Skip to main content

Regulation of Intestinal Stem Cells by Wnt and Notch Signalling

  • Chapter
  • First Online:
Transcriptional and Translational Regulation of Stem Cells

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 786))

Abstract

The mammalian intestine is lined by an epithelial cell layer that is constantly renewed via a population of stem cells that reside in a specialised niche within intestinal crypts. The recent development of tools that permit genetic manipulation and lineage tracing of cells in vivo combined with culture methods in vitro has made the intestine particularly amenable for the study of signals that regulate stem cell function. Both Wnt and Notch signalling are critical regulators of stem cell fate. Gene knockout and transgenic expression analysis combined with meticulous analysis of lineage tracing and molecular characterisation has contributed to the definition of the mechanisms by which these pathways act during normal homeostasis and in disease states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van der Flier LG, Clevers H (2009) Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71:241–260

    Article  PubMed  Google Scholar 

  2. Sato T, Stange DE, Ferrante M, Vries RGJ et al (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141(5):1762–1772

    Article  PubMed  CAS  Google Scholar 

  3. Sato T, van Es JH, Snippert HJ, Stange DE et al (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469(7330):415–418

    Article  PubMed  CAS  Google Scholar 

  4. Abud HE, Lock P, Heath JK (2004) Efficient gene transfer into the epithelial cell layer of embryonic mouse intestine using low-voltage electroporation. Gastroenterology 126(7):1779–1787

    Article  PubMed  CAS  Google Scholar 

  5. Abud HE, Watson N, Heath JK (2005) Growth of intestinal epithelium in organ culture is dependent on EGF signalling. Exp Cell Res 303(2):252–262

    Article  PubMed  CAS  Google Scholar 

  6. Barker N (2012) Epithelial stem cells in the esophagus: who needs them? Cell Stem Cell 11(3):284–286

    Article  PubMed  CAS  Google Scholar 

  7. Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149(6):1192–1205

    Article  PubMed  CAS  Google Scholar 

  8. Potten CS (1977) Extreme sensitivity of some intestinal crypt cells to X and gamma irradiation. Nature 269(5628):518–521

    Article  PubMed  CAS  Google Scholar 

  9. Potten CS, Kovacs L, Hamilton E (1974) Continuous labelling studies on mouse skin and intestine. Cell Tissue Kinet 7(3):271–283

    PubMed  CAS  Google Scholar 

  10. Potten CS, Wilson JW, Booth C (1997) Regulation and significance of apoptosis in the stem cells of the gastrointestinal epithelium. Stem Cells 15(2):82–93

    Article  PubMed  CAS  Google Scholar 

  11. Bjerknes M, Cheng H (2005) Gastrointestinal stem cellsII. Intestinal stem cells. Am J Physiol 289(3):G381–G387

    CAS  Google Scholar 

  12. Cheng H, Leblond CP (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. Am J Anat 141(4):461–479

    Article  PubMed  CAS  Google Scholar 

  13. Potten CS, Owen G, Booth D (2002) Intestinal stem cells protect their genome by selective segregation of template DNA strands. J Cell Sci 115(Pt 11):2381–2388

    PubMed  CAS  Google Scholar 

  14. Cheng H, Leblond CP (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell types. Am J Anat 141(4):537–561

    Article  PubMed  CAS  Google Scholar 

  15. Sangiorgi E, Capecchi MR (2008) Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 40(7):915–920

    Article  PubMed  CAS  Google Scholar 

  16. Breault DT, Min IM, Carlone DL, Farilla LG et al (2008) Generation of mTert -GFP mice as a model to identify and study tissue progenitor cells. Proc Natl Acad Sci 105(30):10420–10425

    Article  PubMed  CAS  Google Scholar 

  17. Takeda N, Jain R, LeBoeuf MR, Wang Q et al (2011) Interconversion between intestinal stem cell populations in distinct niches. Science 334(6061):1420–1424

    Article  PubMed  CAS  Google Scholar 

  18. Munoz J, Stange DE, Schepers AG, van de Wetering M et al (2012) The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ‘+4’ cell markers. EMBO J 31(14):3079–3091

    Article  PubMed  CAS  Google Scholar 

  19. Barker N, van Oudenaarden A, Clevers H (2012) Identifying the stem cell of the intestinal crypt: strategies and pitfalls. Cell Stem Cell 11(4):452–460

    Article  PubMed  CAS  Google Scholar 

  20. Barker N, van Es JH, Kuipers J, Kujala P et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165):1003–1007

    Article  PubMed  CAS  Google Scholar 

  21. Sato T, Vries RG, Snippert HJ, van de Wetering M et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265

    Article  PubMed  CAS  Google Scholar 

  22. Yui S, Nakamura T, Sato T, Nemoto Y et al (2012) Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell. Nat Med 18(4):618–623

    Article  PubMed  CAS  Google Scholar 

  23. van der Flier LG, van Gijn ME, Hatzis P, Kujala P et al (2009) Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell 136(5):903–912

