Skip to main content

Graphene Bloch Equations

  • Conference paper
  • First Online:
Low-Dimensional Functional Materials

Abstract

The ultrafast carrier dynamics in graphene has been intensively investigated in recent years. From the theoretical side the graphene Bloch equations have been successfully applied to explain linear absorption and various features observed in optical pump-probe experiments. Here, we present a detailed derivation of the graphene Bloch equations and discuss different contributions resulting from the electron-electron and electron-phonon interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This work is part of the dissertation of Torben Winzer.

  2. 2.

    In the following the optical matrix element will be denoted only with a single electron wave vector. Nevertheless, it still contains the Kronecker \(\delta _{\mathbf{k},\mathbf{k}^\prime}\).

  3. 3.

    Due to the Kronecker \(\delta _{\mathbf{k}_{\mathbf{ 1}}+\mathbf{k}_{\mathbf{ 2}},\mathbf{k}_{\mathbf{ 3}}+\mathbf{k}_{\mathbf{ 4}}}\) in the Coulomb matrix element only the dynamics of momentum conserving correlations have to be determined. Nevertheless, for a more clear notation the equation of motion for a general \(\Lambda _{\mathbf{ 34}}^{\mathbf{ 12}c}\) is derived.

  4. 4.

    In this derivation the spatial homogeneity applied form the beginning.

References

  1. Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ (2003) Adv Mater 15(5):353

    Article  Google Scholar 

  2. Geim AK, Novoselov KS (2007) Nat Mater 6(3):183

    Article  ADS  Google Scholar 

  3. Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Nat Photonics 4(9):611

    Article  ADS  Google Scholar 

  4. Haug H, Koch SW (2004) Quantum theory of the optical and electronic properties of semiconductors. World Scientific, Singapore

    Google Scholar 

  5. Kira M, Koch S (2006) Prog Quantum Electron 30(5):155

    Article  ADS  Google Scholar 

  6. Hirtschulz M, Malic E, Milde F, Knorr A (2009) Phys Rev B 80(8):085405

    Article  ADS  Google Scholar 

  7. Malić E, Hirtschulz M, Milde F, Wu Y, Maultzsch J, Heinz TF, Knorr A, Reich S (2008) Phys Rev B 77(4):045432

    Article  ADS  Google Scholar 

  8. Malic E, Maultzsch J, Reich S, Knorr A (2010) Phys Rev B 82(3):035433

    Article  ADS  Google Scholar 

  9. Malic E, Maultzsch J, Reich S, Knorr A (2010) Phys Rev B 82(11):115439

    Article  ADS  Google Scholar 

  10. Malic E, Winzer T, Bobkin E, Knorr A (2011) Phys Rev B 84(20):205406

    Article  ADS  Google Scholar 

  11. Bobkin E, Knorr A, Malic E (2012) Phys Rev B 85(3):033409

    Article  ADS  Google Scholar 

  12. Winzer T, Knorr A, Malic E (2010) Nano Lett 10(12):4839

    Article  ADS  Google Scholar 

  13. Malic E, Weber C, Richter M, Atalla V, Klamroth T, Saalfrank P, Reich S, Knorr A (2011) Phys Rev Lett 106(9):097401

    Article  ADS  Google Scholar 

  14. Butscher S, Milde F, Hirtschulz M, Malić E, Knorr A (2007) Appl Phys Lett 91(20):203103

    Article  ADS  Google Scholar 

  15. Winzer T, Malić E (2011) Phys Status Solidi B 248(11):2615–2618

    Article  ADS  Google Scholar 

  16. Breusing M, Kuehn S, Winzer T, Malić E, Milde F, Severin N, Rabe JP, Ropers C, Knorr A, Elsaesser T (2011) Phys Rev B 83(15):153410

    Article  ADS  Google Scholar 

  17. Winnerl S, Orlita M, Plochocka P, Kossacki P, Potemski M, Winzer T, Malic E, Knorr A, Sprinkle M, Berger C, de Heer WA, Schneider H, Helm M (2011) Phys Rev Lett 107(23):237401

    Article  ADS  Google Scholar 

  18. Malic E, Winzer T, Knorr A (2012) Appl Phys Lett 101(21):213110

    Article  ADS  Google Scholar 

  19. Winzer T, Malic E (2013) J Phys Condens Matter 25:054201

    Article  ADS  Google Scholar 

  20. Winzer T, Knorr A, Mittendorff M, Winnerl S, Lien MB, Sun D, Norris TB, Helm M, Malic E (2012) Appl Phys Lett 101(22):221115

    Article  ADS  Google Scholar 

  21. Winzer T, Malić E (2012) Phys Rev B 85(24):241404

    Article  ADS  Google Scholar 

  22. Gabor NM, Song JCW, Ma Q, Nair NL, Taychatanapat T, Watanabe K, Taniguchi T, Levitov LS, Jarillo-Herrero P (2011) Science 334(6056):648

