Landau Levels and Edge States in Graphene with Strong Spin-Orbit Coupling

Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


We investigate the electronic properties of graphene in a magnetic and a strain-induced pseudo-magnetic field in the presence of strong spin-orbit interactions (SOI). For a homogeneous field we provide analytical results for the Landau level eigenstates for arbitrary intrinsic and Rashba SOI, including also the effect of a Zeeman field. We then study the edge states in a semi-infinite geometry in the absence of the Rashba term. We find that, for a critical value of the magnetic field, a quantum phase transition occurs, which separates two phases both with spin-filtered helical edge states but with opposite direction of the spin current. Finally,we discuss magnetic waveguides with inhomogeneous field profiles that allow for chiral snake orbits. Such waveguides are practically immune to disorder-induced backscattering, and the SOI provides non-trivial spin texture to these modes.


Landau Level Edge State Quantum Phase Transition Dirac Point Armchair Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge financial support by the DFG programs SPP 1459 and SFB TR 12.


  1. 1.
    Geim AK (2009) Graphene: Status and prospects. Science 324:1530ADSCrossRefGoogle Scholar
  2. 2.
    Beenakker CWJ (2008) Colloquium: Andreev reflection and Klein tunneling in graphene. Rev Mod Phys 80:1337ADSCrossRefGoogle Scholar
  3. 3.
    Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim A (2009) The electronic properties of graphene. Rev Mod Phys 81:109ADSCrossRefGoogle Scholar
  4. 4.
    Kane CL, Mele EJ (2005) Quantum spin Hall effect in graphene. Phys Rev Lett 95:226801ADSCrossRefGoogle Scholar
  5. 5.
    Hasan MZ, Kane CL (2010) Colloquium: Topological insulators. Rev Mod Phys 82:3045ADSCrossRefGoogle Scholar
  6. 6.
    König M, Buhmann H, Molenkamp LW, Hughes T, Liu CX, Qi XL, Zhang SC (2008) The quantum spin Hall effect: Theory and experiment. J Phys Soc Jpn 77:031007ADSCrossRefGoogle Scholar
  7. 7.
    Huertas-Hernando D, Guinea F, Brataas A (2006) Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotubes caps. Phys Rev B 74:155426ADSCrossRefGoogle Scholar
  8. 8.
    Min H, Hill JE, Sinitsyn NA, Sahu BR, Kleinman L, MacDonald AH (2006) Intrinsic and Rashba spin-orbit interactions in graphene sheets. Phys Rev B 74:165310ADSCrossRefGoogle Scholar
  9. 9.
    Yao Y, Ye F, Qi XL, Zhang SC, Fang Z (2007) Spin-orbit of graphene: First-principle calculations. Phys Rev B 75:041401(R)Google Scholar
  10. 10.
    Dedkov YS, Fonin M, Rüdiger U, Laubschat C (2008) Rashba effect in the graphene/Ni(111) system. Phys Rev Lett 100:107602ADSCrossRefGoogle Scholar
  11. 11.
    Varykhalov A, Sánchez-Barriga J, Shikin AM, Biswas C, Vescovo E, Rybkin A, Marchenko D, Rader O (2008) Electronic and magnetic properties of quasifreestanding graphene on Ni. Phys Rev Lett 101:157601ADSCrossRefGoogle Scholar
  12. 12.
    Weeks C, Hu J, Alicea J, Franz M, Wu R (2011) Engineering a robust quantum spin Hall state in graphene via adatom deposition. Phys Rev X1:021001Google Scholar
  13. 13.
    Vozmediano MAH, Katsnelson MI, Guinea F (2010) Gauge fields in graphene. Phys Rep 496:109MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Castro Neto AH, Guinea F (2009) Impurity-induced spin-orbit coupling in graphene. Phys Rev Lett 103:026804ADSCrossRefGoogle Scholar
  15. 15.
    Huertas-Hernando D, Guinea F, Brataas A (2009) Spin-orbit-mediated spin relaxation in graphene. Phys Rev Lett 103:146801ADSCrossRefGoogle Scholar
  16. 16.
    Rashba EI (2009) Graphene with structure-induced spin-orbit coupling: Spin-polarized states, spin zero modes, and quantum Hall effect. Phys Rev B 79:161409(R)Google Scholar
  17. 17.
