Skip to main content

Landau Levels and Edge States in Graphene with Strong Spin-Orbit Coupling

  • Conference paper
  • First Online:
Low-Dimensional Functional Materials

Abstract

We investigate the electronic properties of graphene in a magnetic and a strain-induced pseudo-magnetic field in the presence of strong spin-orbit interactions (SOI). For a homogeneous field we provide analytical results for the Landau level eigenstates for arbitrary intrinsic and Rashba SOI, including also the effect of a Zeeman field. We then study the edge states in a semi-infinite geometry in the absence of the Rashba term. We find that, for a critical value of the magnetic field, a quantum phase transition occurs, which separates two phases both with spin-filtered helical edge states but with opposite direction of the spin current. Finally,we discuss magnetic waveguides with inhomogeneous field profiles that allow for chiral snake orbits. Such waveguides are practically immune to disorder-induced backscattering, and the SOI provides non-trivial spin texture to these modes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A different representation for \(\mathcal{T}\) has been given in Ref. [2] because of a different arrangement of the sublattice components in the spinor (Eq. 8.1).

  2. 2.

    For notational convenience, we shift p + 1 → p for s =  in the discussion of the purely intrinsic SOI.

  3. 3.

    See footnote 2.

  4. 4.

    We note that we made a wrong statement in Ref. [32] in that direction: For the case j < 0 on page 3 therein, we stated that for a′ = 0 there are two normalizable states with E =  ± | M | which for M → 0 coalesce into a single zero-energy Landau level. However, only the state \(E = -\vert M\vert \) is allowed, and the other one is not normalizable.

  5. 5.

    See footnote 2.

References

  1. Geim AK (2009) Graphene: Status and prospects. Science 324:1530

    Article  ADS  Google Scholar 

  2. Beenakker CWJ (2008) Colloquium: Andreev reflection and Klein tunneling in graphene. Rev Mod Phys 80:1337

    Article  ADS  Google Scholar 

  3. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim A (2009) The electronic properties of graphene. Rev Mod Phys 81:109

    Article  ADS  Google Scholar 

  4. Kane CL, Mele EJ (2005) Quantum spin Hall effect in graphene. Phys Rev Lett 95:226801

    Article  ADS  Google Scholar 

  5. Hasan MZ, Kane CL (2010) Colloquium: Topological insulators. Rev Mod Phys 82:3045

    Article  ADS  Google Scholar 

  6. König M, Buhmann H, Molenkamp LW, Hughes T, Liu CX, Qi XL, Zhang SC (2008) The quantum spin Hall effect: Theory and experiment. J Phys Soc Jpn 77:031007

    Article  ADS  Google Scholar 

  7. Huertas-Hernando D, Guinea F, Brataas A (2006) Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotubes caps. Phys Rev B 74:155426

    Article  ADS  Google Scholar 

  8. Min H, Hill JE, Sinitsyn NA, Sahu BR, Kleinman L, MacDonald AH (2006) Intrinsic and Rashba spin-orbit interactions in graphene sheets. Phys Rev B 74:165310

    Article  ADS  Google Scholar 

  9. Yao Y, Ye F, Qi XL, Zhang SC, Fang Z (2007) Spin-orbit of graphene: First-principle calculations. Phys Rev B 75:041401(R)

    Google Scholar 

  10. Dedkov YS, Fonin M, Rüdiger U, Laubschat C (2008) Rashba effect in the graphene/Ni(111) system. Phys Rev Lett 100:107602

    Article  ADS  Google Scholar 

  11. Varykhalov A, Sánchez-Barriga J, Shikin AM, Biswas C, Vescovo E, Rybkin A, Marchenko D, Rader O (2008) Electronic and magnetic properties of quasifreestanding graphene on Ni. Phys Rev Lett 101:157601

    Article  ADS  Google Scholar 

  12. Weeks C, Hu J, Alicea J, Franz M, Wu R (2011) Engineering a robust quantum spin Hall state in graphene via adatom deposition. Phys Rev X1:021001

    Google Scholar 

  13. Vozmediano MAH, Katsnelson MI, Guinea F (2010) Gauge fields in graphene. Phys Rep 496:109

    Article  MathSciNet  ADS  Google Scholar 

  14. Castro Neto AH, Guinea F (2009) Impurity-induced spin-orbit coupling in graphene. Phys Rev Lett 103:026804

    Article  ADS  Google Scholar 

  15. Huertas-Hernando D, Guinea F, Brataas A (2009) Spin-orbit-mediated spin relaxation in graphene. Phys Rev Lett 103:146801