    Article  PubMed  Google Scholar 

  24. van der Flier LG, Haegebarth A, Stange DE, van de Wetering M et al (2009) OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology 137(1):15–17

    Article  PubMed  Google Scholar 

  25. Koo BK, Spit M, Jordens I, Low TY et al (2012) Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature 488(7413):665–669

    Article  PubMed  CAS  Google Scholar 

  26. Jensen KB, Collins CA, Nascimento E, Tan DW et al (2009) Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell 4(5):427–439

    Article  PubMed  CAS  Google Scholar 

  27. Wong VW, Stange DE, Page ME, Buczacki S et al (2012) Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nat Cell Biol 14(4):401–408

    Article  PubMed  CAS  Google Scholar 

  28. Powell AE, Wang Y, Li Y, Poulin EJ et al (2012) The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell 149(1):146–158

    Article  PubMed  CAS  Google Scholar 

  29. Tian H, Biehs B, Warming S, Leong KG et al (2011) A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478(7368):255–259

    Article  PubMed  CAS  Google Scholar 

  30. Yan KS, Chia LA, Li X, Ootani A et al (2012) The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc Natl Acad Sci U S A 109(2):466–471

    Article  PubMed  CAS  Google Scholar 

  31. van Es JH, Sato T, van de Wetering M, Lyubimova A et al (2012) Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol 14(10):1099–1104

    Article  PubMed  Google Scholar 

  32. Van der Flier LG, Sabates-Bellver J, Oving I, Haegebarth A et al (2007) The intestinal Wnt/TCF signature. Gastroenterology 132(2):628–632

    Article  PubMed  Google Scholar 

  33. VanDussen KL, Carulli AJ, Keeley TM, Patel SR et al (2011) Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development 139(3):488–497

    Article  PubMed  Google Scholar 

  34. Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87(2):159–170

    Article  PubMed  CAS  Google Scholar 

  35. Korinek V, Barker N, Morin PJ, van Wichen D et al (1997) Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 275(5307):1784–1787

    Article  PubMed  CAS  Google Scholar 

  36. Korinek V, Barker N, Moerer P, van Donselaar E et al (1998) Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 19(4):379–383

    Article  PubMed  CAS  Google Scholar 

  37. Ireland H, Kemp R, Houghton C, Howard L et al (2004) Inducible Cre-mediated control of gene expression in the murine gastrointestinal tract: effect of loss of beta-catenin. Gastroenterology 126(5):1236–1246

    Article  PubMed  CAS  Google Scholar 

  38. Pinto D, Gregorieff A, Begthel H, Clevers H (2003) Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev 17(14):1709–1713

    Article  PubMed  CAS  Google Scholar 

  39. Kuhnert F, Davis CR, Wang HT, Chu P et al (2004) Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proc Natl Acad Sci U S A 101(1):266–271

    Article  PubMed  CAS  Google Scholar 

  40. Sansom OJ, Reed KR, Hayes AJ, Ireland H et al (2004) Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev 18(12):1385–1390

    Article  PubMed  CAS  Google Scholar 

  41. van de Wetering M, Sancho E, Verweij C, de Lau W et al (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111(2):241–250

    Article  PubMed  Google Scholar 

  42. Moser AR, Pitot HC, Dove WF (1990) A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247(4940):322–324

    Article  PubMed  CAS  Google Scholar 

  43. Andreu P, Colnot S, Godard C, Gad S et al (2005) Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine. Development 132(6):1443–1451

    Article  PubMed  CAS  Google Scholar 

  44. Barker N, Ridgway RA, van Es JH, van de Wetering M et al (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457(7229):608–611

    Article  PubMed  CAS  Google Scholar 

  45. Gregorieff A, Pinto D, Begthel H, Destree O et al (2005) Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology 129(2):626–638

    PubMed  CAS  Google Scholar 

  46. Farin HF, Van Es JH, Clevers H (2012) Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells. Gastroenterology 143(6):1518–1529.e7

    Article  PubMed  CAS  Google Scholar 

  47. Hsieh M, Boerboom D, Shimada M, Lo Y et al (2005) Mice null for Frizzled4 (Fzd4-/-) are infertile and exhibit impaired corpora lutea formation and function. Biol Reprod 73(6):1135–1146

    Article  PubMed  CAS  Google Scholar 

  48. van Es JH, Jay P, Gregorieff A, van Gijn ME et al (2005) Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat Cell Biol 7(4):381–386

    Article  PubMed  Google Scholar 

  49. de Lau W, Barker N, Low TY, Koo BK et al (2011) Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476(7360):293–297

    Article  PubMed  Google Scholar 

  50. Durand A, Donahue B, Peignon G, Letourneur F et al (2012) Functional intestinal stem cells after Paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1). Proc Natl Acad Sci USA 109(23):8965–8970