    Bercioux D, De Martino A (2010) Spin-resolved scattering through spin-orbit nanostructures in graphene. Phys Rev B 81:165410ADSCrossRefGoogle Scholar
  18. 18.
    Lenz L, Bercioux D (2011) Dirac-Weyl electrons in a periodic spin-orbit potential. Europhys Lett 96:27006ADSCrossRefGoogle Scholar
  19. 19.
    De Martino A, Hütten A, Egger R (2011) Landau levels, edge states, and strained magnetic waveguides in graphene monolayers with enhanced spin-orbit interaction. Phys Rev B 84:155420ADSCrossRefGoogle Scholar
  20. 20.
    Guinea F, Katsnelson MI, Geim AK (2010) Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat Phys 6:30CrossRefGoogle Scholar
  21. 21.
    Abanin DA, Lee PA, Levitov LS (2007) Spin-filtered edge states and quantum Hall effect in graphene. Phys Rev Lett 96:176803; Abanin DA, Lee PA, Levitov LS (2007) Charge and spin transport at the quantum Hall edge of graphene. Solid State Commun 143:77Google Scholar
  22. 22.
    Gusynin VP, Sharapov SG (2005) Unconventional integer quantum Hall effect in graphene. Phys Rev Lett 95:146801ADSCrossRefGoogle Scholar
  23. 23.
    Brey L, Fertig HA (2006) Edge states and the quantized Hall effect in graphene. Phys Rev B 73:195408ADSCrossRefGoogle Scholar
  24. 24.
    Peres NMR, Castro Neto AH, Guinea F (2006) Dirac fermion confinement in graphene. Phys Rev B 73:241403ADSCrossRefGoogle Scholar
  25. 25.
    De Martino A, Dell’Anna L, Egger R (2007) Magnetic confinement of massless Dirac fermions in graphene. Phys Rev Lett 98:066802ADSCrossRefGoogle Scholar
  26. 26.
    Ramezani Masir M, Vasilopoulos P, Matulis A, Peeters FM (2008) Direction-dependent tunneling through nanostructured magnetic barriers in graphene. Phys Rev B 77:235443ADSCrossRefGoogle Scholar
  27. 27.
    Oroszlány L, Rakyta PK, Kormányos A, Lambert CJ, Cserti J (2008) Theory of snake states in graphene. Phys Rev B 77:081403(R)Google Scholar
  28. 28.
    Ghosh TK, De Martino A, Hüsler W, Dell’Anna L, Egger R (2008) Conductance quantization and snake states in graphene magnetic waveguide. Phys Rev B 77:081404(R)Google Scholar
  29. 29.
    Häusler W, De Martino A, Ghosh TK, Egger R (2008) Tomonaga-Luttinger liquid parameters of magnetic waveguides in graphene. Phys Rev B 78:165402ADSCrossRefGoogle Scholar
  30. 30.
    Dell’Anna L, De Martino A (2009) Multiple magnetic barriers in graphene. Phys Rev B 79:045420ADSCrossRefGoogle Scholar
  31. 31.
    Dell’Anna L, De Martino A (2009) Wave-vector-dependent spin filtering and spin transport through magnetic barriers in graphene. Phys Rev B 80:155416ADSCrossRefGoogle Scholar
  32. 32.
    De Martino A, Egger R (2010) On the spectrum of a magnetic quantum dot in graphene. Semicond Sci Technol 25:034006ADSCrossRefGoogle Scholar
  33. 33.
    Egger R, De Martino A, Siedentop H, Stockmeyer E (2010) Multiparticle equations for interacting Dirac fermions in magnetically confined graphene quantum dots. J Phys A 43:215202MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Dell’Anna L, De Martino A (2011) Magnetic superlattice and finite-energy Dirac points in graphene. Phys Rev B 83:155449ADSCrossRefGoogle Scholar
  35. 35.
    Landau LD, Lifshitz EM (1986) Elasticity theory. Pergamon, New YorkGoogle Scholar
  36. 36.
    Suzuura H, Ando T (2002) Phonons and electron-phonon scattering in carbon nanotubes. Phys Rev B 65:235412ADSCrossRefGoogle Scholar
  37. 37.
    Fogler MM, Guinea F, Katsnelson MI (2008) Pseudomagnetic fields and ballistic transport in a suspended graphene sheet. Phys Rev Lett 101:226804ADSCrossRefGoogle Scholar
  38. 38.
    Abramowitz M, Stegun IA (1965) Handbook of mathematical functions with formulas, graphs and mathematical tables. Dover, New York (Ch. 19)Google Scholar
  39. 39.
