Thermoelectricity in Ternary Rare-Earth Systems

Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


The measurements of electrical resistivity, thermal conductivity and thermoelectric power for a number of newly synthesized metal compounds and alloys based on transition and rare-earth elements were done. The maximum value of thermoelectric figure of merit ZT for the proposed system at room temperature is about 7 %. Special attention is paid to possible manifestations of the Kondo effect.


Seebeck Coefficient Thermoelectric Material Thermoelectric Power Lattice Thermal Conductivity Kondo Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Asahi Kasei Corporation (Japan) in the ISTC project N 2382p and by the Programs of fundamental research of RAS Physical Division “Strongly correlated electrons in solids and structures”, project No. 12-T-2-1001 (Ural Branch) and of RAS Presidium “Quantum mesoscopic and disordered structures”, project No. 12-P-2-1041.


  1. 1.
    Bauer E et al (2003) Physica B 328:49ADSCrossRefGoogle Scholar
  2. 2.
    Caillat T, Fleurial J-P, Borshchevsky A (1996) J Cryst Growth 166:722ADSCrossRefGoogle Scholar
  3. 3.
    Grenzebach C et al (2006) Phys Rev B 74:195119ADSCrossRefGoogle Scholar
  4. 4.
    Irkhin V Yu, Katsnelson MI (1989) Z Phys B 75:67ADSCrossRefGoogle Scholar
  5. 5.
    Irkhin V Yu, Irkhin Yu P (2007) Electronic structure, correlation effects and properties of d- and f-metals and their compounds. Cambridge International Science Publishing, CambridgeGoogle Scholar
  6. 6.
    Kanatzidis MG (2010) Chem Mater 22:648CrossRefGoogle Scholar
  7. 7.
    Kondo J (1965) Progr Theor Phys 34:372ADSCrossRefGoogle Scholar
  8. 8.
    Kondo J (1969) Solid state physics. In: Seitz F, Turnbull D (eds) vol 23. Academic, New York, p 183Google Scholar
  9. 9.
    Mahan GD (1998) Sol State Phys 51:81CrossRefGoogle Scholar
  10. 10.
    Mahan GD, Sales BC, Sharp JW (1997) Phys Today 50:42CrossRefGoogle Scholar
  11. 11.
    Mahan GD, Sofo JO (1996) Proc Natl Acad Sci USA 93:7436ADSCrossRefGoogle Scholar
  12. 12.
    Minnich AJ et al (2009) Energ Environ Sci 2:466CrossRefGoogle Scholar
  13. 13.
    Morelli DT, Meisner GP (1997) Phys Rev B 56:7376ADSCrossRefGoogle Scholar
  14. 14.
    Morelli DT et al (1995) Phys Rev B 51:9622ADSCrossRefGoogle Scholar
  15. 15.
    Mudryk Ya et al (2001) J Phys Cond Matter 13:7391Google Scholar
  16. 16.
    Nolas GS et al (1996) J Appl Phys 79:2622ADSCrossRefGoogle Scholar
  17. 17.
    Nolas GS et al (1996) J Appl Phys 79:4002ADSCrossRefGoogle Scholar
  18. 18.
    Nolas GS, Cohn JL, Slack GA (1998) Phys Rev B 58:164ADSCrossRefGoogle Scholar
  19. 19.
    Nolas GS et al (1999) Annu Rev Mater Sci 29:89ADSCrossRefGoogle Scholar
  20. 20.
    Pichanusakorn P, Bandaru P (2010) Mater Sci Eng 67:19CrossRefGoogle Scholar
  21. 21.
    Rosenberg H (2004) The solid state. Oxford University Press, OxfordGoogle Scholar
  22. 22.
    Rowe DM (2006) Thermoelectrics handbook: macro to nano. CRC/Taylor & Francis, Boca RatonGoogle Scholar
  23. 23.
    Sales BC, Mandrus D, Williams RK (1996) Science 22:1325ADSCrossRefGoogle Scholar
  24. 24.
    Takabatake T et al (2003) Physica B 328:53ADSCrossRefGoogle Scholar
  25. 25.
    Zlatic V, Hewson AC (eds) (2009) Properties and applications of thermoelectric materials. Springer, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of PhysicsLomonosov Moscow State University, Len GoryMoscow GSP-2Russia
  2. 2.Institute of Metal PhysicsEkaterinburgRussia

Personalised recommendations