Advertisement

Graphene Bloch Equations

Conference paper
  • 1.1k Downloads
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

The ultrafast carrier dynamics in graphene has been intensively investigated in recent years. From the theoretical side the graphene Bloch equations have been successfully applied to explain linear absorption and various features observed in optical pump-probe experiments. Here, we present a detailed derivation of the graphene Bloch equations and discuss different contributions resulting from the electron-electron and electron-phonon interaction.

Keywords

Matrix Element Hamilton Operator Dirac Point Heisenberg Equation Density Matrix Formalism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We acknowledge the financial support from the Deutsche Forschungsgemeinschaft through SPP 1459. Ermin Malić thanks the Einstein Foundation Berlin. We thank Faris Kadi (TU Berlin) for fruitful discussions.

References

  1. 1.
    Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ (2003) Adv Mater 15(5):353CrossRefGoogle Scholar
  2. 2.
    Geim AK, Novoselov KS (2007) Nat Mater 6(3):183ADSCrossRefGoogle Scholar
  3. 3.
    Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Nat Photonics 4(9):611ADSCrossRefGoogle Scholar
  4. 4.
    Haug H, Koch SW (2004) Quantum theory of the optical and electronic properties of semiconductors. World Scientific, SingaporeGoogle Scholar
  5. 5.
    Kira M, Koch S (2006) Prog Quantum Electron 30(5):155ADSCrossRefGoogle Scholar
  6. 6.
    Hirtschulz M, Malic E, Milde F, Knorr A (2009) Phys Rev B 80(8):085405ADSCrossRefGoogle Scholar
  7. 7.
    Malić E, Hirtschulz M, Milde F, Wu Y, Maultzsch J, Heinz TF, Knorr A, Reich S (2008) Phys Rev B 77(4):045432ADSCrossRefGoogle Scholar
  8. 8.
    Malic E, Maultzsch J, Reich S, Knorr A (2010) Phys Rev B 82(3):035433ADSCrossRefGoogle Scholar
  9. 9.
    Malic E, Maultzsch J, Reich S, Knorr A (2010) Phys Rev B 82(11):115439ADSCrossRefGoogle Scholar
  10. 10.
    Malic E, Winzer T, Bobkin E, Knorr A (2011) Phys Rev B 84(20):205406ADSCrossRefGoogle Scholar
  11. 11.
    Bobkin E, Knorr A, Malic E (2012) Phys Rev B 85(3):033409ADSCrossRefGoogle Scholar
  12. 12.
    Winzer T, Knorr A, Malic E (2010) Nano Lett 10(12):4839ADSCrossRefGoogle Scholar
  13. 13.
    Malic E, Weber C, Richter M, Atalla V, Klamroth T, Saalfrank P, Reich S, Knorr A (2011) Phys Rev Lett 106(9):097401ADSCrossRefGoogle Scholar
  14. 14.
    Butscher S, Milde F, Hirtschulz M, Malić E, Knorr A (2007) Appl Phys Lett 91(20):203103ADSCrossRefGoogle Scholar
  15. 15.
    Winzer T, Malić E (2011) Phys Status Solidi B 248(11):2615–2618ADSCrossRefGoogle Scholar
  16. 16.
    Breusing M, Kuehn S, Winzer T, Malić E, Milde F, Severin N, Rabe JP, Ropers C, Knorr A, Elsaesser T (2011) Phys Rev B 83(15):153410ADSCrossRefGoogle Scholar
  17. 17.
    Winnerl S, Orlita M, Plochocka P, Kossacki P, Potemski M, Winzer T, Malic E, Knorr A, Sprinkle M, Berger C, de Heer WA, Schneider H, Helm M (2011) Phys Rev Lett 107(23):237401ADSCrossRefGoogle Scholar
  18. 18.
    Malic E, Winzer T, Knorr A (2012) Appl Phys Lett 101(21):213110ADSCrossRefGoogle Scholar
  19. 19.
    Winzer T, Malic E (2013) J Phys Condens Matter 25:054201ADSCrossRefGoogle Scholar
  20. 20.
    Winzer T, Knorr A, Mittendorff M, Winnerl S, Lien MB, Sun D, Norris TB, Helm M, Malic E (2012) Appl Phys Lett 101(22):221115ADSCrossRefGoogle Scholar
  21. 21.
    Winzer T, Malić E (2012) Phys Rev B 85(24):241404ADSCrossRefGoogle Scholar
  22. 22.
    Gabor NM, Song JCW, Ma Q, Nair NL, Taychatanapat T, Watanabe K, Taniguchi T, Levitov LS, Jarillo-Herrero P (2011) Science 334(6056):648ADSCrossRefGoogle Scholar
  23. 23.
    Tani S, Blanchard F, Tanaka K (2012) Phys Rev Lett 109(16):166603ADSCrossRefGoogle Scholar
