofeeff-Ressovsky NW, Tyuryukanov AN (2006) The principle types of planned experiments on radiation biogeocenology of terrestrial communities. In: Korogodina VL, Cigna AA, Durante M (eds) Proceedings of the second international conference dedicated to NW Timofeeff-Ressovsky. JINR Press, Dubna, vol 2, pp 17–19 (Russian)

    Google Scholar 

  • Timofeeff-Ressovsky NW, Zimmer KG (1947) Biophysik. Das Trefferprinzip in der Biologie. S. Hirzel Verlag, Leipzig

    Google Scholar 

  • Timofeeff-Ressovsky NW, Zimmer KG, Delbrük M (1935) Über die Nature der Genmutation und der Genstruktur. Nachr Ges Wiss Gottingen FG VI Biol NF 1:189–245

    Google Scholar 

  • de Toledo SM, Buonanno M, Li M et al (2011) The impact of adaptive and non-targeted effects in the biological responses to low dose/low fluence ionizing-radiation: the modulating effect of linear energy transfer. Health Phys 100:290–292

    Google Scholar 

  • Upton AC (2001) Radiation hormesis: data and interpretations. Crit Rev Toxicol 31(4–5):681–695

    CAS  Google Scholar 

  • Vaiserman AM, Mekhova LV, Koshel NM et al (2010) Cancer incidence and mortality after low-dose radiation exposure: epidemiological aspects. Radiats Biol Radioecol 50:691–702

    CAS  Google Scholar 

  • Vorobtsova IE (2000) Irradiation of male rats increases the chromosomal sensitivity of progeny to genotoxic agents. Mutagenesis 15:33–38

    CAS  Google Scholar 

  • Vorobtsova IE, Aliyakparova LM, Anisimov VN (1993) Promotion of skin tumors by 12-O-tetradecanoylphorbol-13-acetate in two generations of descendants of male mice exposed to X-ray irradiation. Mutat Res 287(2):207–216

    CAS  Google Scholar 

  • Watson GE, Lorimore SA, MacDonald DA et al (2000) Chromosomal instability in unirradiated cells induced in vivo by a bystander effect of ionizing radiation. Cancer Res 60:5608–5611

    CAS  Google Scholar 

  • Wiley LM, Baulch JE, Raabe OG et al (1997) Impaired cell proliferation in mice that persists across at least two generations after paternal irradiation. Radiat Res 148:145–151

    CAS  Google Scholar 

  • Zaichkina SI, Rozanova OM, Akhmadieva AK et al (2009) Study of the genetic instability in generations of mice irradiated of a low-dose rate of high-LET radiation. Radiats Biol Radioecol 49:55–59 (Russian)

    CAS  Google Scholar 

  • Zhou H, Randers-Pehrson G, Waldren CA et al (2000) Induction of a bystander mutagenic effect of α-particles in mammalian cells. Proc Natl Acad Sci USA 97:2099–2104

    CAS  Google Scholar 

  • Zyuzikov NA, Coates PJ, Parry JM et al (2011) Lack of nontargeted effects in murine bone marrow after low-dose in vivo X irradiation. Radiat Res 175(3):322–327

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Korogodina, V.L., Florko, B.V., Osipova, L.P. (2013). Disturbance of Hereditary Material Reserves Is the Main Instrument of Stress. In: Radiation-Induced Processes of Adaptation. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6630-3_2

Download citation

Publish with us

Policies and ethics