    Gradshteyn IS, Ryzhik IM (1980) Table of integrals, series, and products. Academic Press, Inc., New YorkzbMATHGoogle Scholar
  40. 40.
    Rakyta P, Kormányos A, Cserti J, Koskinen P (2010) Exploring the graphene edges with coherent electron focusing. Phys Rev B 81:115411ADSCrossRefGoogle Scholar
  41. 41.
    Delplace P, Montambaux G (2010) WKB analysis of edge states in graphene in a strong magnetic field. Phys Rev B 82:205412ADSCrossRefGoogle Scholar
  42. 42.
    Romanovsky I, Yannouleas C, Landman U (2011) Unique nature of the lowest Landau level in finite graphene samples with zigzag edges: Dirac electrons with mixed bulk-edge character. Phys Rev B 83:045421ADSCrossRefGoogle Scholar
  43. 43.
    Yang Y, Xu Z, Sheng L, Wang B, Xing DY, Sheng DN (2011) Time-reversal-symmetry-broken quantum spin Hall effect. Phys Rev Lett 107:066602ADSCrossRefGoogle Scholar
  44. 44.
    Qiao Z, Yang SA, Feng W, Tse WK, Ding J, Yao Y, Wang J, Niu Q (2010) Quantum anomalous Hall effect in graphene from Rashba and exchange effects. Phys Rev B 82:161414(R); Tse WK, Qiao Z, Yao Y, MacDonald AH, Niu Q (2011) Phys Rev B 83:155447Google Scholar
  45. 45.
    Yao W, Yang SA, Niu Q (2009) Edge states in graphene: From gapped flat-band to gapless chiral modes. Phys Rev Lett 102:096801ADSCrossRefGoogle Scholar
  46. 46.
    Tkachov G, Hankiewicz EM (2010) Ballistic quantum spin Hall state and enhanced edge backscattering in strong magnetic fields. Phys Rev Lett 104:166803; (2011) Transition between ordinary and topological insulator regimes in two-dimensional resonant magnetotransport. Phys Rev B 83:155412Google Scholar
  47. 47.
    Arikawa M, Hatsugai Y, Aoki H (2008) Edge states in graphene in magnetic fields: A specialty of the edge mode embedded in the n=0 Landau band. Phys Rev B 78:205401ADSCrossRefGoogle Scholar
  48. 48.
    Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys Rev B 54:17954; Brey L, Fertig HA (2006) Electronic states of graphene nanoribbons studied with the Dirac equation. Phys Rev B 73:235411Google Scholar
  49. 49.
    Akhmerov AR, Beenakker CWJ (2008) Boundary conditions for Dirac fermions on a terminated honeycomb lattice. Phys Rev B 77:085423ADSCrossRefGoogle Scholar
  50. 50.
    Tworzydlo J, Trauzettel B, Titov M, Rycerz A, Beenakker CWJ (2006) Sub-Poissonian shot noise in graphene. Phys Rev Lett 96:246802; Zarea M, Sandler N (2007) Electron-electron and spin-orbit interactions in armchair graphene ribbons. Phys Rev Lett 99:256804Google Scholar
  51. 51.
    Prada E, San-Jose P, Brey L (2010) Zero Landau level in folded graphene nanoribbons. Phys Rev Lett 105:106802ADSCrossRefGoogle Scholar
  52. 52.
    Rainis D, Taddei F, Polini M, León G, Guinea F, Fal’ko VI (2011) Gauge fields and interferometry in folded graphene. Phys Rev B 83:165403ADSCrossRefGoogle Scholar
  53. 53.
    Kim K, Lee Z, Malone BD, Chan KT, Alemán B, Regan W, Gannett W, Crommie MF, Cohen ML, Zettl A (2011) Multiply folded graphene. Phys Rev B 83:245433ADSCrossRefGoogle Scholar
  54. 54.
    Williams JR, Marcus CM (2011) Snake states along graphene p-n junctions. Phys Rev Lett 107:046602ADSCrossRefGoogle Scholar
  55. 55.
    De Martino A, Egger R, Tsvelik AM (2006) Nonlinear magnetotransport in interacting chiral nanotubes. Phys Rev Lett 97:076402ADSCrossRefGoogle Scholar
  56. 56.
    Tombros N, Josza C, Popinciuc M, Jonkman HT, van Wees BJ (2007) Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448:571ADSCrossRefGoogle Scholar
  57. 57.
    Bostwick A et al (2010) Observation of plasmarons in quasi-freestanding doped graphene. Science 328:999ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Mathematical ScienceCity University LondonLondonUK
  2. 2.Institut für Theoretische PhysikHeinrich-Heine-UniversitDüsseldorfGermany

Personalised recommendations