    Article  ADS  Google Scholar 

  23. Tani S, Blanchard F, Tanaka K (2012) Phys Rev Lett 109(16):166603

    Article  ADS  Google Scholar 

  24. Sun D, Aivazian G, Jones AM, Ross JS, Yao W, Cobden D, Xu X (2012) Nat Nanotechnol 7(2):114

    Article  ADS  Google Scholar 

  25. Brida D, Tomadin A, Manzoni C, Kim YJ, Lombardo A, Milana S, Nair RR, Novoselov KS, Ferrari AC, Cerullo G, Polini M (2012) arXiv:1209.5729

    Google Scholar 

  26. Li T, Luo L, Hupalo M, Zhang J, Tringides MC, Schmalian J, Wang J (2012) Phys Rev Lett 108(16):167401

    Article  ADS  Google Scholar 

  27. Winzer T, Malic E, Knorr A (2013) Phys Rev B 87:165413

    Article  ADS  Google Scholar 

  28. Sun D, Divin C, Mihnev M, Winzer T, Malic E, Knorr A, Sipe JE, Berger C, de Heer WA, First PN, Norris TB (2012) New J Phys 14(10):105012

    Article  Google Scholar 

  29. Scully MO, Zubairy MS (1997) Quantum optics, 1st edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  30. Piscanec S, Lazzeri M, Mauri F, Ferrari AC, Robertson J (2004) Phys Rev Lett 93(18):185503

    Article  ADS  Google Scholar 

  31. Hwang EH, Das Sarma S (2008) Phys Rev B 77(11):115449

    Article  ADS  Google Scholar 

  32. Lee C, Wei X, Kysar JW, Hone J (2008) Science 321(5887):385

    Article  ADS  Google Scholar 

  33. Machón M, Reich S, Thomsen C, Sánchez-Portal D, Ordejón P (2002) Phys Rev B 66(15):155410

    Article  ADS  Google Scholar 

  34. Ashcroft NW, Mermin ND (1976) Solid state physics, 1st edn. Brooks Cole, Oxford

    Google Scholar 

  35. Reich S, Maultzsch J, Thomsen C, Ordejón P (2002) Phys Rev B 66(3):035412

    Article  ADS  Google Scholar 

  36. Reich S, Thomsen C, Maultzsch J (2004) Carbon nanotubes, 1st edn. Wiley-VCH, Weinheim

    Google Scholar 

  37. Yang L, Deslippe J, Park CH, Cohen ML, Louie SG (2009) Phys Rev Lett 103(18):186802

    Article  ADS  Google Scholar 

  38. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, London

    Book  Google Scholar 

  39. Grüneis A, Saito R, Samsonidze GG, Kimura T, Pimenta MA, Jorio A, Filho AGS, Dresselhaus G, Dresselhaus MS (2003) Phys Rev B 67:165402

    Article  ADS  Google Scholar 

  40. Malić E, Hirtschulz M, Milde F, Knorr A, Reich S (2006) Phys Rev B 74(19):195431

    Article  ADS  Google Scholar 

  41. Stroucken T, Grönqvist JH, Koch SW (2011) Phys Rev B 84(20):205445

    Article  ADS  Google Scholar 

  42. Ando T (2006) J Physical Soc Japan 75(7):074716

    Article  ADS  Google Scholar 

  43. Jiang J, Saito R, Samsonidze GG, Jorio A, Chou SG, Dresselhaus G, Dresselhaus MS (2007) Phys Rev B 75(3):035407

    Article  ADS  Google Scholar 

  44. Verdenhalven E, Binder R, Knorr A, Malić E (2013) J Chem Phys 413:3

    Google Scholar 

  45. Fricke J (1996) Ann Phys 252(2):479

    Article  MathSciNet  ADS  Google Scholar 

  46. Heitler W (1954) The quantum theory of radiation, 3rd edn. Courier Dover Publications, New York

    MATH  Google Scholar 

  47. Fick E, Sauermann G (1990) The quantum statistics of dynamic processes. Springer, New York

    Book  Google Scholar 

  48. Schilp J, Kuhn T, Mahler G (1994) Phys Rev B 50(8):5435

    Article  ADS  Google Scholar 

  49. Rossi F, Kuhn T (2002) Rev Mod Phys 74(3):895

    Article  ADS  Google Scholar 

  50. Koga S, Katayama I, Abe S, Fukidome H, Suemitsu M, Kitajima M, Takeda J (2011) Appl Phys Express 4(4):045101

    Article  ADS  Google Scholar 

  51. Kang K, Abdula D, Cahill DG, Shim M (2010) Phys Rev B 81(16):165405

    Article  ADS  Google Scholar 

  52. Bonini N, Lazzeri M, Marzari N, Mauri F (2007) Phys Rev Lett 99(17):176802

    Article  ADS  Google Scholar 

  53. Straton JC (1987) Phys Rev A 35(6):2729

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the Deutsche Forschungsgemeinschaft through SPP 1459. Ermin Malić thanks the Einstein Foundation Berlin. We thank Faris Kadi (TU Berlin) for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Knorr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Winzer, T., Malić, E., Knorr, A. (2013). Graphene Bloch Equations. In: Egger, R., Matrasulov, D., Rakhimov, K. (eds) Low-Dimensional Functional Materials. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6618-1_4

Download citation

Publish with us

Policies and ethics