Advertisement

Transport Through a Coulomb Blockaded Majorana Nanowire

Conference paper
  • 1k Downloads
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

In one-dimensional (1D) quantum wires with strong spin-orbit coupling and a Zeeman field, a superconducting substrate can induce zero-energy Majorana bound states located near the ends of the wire. We study electronic properties when such a wire is contacted by normal metallic or superconducting electrodes. A special attention is devoted to Coulomb blockade effects. We analyze the “Majorana single-charge transistor” (MSCT), i.e., a floating Majorana wire contacted by normal metallic source and drain contacts, where charging effects are important. We describe Coulomb oscillations in this system and predict that Majorana fermions could be unambiguously detected by the emergence of sideband peaks in the nonlinear differential conductance. We also study a superconducting variant of the MSCT setup with s-wave superconducting (instead of normal-conducting) leads. In the noninteracting case, we derive the exact current-phase relation (CPR) and find π-periodic behavior with negative critical current for weak tunnel couplings. Charging effects then cause the anomalous CPR \(I(\varphi ) = I_{c}\cos \varphi\), where the parity-sensitive critical current I c provides a signature for Majorana states.

Keywords

Coulomb Blockade Negative Critical Current Sideband Peaks Coulomb Oscillations Majorana State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alicea J (2012) Rep Prog Phys 75:076501ADSCrossRefGoogle Scholar
  2. 2.
    Bagrets D, Altland A (2012) Class D spectral peak in Majorana quantum wires. Phys Rev Lett 109:227005ADSCrossRefGoogle Scholar
  3. 3.
    Bolech CJ, Demler E (2007) Phys Rev Lett 98:237002ADSCrossRefGoogle Scholar
  4. 4.
    Fu L (2010) Phys Rev Lett 104:056402ADSCrossRefGoogle Scholar
  5. 5.
    Fu L, Kane CL (2008) Phys Rev Lett 100:096407ADSCrossRefGoogle Scholar
  6. 6.
    Jiang L, Pekker D, Alicea J, Refael G, Oreg Y, von Oppen F (2011) Phys Rev Lett 107:236401ADSCrossRefGoogle Scholar
  7. 7.
    Hasan MZ, Kane CL (2010) Rev Mod Phys 82:3045ADSCrossRefGoogle Scholar
  8. 8.
    Hützen R, Zazunov A, Braunecker B, Levy Yeyati A, Egger R (2012) Phys Rev Lett 109:166403ADSCrossRefGoogle Scholar
  9. 9.
    Kitaev AY (2001) Phys Usp 44:131ADSCrossRefGoogle Scholar
  10. 10.
    Law KT, Lee PA, Ng TK (2009) Phys Rev Lett 103:237001ADSCrossRefGoogle Scholar
  11. 11.
    Liu J, Potter AC, Law KT, Lee PA (2012) Zero-bias peaks in the tunneling conductance of spin-orbit-coupled superconducting wires with and without Majorana end-states. Phys Rev Lett 109:267002ADSCrossRefGoogle Scholar
  12. 12.
    Meir Y, Wingreen NS (1992) Phys Rev Lett 68:2512ADSCrossRefGoogle Scholar
  13. 13.
    Mourik V, Zuo K, Frolov SM, Plissard SR, Bakkers EPAM, Kouwenhoven LP (2012) Science 336:1003ADSCrossRefGoogle Scholar
  14. 14.
    Nilsson J, Akhmerov AR, Beenakker CWJ (2008) Phys Rev Lett 101:120403ADSCrossRefGoogle Scholar
  15. 15.
    Zazunov A, Egger R (2012) Phys Rev B 85:104514ADSCrossRefGoogle Scholar
  16. 16.
    Zazunov A, Levy Yeyati A, Egger R (2011) Phys Rev B 84:165440ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikHeinrich-Heine-UniversitDüsseldorfGermany
  2. 2.Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadridSpain

Personalised recommendations