    Article  PubMed  CAS  Google Scholar 

  51. Kim TH, Escudero S, Shivdasani RA (2012) Intact function of Lgr5 receptor-expressing intestinal stem cells in the absence of Paneth cells. Proc Natl Acad Sci U S A 109(10):3932–3937

    Article  PubMed  CAS  Google Scholar 

  52. Ruffner H, Sprunger J, Charlat O, Leighton-Davies J et al (2012) R-Spondin potentiates Wnt/beta-catenin signaling through orphan receptors LGR4 and LGR5. PLoS One 7(7):e40976

    Article  PubMed  CAS  Google Scholar 

  53. Carmon KS, Gong X, Lin Q, Thomas A et al (2011) R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling. Proc Natl Acad Sci U S A 108(28):11452–11457

    Article  PubMed  CAS  Google Scholar 

  54. Sansom OJ, Meniel VS, Muncan V, Phesse TJ et al (2007) Myc deletion rescues Apc deficiency in the small intestine. Nature 446(7136):676–679

    Article  PubMed  CAS  Google Scholar 

  55. Clarke AR (2006) Wnt signalling in the mouse intestine. Oncogene 25(57):7512–7521

    Article  PubMed  CAS  Google Scholar 

  56. Horvay K, Casagranda F, Gany A, Hime GR et al (2011) Wnt signaling regulates Snai1 expression and cellular localization in the mouse intestinal epithelial stem cell niche. Stem Cells Dev 20(4):737–745

    Article  PubMed  CAS  Google Scholar 

  57. Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137(2):216–233

    Article  PubMed  CAS  Google Scholar 

  58. Sander GR, Powell BC (2004) Expression of notch receptors and ligands in the adult gut. J Histochem Cytochem 52(4):509–516

    Article  PubMed  CAS  Google Scholar 

  59. Schroder N, Gossler A (2002) Expression of Notch pathway components in fetal and adult mouse small intestine. Gene Expr Patterns 2(3–4):247–250

    Article  PubMed  CAS  Google Scholar 

  60. Fre S, Hannezo E, Sale S, Huyghe M et al (2011) Notch lineages and activity in intestinal stem cells determined by a new set of knock-in mice. PLoS One 6(10):e25785

    Article  PubMed  CAS  Google Scholar 

  61. Riccio O, van Gijn ME, Bezdek AC, Pellegrinet L et al (2008) Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep 9(4):377–383

    Article  PubMed  CAS  Google Scholar 

  62. Wu Y, Cain-Hom C, Choy L, Hagenbeek TJ et al (2010) Therapeutic antibody targeting of individual Notch receptors. Nature 464(7291):1052–1057

    Article  PubMed  CAS  Google Scholar 

  63. Pellegrinet L, Rodilla V, Liu Z, Chen S et al (2011) Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells. Gastroenterology 140(4):1230–1240, e1231–1237

    Article  PubMed  CAS  Google Scholar 

  64. Benedito R, Duarte A (2005) Expression of Dll4 during mouse embryogenesis suggests multiple developmental roles. Gene Expr Patterns 5(6):750–755

    Article  PubMed  CAS  Google Scholar 

  65. Ueo T, Imayoshi I, Kobayashi T, Ohtsuka T et al (2012) The role of Hes genes in intestinal development, homeostasis and tumor formation. Development 139(6):1071–1082

    Article  PubMed  CAS  Google Scholar 

  66. van Es JH, van Gijn ME, Riccio O, van den Born M et al (2005) Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435(7044):959–963

    Article  PubMed  Google Scholar 

  67. Milano J, McKay J, Dagenais C, Foster-Brown L et al (2004) Modulation of notch processing by gamma-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol Sci 82(1):341–358

    Article  PubMed  CAS  Google Scholar 

  68. Fre S, Huyghe M, Mourikis P, Robine S et al (2005) Notch signals control the fate of immature progenitor cells in the intestine. Nature 435(7044):964–968

    Article  PubMed  CAS  Google Scholar 

  69. Fre S, Pallavi SK, Huyghe M, Lae M et al (2009) Notch and Wnt signals cooperatively control cell ­proliferation and tumorigenesis in the intestine. Proc Natl Acad Sci U S A 106(15):6309–6314

    Article  PubMed  CAS  Google Scholar 

  70. Peignon G, Durand A, Cacheux W, Ayrault O et al (2011) Complex interplay between beta-catenin signalling and Notch effectors in intestinal tumorigenesis. Gut 60(2):166–176

    Article  PubMed  CAS  Google Scholar 

  71. Rodilla V, Villanueva A, Obrador-Hevia A, Robert-Moreno A et al (2009) Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer. Proc Natl Acad Sci USA 106(15):6315–6320

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen E. Abud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Horvay, K., Abud, H.E. (2013). Regulation of Intestinal Stem Cells by Wnt and Notch Signalling. In: Hime, G., Abud, H. (eds) Transcriptional and Translational Regulation of Stem Cells. Advances in Experimental Medicine and Biology, vol 786. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6621-1_10

Download citation

Publish with us

Policies and ethics