Skip to main content

Thermoelectric Nanowire Arrays Response to Illumination

  • Conference paper
  • First Online:
Low-Dimensional Functional Materials

Abstract

Bismuth nanowire arrays configured on devices where they are capped with a transparent indium tin oxide electrode generate electric power when exposed to light. The arrays feature poor optical reflectivity and, possibly, light trapping. We show experimental results that indicate that the arrays respond to illumination owing to the thermoelectric conversion of heat absorbed at the surface. The unique features of the energy pathway are manifested through a strong temporal and photon wavelength dependence of the photoresponse. Energy conversion in thermoelectrics with light trapping surfaces is a path to fast infrared light detection and across-the-spectrum solar energy harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borca-Tasciuc DA et al (2001) Thermal characterization of nanowire array in alpha-Al(2)O(3) matrix. MRS Proc 703:V2.7

    Article  Google Scholar 

  2. Borca-Tasciuc DA et al (2004) Thermal properties of electrodeposited bismuth telluride nanowires embedded in amorphous alumina. Appl Phys Lett 85:6001

    Article  ADS  Google Scholar 

  3. Fan RH (2012) Transparent metals for ultrabroadband electromagnetic waves. Adv Mat 24:1980

    Article  Google Scholar 

  4. Foss Jr C, Tierney M, Martin MR (1992) Template-synthesis of infrared-transparent metal microcylinders: Comparison of optical properties with the predictions of effective medium theory. J Phys Chem 96:9001

    Article  Google Scholar 

  5. Gabor NM (2011) Hot carrier assisted intrinsic photoresponse in graphene. Science 334:648

    Article  ADS  Google Scholar 

  6. Garnett E, Yang P (2010) Nano Lett 10:1082

    Article  ADS  Google Scholar 

  7. Hochbaum AI et al (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451:163

    Article  ADS  Google Scholar 

  8. Huber TE et al (2011) Surface state band mobility and thermopower in semiconducting bismuth nanowires. Phys Rev B 83:235414

    Article  ADS  Google Scholar 

  9. Huber TE et al (2012) Thermoelectric prospects of nanomaterials with spin-orbit surface bands. J Appl Phys 111:043709

    Article  ADS  Google Scholar 

  10. Kelzenberg MD et al (2010) Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat Mater 9:239

    Article  ADS  Google Scholar 

  11. Lawrance R, Bube R (1968) Photothermoelectric and thermally stimulated thermoelectric effects: Techniques in photoelectronic analysis. Appl Phys 39:1807

    Article  Google Scholar 

  12. Nolas GS, Sharp J, Goldsmid HJ (2001) Thermoelectrics: basic principles and new materials developments. Springer, Heildelberg

    Google Scholar 

  13. Parker WJ et al (1961) Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys 32:1679

    Article  ADS  Google Scholar 

  14. St-Antoine BC, Menard D, Martel R (2011) Single-walled carbon nanotube thermopile for broadband light detection. Nano Lett 11:609

    Article  ADS  Google Scholar 

  15. Sze SM (1981) Physics of semiconductor devices, 2nd edn. Wiley, London

    Google Scholar 

  16. Takahashi K et al (2012) Light-induced off-diagonal thermoelectric effect via indirect optical heating of incline-oriented Ca(x)CoO(2). Appl Phys Lett 100:18197

    Google Scholar 

  17. Tritt et al (2008) Thermoelectrics: Direct solar thermal energy conversion. Mater Res Soc Bull 33:366-369

    Google Scholar 

  18. Wu C-Y et al (2010) Free-electronlike diffusive thermopower on indium tin oxide thin films. J Appl Phys 108:123708

    Article  ADS  Google Scholar 

  19. Xu X et al (2010) Photo-thermoelectric effect at the graphene interface junction. Nano Lett 10:562

    Article  ADS  Google Scholar 

  20. Yao Y et al (2008) Optical negative refraction in bulk metamaterials of nanowires. Science 321:930

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tito Huber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Huber, T., Scott, R., Johnson, S., Brower, T., Nikolaeva, A., Konopko, L. (2013). Thermoelectric Nanowire Arrays Response to Illumination. In: Egger, R., Matrasulov, D., Rakhimov, K. (eds) Low-Dimensional Functional Materials. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6618-1_17

Download citation

Publish with us

Policies and ethics