Skip to main content

On the Finite-Size Excitonic Instability in Interacting Graphene Quantum Dots

  • Conference paper
  • First Online:
Low-Dimensional Functional Materials

Abstract

Using Hartree-Fock simulations, exact diagonalization and perturbative calculations, we study ground-state properties of clean circular quantum dots formed in a graphene monolayer. With chemical potential at the neutrality point, we study N ≤ 15 interacting particles, where the fine structure constant α parametrizes the Coulomb interaction. We explore Sucher’s positive projection (“no-pair”) approach, a more general Hamiltonian conserving both N and the number of additional electron-hole pairs, and the full QED problem, where only N is conserved. We find electron-hole pair production for α > 1, where the filled Dirac sea is reconstructed and a finite-size excitonic instability occurs. We also address the case of an orbital magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the HF calculations, it is sometimes advantageous to include a small mixing term in the single-particle Hamiltonian, \(H_{\mathrm{mix}} =\delta _{K}\tau _{x} +\delta _{s}s_{x}.\) Inclusion of H mix in the construction of the eigen-energies and -states is straightforward. This allows us to probe all spin and valley states in one run, and by careful extrapolation δ K , δ s  → 0, we can extract the ground state.

References

  1. Geim AK, Novoselov KS (2007) Nat Mater 6:183

    Article  ADS  Google Scholar 

  2. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim A (2009) Rev Mod Phys 81:109

    Article  ADS  Google Scholar 

  3. Kotov VN, Uchoa B, Pereira VM, Castro Neto AH, Guinea F (2012) Rev Mod Phys 84:1067

    Article  ADS  Google Scholar 

  4. Hasan MZ, Kane CL (2010) Rev Mod Phys 82:3045

    Article  ADS  Google Scholar 

  5. González J, Guinea F, Vozmediano MAH (2001) Phys Rev B 63:134421

    Article  ADS  Google Scholar 

  6. Khveshchenko DV (2009) J Phys Condens Matter 21:075303

    Article  ADS  Google Scholar 

  7. Son DT (2007) Phys Rev B 75:235423

    Article  ADS  Google Scholar 

  8. Müller M, Schmalian J, Fritz L (2009) Phys Rev Lett 103:025301

    Article  ADS  Google Scholar 

  9. Drut JE, Lähde TA (2009) Phys Rev Lett 102:026802; (2009) Phys Rev B 79:165425

    Google Scholar 

  10. Gamayun OV, Gorbar EV, Gusynin VP (2010) Phys Rev B 81:075429; (2011) Phys Rev B 83:235104

    Google Scholar 

  11. Wang J, Fertig HA, Murthy G, Brey L (2011) Phys Rev B 83:035404

    Article  ADS  Google Scholar 

  12. Greiner W, Müller B, Rafelski J (1985) Quantum electrodynamics of strong fields. Springer, Berlin

    Book  Google Scholar 

  13. Gusynin VP, Miransky VA, Shovkovy IA (1994) Phys Rev Lett 73:3499

    Article  ADS  Google Scholar 

  14. Paananen T, Egger R (2012) Phys Rev B 84:155456

    Article  ADS  Google Scholar 

  15. Kouwenhoven LP, Austing DG, Tarucha S (2001) Rep Prog Phys 64:701

    Article  ADS  Google Scholar 

  16. Reimann SM, Manninen M (2002) Rev Mod Phys 74:1283

    Article  ADS  Google Scholar 

  17. Ponomarenko LA, Schedin F, Katsnelson MI, Yang R, Hill EW, Novoselov KS, Geim AK (2008) Science 320:356

    Article  ADS  Google Scholar 

  18. Todd K, Chou HT, Amasha S, Goldhaber-Gordon D (2009) Nano Lett 9:416

    Article  ADS  Google Scholar 

  19. Ritter KA, Lyding JW (2009) Nat Mater 8:235

    Article  ADS  Google Scholar 

  20. Güttinger J, Stampfer C, Libisch F, Frey T, Burgdorfer J, Ihn T, Ensslin K (2009) Phys Rev Lett 103:046810

    Article  ADS  Google Scholar 

  21. Güttinger J, Frey T, Stampfer C, Ihn T, Ensslin K (2010) Phys Rev Lett 105:116801

    Article  ADS  Google Scholar 

  22. Berry MV, Mondragon RJ (1987) Proc R Soc Lond A 412:53

    Article  MathSciNet  ADS  Google Scholar 

  23. Schnez S, Ensslin K, Sigrist M, Ihn T (2008) Phys Rev B 78:195427

    Article  ADS  Google Scholar 

  24. Wunsch B, Stauber T, Guinea F (2008) Phys Rev B 77:035316

    Article  ADS  Google Scholar 

  25. Ezawa M (2008) Phys Rev B 77:155411

    Article  ADS  Google Scholar 

  26. Egger R, De Martino A, Siedentop H, Stockmeyer E (2010) J Phys A Math Theor 43:215202

    Article  ADS  Google Scholar 

  27. Paananen T, Egger R, Siedentop H (2011) Phys Rev B 83:085409

    Article  ADS  Google Scholar 

  28. Brown GE, Ravenhall DG (1951) Proc R Soc Lond A 208:552

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Sucher J (1957) Phys Rev 107:1448; (1958) Phys Rev 109:1010; (1980) Phys Rev A 22:348; (1984) Int J Quantum Chem 25:3

    Google Scholar 

  30. Häusler W, Egger R (2009) Phys Rev B 80:161402(R)

    Google Scholar 

  31. Grabert H, Devoret MH (eds) (1992) Single charge tunneling, vol 294, NATO ASI series B, physics. Plenum Press, New York

    Google Scholar 

  32. Reiher M, Wolf A (2009) Relativistic quantum chemistry. Wiley VCH, Weinheim

    Book  Google Scholar 

  33. Mittleman MH (1981) Phys Rev A 24:1167

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhold Egger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Paananen, T., Egger, R. (2013). On the Finite-Size Excitonic Instability in Interacting Graphene Quantum Dots. In: Egger, R., Matrasulov, D., Rakhimov, K. (eds) Low-Dimensional Functional Materials. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6618-1_1

Download citation

Publish with us

Policies and ethics