    Article  ADS  Google Scholar 

  16. Rashba EI (2009) Graphene with structure-induced spin-orbit coupling: Spin-polarized states, spin zero modes, and quantum Hall effect. Phys Rev B 79:161409(R)

    Google Scholar 

  17. Bercioux D, De Martino A (2010) Spin-resolved scattering through spin-orbit nanostructures in graphene. Phys Rev B 81:165410

    Article  ADS  Google Scholar 

  18. Lenz L, Bercioux D (2011) Dirac-Weyl electrons in a periodic spin-orbit potential. Europhys Lett 96:27006

    Article  ADS  Google Scholar 

  19. De Martino A, Hütten A, Egger R (2011) Landau levels, edge states, and strained magnetic waveguides in graphene monolayers with enhanced spin-orbit interaction. Phys Rev B 84:155420

    Article  ADS  Google Scholar 

  20. Guinea F, Katsnelson MI, Geim AK (2010) Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat Phys 6:30

    Article  Google Scholar 

  21. Abanin DA, Lee PA, Levitov LS (2007) Spin-filtered edge states and quantum Hall effect in graphene. Phys Rev Lett 96:176803; Abanin DA, Lee PA, Levitov LS (2007) Charge and spin transport at the quantum Hall edge of graphene. Solid State Commun 143:77

    Google Scholar 

  22. Gusynin VP, Sharapov SG (2005) Unconventional integer quantum Hall effect in graphene. Phys Rev Lett 95:146801

    Article  ADS  Google Scholar 

  23. Brey L, Fertig HA (2006) Edge states and the quantized Hall effect in graphene. Phys Rev B 73:195408

    Article  ADS  Google Scholar 

  24. Peres NMR, Castro Neto AH, Guinea F (2006) Dirac fermion confinement in graphene. Phys Rev B 73:241403

    Article  ADS  Google Scholar 

  25. De Martino A, Dell’Anna L, Egger R (2007) Magnetic confinement of massless Dirac fermions in graphene. Phys Rev Lett 98:066802

    Article  ADS  Google Scholar 

  26. Ramezani Masir M, Vasilopoulos P, Matulis A, Peeters FM (2008) Direction-dependent tunneling through nanostructured magnetic barriers in graphene. Phys Rev B 77:235443

    Article  ADS  Google Scholar 

  27. Oroszlány L, Rakyta PK, Kormányos A, Lambert CJ, Cserti J (2008) Theory of snake states in graphene. Phys Rev B 77:081403(R)

    Google Scholar 

  28. Ghosh TK, De Martino A, Hüsler W, Dell’Anna L, Egger R (2008) Conductance quantization and snake states in graphene magnetic waveguide. Phys Rev B 77:081404(R)

    Google Scholar 

  29. Häusler W, De Martino A, Ghosh TK, Egger R (2008) Tomonaga-Luttinger liquid parameters of magnetic waveguides in graphene. Phys Rev B 78:165402

    Article  ADS  Google Scholar 

  30. Dell’Anna L, De Martino A (2009) Multiple magnetic barriers in graphene. Phys Rev B 79:045420

    Article  ADS  Google Scholar 

  31. Dell’Anna L, De Martino A (2009) Wave-vector-dependent spin filtering and spin transport through magnetic barriers in graphene. Phys Rev B 80:155416

    Article  ADS  Google Scholar 

  32. De Martino A, Egger R (2010) On the spectrum of a magnetic quantum dot in graphene. Semicond Sci Technol 25:034006

    Article  ADS  Google Scholar 

  33. Egger R, De Martino A, Siedentop H, Stockmeyer E (2010) Multiparticle equations for interacting Dirac fermions in magnetically confined graphene quantum dots. J Phys A 43:215202

    Article  MathSciNet  ADS  Google Scholar 

  34. Dell’Anna L, De Martino A (2011) Magnetic superlattice and finite-energy Dirac points in graphene. Phys Rev B 83:155449

    Article  ADS  Google Scholar 

  35. Landau LD, Lifshitz EM (1986) Elasticity theory. Pergamon, New York

    Google Scholar 

  36. Suzuura H, Ando T (2002) Phonons and electron-phonon scattering in carbon nanotubes. Phys Rev B 65:235412

    Article  ADS  Google Scholar 

  37. Fogler MM, Guinea F, Katsnelson MI (2008) Pseudomagnetic fields and ballistic transport in a suspended graphene sheet. Phys Rev Lett 101:226804

    Article  ADS  Google Scholar 

  38. Abramowitz M, Stegun IA (1965) Handbook of mathematical functions with formulas, graphs and mathematical tables. Dover, New York (Ch. 19)