  24. 24.
    Sun D, Aivazian G, Jones AM, Ross JS, Yao W, Cobden D, Xu X (2012) Nat Nanotechnol 7(2):114ADSCrossRefGoogle Scholar
  25. 25.
    Brida D, Tomadin A, Manzoni C, Kim YJ, Lombardo A, Milana S, Nair RR, Novoselov KS, Ferrari AC, Cerullo G, Polini M (2012) arXiv:1209.5729Google Scholar
  26. 26.
    Li T, Luo L, Hupalo M, Zhang J, Tringides MC, Schmalian J, Wang J (2012) Phys Rev Lett 108(16):167401ADSCrossRefGoogle Scholar
  27. 27.
    Winzer T, Malic E, Knorr A (2013) Phys Rev B 87:165413ADSCrossRefGoogle Scholar
  28. 28.
    Sun D, Divin C, Mihnev M, Winzer T, Malic E, Knorr A, Sipe JE, Berger C, de Heer WA, First PN, Norris TB (2012) New J Phys 14(10):105012CrossRefGoogle Scholar
  29. 29.
    Scully MO, Zubairy MS (1997) Quantum optics, 1st edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  30. 30.
    Piscanec S, Lazzeri M, Mauri F, Ferrari AC, Robertson J (2004) Phys Rev Lett 93(18):185503ADSCrossRefGoogle Scholar
  31. 31.
    Hwang EH, Das Sarma S (2008) Phys Rev B 77(11):115449ADSCrossRefGoogle Scholar
  32. 32.
    Lee C, Wei X, Kysar JW, Hone J (2008) Science 321(5887):385ADSCrossRefGoogle Scholar
  33. 33.
    Machón M, Reich S, Thomsen C, Sánchez-Portal D, Ordejón P (2002) Phys Rev B 66(15):155410ADSCrossRefGoogle Scholar
  34. 34.
    Ashcroft NW, Mermin ND (1976) Solid state physics, 1st edn. Brooks Cole, OxfordGoogle Scholar
  35. 35.
    Reich S, Maultzsch J, Thomsen C, Ordejón P (2002) Phys Rev B 66(3):035412ADSCrossRefGoogle Scholar
  36. 36.
    Reich S, Thomsen C, Maultzsch J (2004) Carbon nanotubes, 1st edn. Wiley-VCH, WeinheimGoogle Scholar
  37. 37.
    Yang L, Deslippe J, Park CH, Cohen ML, Louie SG (2009) Phys Rev Lett 103(18):186802ADSCrossRefGoogle Scholar
  38. 38.
    Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, LondonCrossRefGoogle Scholar
  39. 39.
    Grüneis A, Saito R, Samsonidze GG, Kimura T, Pimenta MA, Jorio A, Filho AGS, Dresselhaus G, Dresselhaus MS (2003) Phys Rev B 67:165402ADSCrossRefGoogle Scholar
  40. 40.
    Malić E, Hirtschulz M, Milde F, Knorr A, Reich S (2006) Phys Rev B 74(19):195431ADSCrossRefGoogle Scholar
  41. 41.
    Stroucken T, Grönqvist JH, Koch SW (2011) Phys Rev B 84(20):205445ADSCrossRefGoogle Scholar
  42. 42.
    Ando T (2006) J Physical Soc Japan 75(7):074716ADSCrossRefGoogle Scholar
  43. 43.
    Jiang J, Saito R, Samsonidze GG, Jorio A, Chou SG, Dresselhaus G, Dresselhaus MS (2007) Phys Rev B 75(3):035407ADSCrossRefGoogle Scholar
  44. 44.
    Verdenhalven E, Binder R, Knorr A, Malić E (2013) J Chem Phys 413:3Google Scholar
  45. 45.
    Fricke J (1996) Ann Phys 252(2):479MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    Heitler W (1954) The quantum theory of radiation, 3rd edn. Courier Dover Publications, New YorkzbMATHGoogle Scholar
  47. 47.
    Fick E, Sauermann G (1990) The quantum statistics of dynamic processes. Springer, New YorkCrossRefGoogle Scholar
  48. 48.
    Schilp J, Kuhn T, Mahler G (1994) Phys Rev B 50(8):5435ADSCrossRefGoogle Scholar
  49. 49.
    Rossi F, Kuhn T (2002) Rev Mod Phys 74(3):895ADSCrossRefGoogle Scholar
  50. 50.
    Koga S, Katayama I, Abe S, Fukidome H, Suemitsu M, Kitajima M, Takeda J (2011) Appl Phys Express 4(4):045101ADSCrossRefGoogle Scholar
  51. 51.
    Kang K, Abdula D, Cahill DG, Shim M (2010) Phys Rev B 81(16):165405ADSCrossRefGoogle Scholar
  52. 52.
    Bonini N, Lazzeri M, Marzari N, Mauri F (2007) Phys Rev Lett 99(17):176802ADSCrossRefGoogle Scholar
  53. 53.
    Straton JC (1987) Phys Rev A 35(6):2729ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institut für Theoretische Physik, Nichtlineare Optik und QuantenelektronikTechnische Universität BerlinBerlinGermany

Personalised recommendations