Two-Dimensional Lattice Fermions with Random Gap

Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


We calculate the localization lengths for lattice fermions with random gap in two dimensions. This is done by means of the transfer matrix approach. Numerical results are analyzed for finite-size scaling and they exhibit a metal-insulator and a insulator-insulator transition. At these transitions we calculate the critical exponent of the localization length.


Lattice Fermion Localization Length Finite-size Scaling Transfer Matrix Approach Disorder Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Nature 438:197ADSCrossRefGoogle Scholar
  2. 2.
    Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Nature 438:201ADSCrossRefGoogle Scholar
  3. 3.
    Shon NH, Ando T (1998) J Phys Soc Jpn 67:2421ADSCrossRefGoogle Scholar
  4. 4.
    Tworzydło J, Groth CW, Beenakker CWJ (2008) Phys Rev B 78:235438ADSCrossRefGoogle Scholar
  5. 5.
    Suzuura H, Ando T (2002) Phys Rev Lett 89:266603ADSCrossRefGoogle Scholar
  6. 6.
    Hill A, Ziegler K. arXiv:1211.2329Google Scholar
  7. 7.
    MacKinnon A, Kramer B (1983) Z Phys B Condens Matter 13:1546Google Scholar
  8. 8.
    Pichard JL, Sarma G (1981) J Phys C Solid State Phys 14:L127ADSCrossRefGoogle Scholar
  9. 9.
    Bostwick A, McChesney JL, Emtsev KV, Seyller T, Horn K, Kevan SD, Rotenberg E (2009) Phys Rev Lett 103:056404ADSCrossRefGoogle Scholar
  10. 10.
    Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Science 323:610ADSCrossRefGoogle Scholar
  11. 11.
    Ponomarenko LA, Geim AK, Zhukov AA, Jalil R, Morozov SV, Novoselov KS, Cheianov VV, Fal’ko VI, Watanabe K, Taniguchi T, Gorbachev RV (2011) Nat Phys 7:958CrossRefGoogle Scholar
  12. 12.
    Abergel DSL, Apalkov V, Berashevich J, Ziegler K, Chakraborty T (2010) Adv Phys 59:261ADSCrossRefGoogle Scholar
  13. 13.
    Ziegler K (2009) Phys Rev Lett 102:126802; (2009) Phys Rev B 79:195424Google Scholar
  14. 14.
    Susskind L (1977) Phys Rev D 16:3031ADSCrossRefGoogle Scholar
  15. 15.
    Stacey R (1982) Phys Rev D 26:468MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Medvedyeva MV, Tworzydło J, Beenakker CWJ (2010) Phys Rev B 81:214203ADSCrossRefGoogle Scholar
  17. 17.
    Ziegler K (1996) Phys Rev B 53:9653ADSCrossRefGoogle Scholar
  18. 18.
    Oseledec V (1968) Trans Mosc Math Soc 19:197MathSciNetGoogle Scholar
  19. 19.
    MacKinnon A, Kramer B (1981) Phys Rev Lett 47:21CrossRefGoogle Scholar
  20. 20.
    Markos P (2006) Acta Phys Slovaca 56:561ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institut für PhysikUniversität AugsburgAugsburgGermany

Personalised recommendations