    Google Scholar 

  39. Gradshteyn IS, Ryzhik IM (1980) Table of integrals, series, and products. Academic Press, Inc., New York

    MATH  Google Scholar 

  40. Rakyta P, Kormányos A, Cserti J, Koskinen P (2010) Exploring the graphene edges with coherent electron focusing. Phys Rev B 81:115411

    Article  ADS  Google Scholar 

  41. Delplace P, Montambaux G (2010) WKB analysis of edge states in graphene in a strong magnetic field. Phys Rev B 82:205412

    Article  ADS  Google Scholar 

  42. Romanovsky I, Yannouleas C, Landman U (2011) Unique nature of the lowest Landau level in finite graphene samples with zigzag edges: Dirac electrons with mixed bulk-edge character. Phys Rev B 83:045421

    Article  ADS  Google Scholar 

  43. Yang Y, Xu Z, Sheng L, Wang B, Xing DY, Sheng DN (2011) Time-reversal-symmetry-broken quantum spin Hall effect. Phys Rev Lett 107:066602

    Article  ADS  Google Scholar 

  44. Qiao Z, Yang SA, Feng W, Tse WK, Ding J, Yao Y, Wang J, Niu Q (2010) Quantum anomalous Hall effect in graphene from Rashba and exchange effects. Phys Rev B 82:161414(R); Tse WK, Qiao Z, Yao Y, MacDonald AH, Niu Q (2011) Phys Rev B 83:155447

    Google Scholar 

  45. Yao W, Yang SA, Niu Q (2009) Edge states in graphene: From gapped flat-band to gapless chiral modes. Phys Rev Lett 102:096801

    Article  ADS  Google Scholar 

  46. Tkachov G, Hankiewicz EM (2010) Ballistic quantum spin Hall state and enhanced edge backscattering in strong magnetic fields. Phys Rev Lett 104:166803; (2011) Transition between ordinary and topological insulator regimes in two-dimensional resonant magnetotransport. Phys Rev B 83:155412

    Google Scholar 

  47. Arikawa M, Hatsugai Y, Aoki H (2008) Edge states in graphene in magnetic fields: A specialty of the edge mode embedded in the n=0 Landau band. Phys Rev B 78:205401

    Article  ADS  Google Scholar 

  48. Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys Rev B 54:17954; Brey L, Fertig HA (2006) Electronic states of graphene nanoribbons studied with the Dirac equation. Phys Rev B 73:235411

    Google Scholar 

  49. Akhmerov AR, Beenakker CWJ (2008) Boundary conditions for Dirac fermions on a terminated honeycomb lattice. Phys Rev B 77:085423

    Article  ADS  Google Scholar 

  50. Tworzydlo J, Trauzettel B, Titov M, Rycerz A, Beenakker CWJ (2006) Sub-Poissonian shot noise in graphene. Phys Rev Lett 96:246802; Zarea M, Sandler N (2007) Electron-electron and spin-orbit interactions in armchair graphene ribbons. Phys Rev Lett 99:256804

    Google Scholar 

  51. Prada E, San-Jose P, Brey L (2010) Zero Landau level in folded graphene nanoribbons. Phys Rev Lett 105:106802

    Article  ADS  Google Scholar 

  52. Rainis D, Taddei F, Polini M, León G, Guinea F, Fal’ko VI (2011) Gauge fields and interferometry in folded graphene. Phys Rev B 83:165403

    Article  ADS  Google Scholar 

  53. Kim K, Lee Z, Malone BD, Chan KT, Alemán B, Regan W, Gannett W, Crommie MF, Cohen ML, Zettl A (2011) Multiply folded graphene. Phys Rev B 83:245433

    Article  ADS  Google Scholar 

  54. Williams JR, Marcus CM (2011) Snake states along graphene p-n junctions. Phys Rev Lett 107:046602

    Article  ADS  Google Scholar 

  55. De Martino A, Egger R, Tsvelik AM (2006) Nonlinear magnetotransport in interacting chiral nanotubes. Phys Rev Lett 97:076402

    Article  ADS  Google Scholar 

  56. Tombros N, Josza C, Popinciuc M, Jonkman HT, van Wees BJ (2007) Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448:571

    Article  ADS  Google Scholar 

  57. Bostwick A et al (2010) Observation of plasmarons in quasi-freestanding doped graphene. Science 328:999

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support by the DFG programs SPP 1459 and SFB TR 12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro De Martino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

De Martino, A., Hütten, A., Egger, R. (2013). Landau Levels and Edge States in Graphene with Strong Spin-Orbit Coupling. In: Egger, R., Matrasulov, D., Rakhimov, K. (eds) Low-Dimensional Functional Materials. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6618-1_8

Download citation

Publish with us

Policies and ethics