Thermoelectric Nanowire Arrays Response to Illumination

Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


Bismuth nanowire arrays configured on devices where they are capped with a transparent indium tin oxide electrode generate electric power when exposed to light. The arrays feature poor optical reflectivity and, possibly, light trapping. We show experimental results that indicate that the arrays respond to illumination owing to the thermoelectric conversion of heat absorbed at the surface. The unique features of the energy pathway are manifested through a strong temporal and photon wavelength dependence of the photoresponse. Energy conversion in thermoelectrics with light trapping surfaces is a path to fast infrared light detection and across-the-spectrum solar energy harvesting.


Front Surface Nanowire Array Wire Array Visible Illumination Bismuth Nanowires 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Borca-Tasciuc DA et al (2001) Thermal characterization of nanowire array in alpha-Al(2)O(3) matrix. MRS Proc 703:V2.7CrossRefGoogle Scholar
  2. 2.
    Borca-Tasciuc DA et al (2004) Thermal properties of electrodeposited bismuth telluride nanowires embedded in amorphous alumina. Appl Phys Lett 85:6001ADSCrossRefGoogle Scholar
  3. 3.
    Fan RH (2012) Transparent metals for ultrabroadband electromagnetic waves. Adv Mat 24:1980CrossRefGoogle Scholar
  4. 4.
    Foss Jr C, Tierney M, Martin MR (1992) Template-synthesis of infrared-transparent metal microcylinders: Comparison of optical properties with the predictions of effective medium theory. J Phys Chem 96:9001CrossRefGoogle Scholar
  5. 5.
    Gabor NM (2011) Hot carrier assisted intrinsic photoresponse in graphene. Science 334:648ADSCrossRefGoogle Scholar
  6. 6.
    Garnett E, Yang P (2010) Nano Lett 10:1082ADSCrossRefGoogle Scholar
  7. 7.
    Hochbaum AI et al (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451:163ADSCrossRefGoogle Scholar
  8. 8.
    Huber TE et al (2011) Surface state band mobility and thermopower in semiconducting bismuth nanowires. Phys Rev B 83:235414ADSCrossRefGoogle Scholar
  9. 9.
    Huber TE et al (2012) Thermoelectric prospects of nanomaterials with spin-orbit surface bands. J Appl Phys 111:043709ADSCrossRefGoogle Scholar
  10. 10.
    Kelzenberg MD et al (2010) Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat Mater 9:239ADSCrossRefGoogle Scholar
  11. 11.
    Lawrance R, Bube R (1968) Photothermoelectric and thermally stimulated thermoelectric effects: Techniques in photoelectronic analysis. Appl Phys 39:1807CrossRefGoogle Scholar
  12. 12.
    Nolas GS, Sharp J, Goldsmid HJ (2001) Thermoelectrics: basic principles and new materials developments. Springer, HeildelbergGoogle Scholar
  13. 13.
    Parker WJ et al (1961) Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys 32:1679ADSCrossRefGoogle Scholar
  14. 14.
    St-Antoine BC, Menard D, Martel R (2011) Single-walled carbon nanotube thermopile for broadband light detection. Nano Lett 11:609ADSCrossRefGoogle Scholar
  15. 15.
    Sze SM (1981) Physics of semiconductor devices, 2nd edn. Wiley, LondonGoogle Scholar
  16. 16.
    Takahashi K et al (2012) Light-induced off-diagonal thermoelectric effect via indirect optical heating of incline-oriented Ca(x)CoO(2). Appl Phys Lett 100:18197Google Scholar
  17. 17.
    Tritt et al (2008) Thermoelectrics: Direct solar thermal energy conversion. Mater Res Soc Bull 33:366-369Google Scholar
  18. 18.
    Wu C-Y et al (2010) Free-electronlike diffusive thermopower on indium tin oxide thin films. J Appl Phys 108:123708ADSCrossRefGoogle Scholar
  19. 19.
    Xu X et al (2010) Photo-thermoelectric effect at the graphene interface junction. Nano Lett 10:562ADSCrossRefGoogle Scholar
  20. 20.
    Yao Y et al (2008) Optical negative refraction in bulk metamaterials of nanowires. Science 321:930ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of ChemistryHoward UniversityWashington, DCUSA
  2. 2.Department of Electrical EngineeringNanoscale Science and Engineering CenterWashington, DCUSA
  3. 3.Institute of Electronic Engineering and Industrial TechnologiesASMChisinauMoldova

Personalised recommendations