Skip to main content

On the Electron-Phonon Interactions in Graphene

  • Conference paper
  • First Online:
Low-Dimensional Functional Materials

Abstract

Chiral polaron formation arising from the electron-E2g phonon coupling and the mini band gap formation due to electron-A1g phonon coupling are investigated in pristine graphene. We present an analytical method to calculate the ground-state of the electron-phonon system within the framework of the Lee-Low-Pines theory. We show that the degenerate band structure of the graphene promotes the chiral polaron formation. Within our theoretical analysis, we also show that the interaction of charge carriers with the highest frequency zone-boundary phonon mode with A1g -symmetry induces a mini band gap at the corners of the two-dimensional Brillouin zone of the graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ajiki H, Ando T (1995) Lattice distortion of metallic carbon nanotubes induced by magnetic fields. J Phys Soc Jpn 64:260–267

    Article  ADS  Google Scholar 

  2. Ajiki H, Ando T (1996) Lattice distortion with spatial variation of carbon nanotubes in magnetic fields. J Phys Soc Jpn 65:2976–2986

    Article  ADS  Google Scholar 

  3. Araki Y (2011) Chiral symmetry restoration in monolayer graphene induced by Kekule distortion. Phys Rev B 84:113402

    Article  ADS  Google Scholar 

  4. Araujo PT, Mafra DL, Sato K, Saito R, Kong J, Dresselhaus MS (2012) Phonon self-energy corrections to nonzero wave-vector phonon modes in single-layer graphene. Phys Rev Lett 109:046801

    Article  ADS  Google Scholar 

  5. Badalyan SM, Peeters FM (2012) Electron-phonon bound state in graphene. Phys Rev B 85:205453

    Article  ADS  Google Scholar 

  6. Basko DM (2007) Effect of inelastic collisions on multiphonon Raman scattering in graphene. Phys Rev B 76:081405(R)

    Google Scholar 

  7. Basko DM (2008) Theory of resonant multiphonon Raman scattering in graphene. Phys Rev B 78:125418

    Article  ADS  Google Scholar 

  8. Basko DM, Aleiner IL (2008) Interplay of Coulomb and electron-phonon interactions in graphene. Phys Rev B 77:041409(R)

    Google Scholar 

  9. Calandra M, Mauri F (2007) Electron-phonon coupling and electron self-energy in electron-doped graphene: calculation of angular-resolved photoemission spectra. Phys Rev B 76:205411

    Article  ADS  Google Scholar 

  10. Carbotte JP, Nicol EJ, Sharapov SG (2010) Effect of electron-phonon interaction on spectroscopies in graphene. Phys Rev B 81:045419

    Article  ADS  Google Scholar 

  11. Dubay O, Kresse G (2003) Accurate density functional calculations for the phonon dispersion relations of graphite layer and carbon nanotubes. Phys Rev B 67:0354012003

    Article  Google Scholar 

  12. Farjam M, Rafii-Tabar H (2010) Uniaxial strain on gapped graphene. Physica E 42:2109–2114

    Article  ADS  Google Scholar 

  13. Faugeras C, Amado M, Kossacki P, Orlita M, Sprinkle M, Berger C, de Heer WA, Potemski M (2009) Tuning the electron-phonon coupling in multilayer graphene with magnetic fields. Phys Rev Lett 103:186803

    Article  ADS  Google Scholar 

  14. Giuliani A, Mastropietro V, Porta M (2010) Lattice gauge theory model for graphene. Phys Rev B 82:121418(R)

    Google Scholar 

  15. Goerbig MO, Fuchs J-N, Kechedzhi K, Fal’ko VI (2007) Filling-factor-dependent magnetophonon resonance in graphene. Phys Rev Lett 99:087402

    Article  ADS  Google Scholar 

  16. Griffiths D (1987) Introduction to elementary particles. Wiley, Singapore, p 249

    Book  Google Scholar 

  17. Harigaya K (1992) From C60 to a fullerene tube: Systematic analysis of lattice and electronic structures by the extended Su-Schrieffer-Heeger model. Phys Rev B 45:12071

    Article  ADS  Google Scholar 

  18. Harigaya K, Fujita M (1993) Dimerization structures of metallic and semiconducting fullerene tubules. Phys Rev B 47:16563

    Article  ADS  Google Scholar 

  19. Hwang EH, Sensarma R, Das Sarma S (2010) Plasmon-phonon coupling in graphene. Phys Rev B 82:195406

    Article  ADS  Google Scholar 

  20. Ishikawa K, Ando T (2006) Optical phonon interacting with electrons in carbon nanotubes. J Phys Soc Jpn 75:084713

    Article  ADS  Google Scholar 

  21. Jishi RA, Dresselhaus MS, Dresselhaus G (1993) Electron-phonon coupling and the electrical conductivity of fullerene nanotubules. Phys Rev B 48:11385

    Article  ADS  Google Scholar 

  22. Kandemir BS (2013) Possible formation of chiral polarons in graphene. J Phys Condens Matter 25:025302

    Article  ADS  Google Scholar 

  23. Kandemir BS, Mogulkoc A (2012) Zone-boundary phonon induced mini band gap formation in graphene. arXiv:1211.3528

    Google Scholar 

  24. Krstajić PM, Peeters FM (2012) Energy-momentum dispersion relation of plasmarons in graphene. Phys Rev B 85:205454

    Article  ADS  Google Scholar 

  25. Lazzeri M, Piscanec S, Mauri F, Ferrari AC, Robertson J (2005) Electron transport and hot phonons in carbon nanotubes. Phys Rev Lett 95:236802

