Skip to main content

Dielectric Constant and Screened Interactions in AA Stacked Bilayer Graphene

  • Conference paper
  • First Online:
Low-Dimensional Functional Materials
  • 1170 Accesses

Abstract

AA stacked bilayer graphene has a band structure consisting of two Dirac cones, bonding and antibonding, displaced in energies. In absence of interaction between electrons, the system is metallic and the Fermi surface consists of circles in the bonding and antibonding bands which coincides exactly. In presence of interaction between electrons the system is unstable to the condensation of bonding-like electrons and antibonding-like holes. The properties and the critical temperature of this gapped phase depends strongly on the screening on the interaction between pairs at large distances. In this work we study the polarizability and the intra and interlayer screened Coulomb interactions of a AA-stacked bilayer graphene for different energy gaps in the spectrum. We obtain that the existence of a gap suppress the screening at small wavevectors. Our results indcates the importance of a self-consistent treatment of the screening in the study of gapped phases in AA stacked bilayer graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castro-Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109

    Article  ADS  Google Scholar 

  2. McCann E, Koshino M (2013) The electronic properties of bilayer graphene. Rep Prog Phys 76:056503

    Article  ADS  Google Scholar 

  3. Lopes dos Santos JMB, Peres NMR, Castro Neto AH (2007) Graphene bilayer with a twist: electronic structure. Phys Rev Lett 99:256802

    Article  ADS  Google Scholar 

  4. Suárez Morell E, Vargas P, Chico L, Brey L (2011) Charge redistribution and interlayer coupling in twisted bilayer graphene under electric fields. Phys Rev B 84:195421

    Article  ADS  Google Scholar 

  5. Liu Z, Suenaga K, Harris PJF, Iijima S (2009) Open and closed edges of graphene layers. Phys Rev Lett 102:015501

    Article  ADS  Google Scholar 

  6. de Andres PL, Ramirez R, Vergés JA (2008) Strong covalent bonding between two graphene layers. Phys Rev B 77:045403

    Article  ADS  Google Scholar 

  7. Prada E, San-Jose P, Brey L, Fertig HA (2011) Band topology and the quantum spin hall effect in bilayer graphene. Solid State Commun 151(16):1075–1083

    Article  ADS  Google Scholar 

  8. Berashevich J, Chakraborty T (2011) Interlayer repulsion and decoupling effects in stacked turbostratic graphene flakes. Phys Rev B 84:033403

    Article  ADS  Google Scholar 

  9. Tabert CJ, Nicol EJ (2012) Dynamical conductivity of AA-stacked bilayer graphene. Phys Rev B 86:075439

    Article  ADS  Google Scholar 

  10. Rakhmanov AL, Rozhkov AV, Sboychakov AO, Nori F (2012) Instabilities of the AA-stacked graphene bilayer. Phys Rev Lett 109:206801

    Article  ADS  Google Scholar 

  11. Keldysh LV, Kopoev YV (1965) Possible instability of semimetallic state toward coulomb interaction. Sov Phys Solid State 6:2219

    Google Scholar 

  12. Lozovik YE, Yudson VI (December 1975) Feasibility of superfluidity of paired spatially separated electrons and holes; a new superconductivity mechanism. Sov J Exp Theor Phys Lett 22:274

    ADS  Google Scholar 

  13. Min H, Bistritzer R, Su J-J, MacDonald AH (2008) Room-temperature superfluidity in graphene bilayers. Phys Rev B 78:121401

    Article  ADS  Google Scholar 

  14. Zhang C-H, Joglekar YN (2008) Excitonic condensation of massless fermions in graphene bilayers. Phys Rev B 77:233405

    Article  ADS  Google Scholar 

  15. Kharitonov MY, Efetov KB (2008) Electron screening and excitonic condensation in double-layer graphene systems. Phys Rev B 78:241401

    Article  ADS  Google Scholar 

  16. Kharitonov MY, Efetov KB (2010) Excitonic condensation in a double-layer graphene system. Semicond Sci Technol 25(3):034004

    Article  ADS  Google Scholar 

  17. Abergel DSL, Sensarma R, Das Sarma, S (2012) Density fluctuation effects on the exciton condensate in double layer graphene. Phys Rev B 86:161412(R)

    Google Scholar 

  18. Sodemann I, Pesin DA, MacDonald AH (2012) Interaction-enhanced coherence between two-dimensional Dirac layers. Phys Rev B 85:195136

    Article  ADS  Google Scholar 

  19. Lozovik YE, Ogarkov SL, Sokolik AA (2010) Electronelectron and electronhole pairing in graphene structures. Philos Trans R Soc A Math Phys Eng Sci 368(1932):5417–5429

    Article  ADS  Google Scholar 

  20. Lozovik YE, Ogarkov SL, Sokolik AA (2012) Condensation of electron-hole pairs in a two-layer graphene system: correlation effects. Phys Rev B 86:045429

    Article  ADS  Google Scholar 

  21. Wunsch B, Stauber T, Sols F, Guinea F (2006) Dynamical polarization of graphene at finite doping. New J Phys 8(12):318

    Article  Google Scholar 

  22. Hwang EH, Das Sarma S (2007) Dielectric function, screening, and plasmons in two-dimensional graphene. Phys Rev B 75:205418

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author wants to thank Prof. H.A.Fertig for enlightening discussions. Funding for the work described here was provided by MICINN-SPAIN via grant No. FIS2009-08744.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Brey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Brey, L. (2013). Dielectric Constant and Screened Interactions in AA Stacked Bilayer Graphene. In: Egger, R., Matrasulov, D., Rakhimov, K. (eds) Low-Dimensional Functional Materials. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6618-1_3

Download citation

Publish with us

Policies and ethics