    Article  ADS  Google Scholar 

  26. Lazzeri M, Piscanec S, Mauri F, Ferrari AC, Robertson J (2006) Phonon linewidths and electron-phonon coupling in graphite and nanotubes. Phys Rev B 73:155426

    Article  ADS  Google Scholar 

  27. Lazzeri M, Attaccalite C, Wirtz L, Mauri F (2008) Impact of the electron-electron correlation on phonon dispersion: failure of LDA and GGA DFT functionals in graphene and graphite. Phys Rev B 78:081406(R)

    Google Scholar 

  28. Lee S-H, Chung H-J, Heo J, Yang H, Shin J, Chung U-I, Seo S (2011) Band gap opening by two-dimensional manifestation of Peierls instability in graphene. ACS Nano 5:2964–2969

    Article  Google Scholar 

  29. Lee TD, Low FE, Pines D (1953) The motion of slow electrons in a polar crystal. Phys Rev 90:297–302

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Li WP, Wang ZW, Yin JW, Yu YF (2012) The effects of the magnetopolaron on the energy gap opening in graphene. J Phys Condens Matter 24:135301

    Article  ADS  Google Scholar 

  31. Mariani E, von Oppen F (2008) Flexural phonons in free-standing graphene. Phys Rev Lett 100:076801

    Article  ADS  Google Scholar 

  32. Mariani E, von Oppen F (2010) Temperature-dependent resistivity of suspended graphene. Phys Rev B 82:195403

    Article  ADS  Google Scholar 

  33. Ni ZH, Yu T, Lu YH, Wang YY, Feng YP, Shen ZX (2008) Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2:2301–2305

    Article  Google Scholar 

  34. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Nat Acad Sci USA 102:10451

    Article  ADS  Google Scholar 

  35. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666

    Article  ADS  Google Scholar 

  36. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov A (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  ADS  Google Scholar 

  37. Park CH, Giustino F, Cohen ML, Louie SG (2007) velocity renormalization and carrier lifetime in graphene from the electron–phonon interaction. Phys Rev Lett 99:086804

    Google Scholar 

  38. Pietronero L, Strässler S, Zeller HR, Rice MJ (1980) Electrical conductivity of a graphite layer. Phys Rev B 22:904

    Article  ADS  Google Scholar 

  39. Pisana S, Lazzeri M, Casiraghi C, Novoselov KS, Geim AK, Ferrari AC, Mauri F (2007) Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat Mater 3:198

    Article  ADS  Google Scholar 

  40. Piscanec S, Lazzeri M, Mauri F, Ferrari AC, Robertson J (2004) Kohn anomalies and electron-phonon interactions in graphite. Phys Rev Lett 93:185503

    Article  ADS  Google Scholar 

  41. Rana F, George PA, Strait JH, Dawlaty J, Shivaraman S, Chandrashekhar M, Spencer MG (2009) Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene. Phys Rev B 79:115447

    Article  ADS  Google Scholar 

  42. Samsonidze GG, Barros EB, Saito R, Jiang J, Dresselhaus G, Dresselhaus MS (2007) Electron-phonon coupling mechanism in two-dimensional graphite and single-wall carbon nanotubes. Phys Rev B 75:155420

    Article  ADS  Google Scholar 

  43. Semenoff GW (1984) Condensed-matter simulation of a three-dimensional anomaly. Phys Rev Lett 53:2449

    Article  MathSciNet  ADS  Google Scholar 

  44. Stauber T, Peres NMR (2008) Effect of Holstein phonons on the electronic properties of graphene. J Phys Condens Matter 20:055002

    Article  ADS  Google Scholar 

  45. Stauber T, Peres NMR, Castro Neto AH (2008) Conductivity of suspended and non-suspended graphene at finite gate voltage. Phys Rev B 78:085418

    Article  ADS  Google Scholar 

  46. Stojanović VM, Vukmirovic N, Bruder C (2010) Polaronic signatures and spectral properties of graphene antidot lattices. Phys Rev B 82:165410

    Article  ADS  Google Scholar 

  47. Suzuura H, Ando T (2008) Zone-boundary phonon in graphene and nanotube. J Phys Soc Jpn 77:044703

    Article  ADS  Google Scholar 

  48. Viet NA, Ajiki H, Ando T (1994) Lattice instability in metallic carbon nanotubes. J Phys Soc Jpn 63:3036–3047

    Article  ADS  Google Scholar 

  49. Wallace PR (1947) The band theory of graphite. Phys Rev 71:622

    Article  ADS  MATH  Google Scholar 

  50. Yan J, Zhang Y, Kim P, Pinczuk A (2007) Electric field effect tuning of electron-phonon coupling in graphene. Phys Rev Lett 98:166802

    Article  ADS  Google Scholar 

  51. Zhou SY, Gweon GH, Federov AV, First PN, De Heer WA, Lee D-H, Guinea F, Castro Neto AH, Lanzara A (2007) Substrate-induced bandgap opening in epitaxial graphene. Nature 6:770

    Article  Google Scholar 

  52. Zhou SY, Siegel DA, Fedorov AV, Lanzara A (2008) Kohn anomaly and interplay of electron-electron and electron-phonon interactions in epitaxial graphene. Phys Rev B 78:193404

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bekir Kandemir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Kandemir, B. (2013). On the Electron-Phonon Interactions in Graphene. In: Egger, R., Matrasulov, D., Rakhimov, K. (eds) Low-Dimensional Functional Materials. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6618-1_6

Download citation

Publish with us

Policies and ethics