Skip to main content

Optimization of Carrier Harvest in MEG Based Hybrid Solar Cells

  • Conference paper
  • First Online:
Low-Dimensional Functional Materials

Abstract

In this work the statistic theory of multiple exciton generation in quantum dots based on the Fermi approach to the problem of multiple elementary particles generation at nucleon-nucleon collisions is generalized taking into account the generation of phonons along with electrons and holes. Size and shape optimization of quantum dot has been performed to receive the maximum multiplicity of MEG effect. The role of interface electronic states of quantum dot and ligand has been considered by means of quantum mechanics approaches. Besides the resonance tunneling of electrons and holes through interface described by two barriers potential well has been considered in the classical approximation. The efficiency of photon energy conversion into electrical one at presence of MEG effect in QDs has been calculated in the frame of Fermi statistical mechanism. The process of fast decay of exciton in polymer matrix by effective acceptor doping has been theoretically analyzed by means of Migdal’s approach in weakly ionized plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basic research needs for solar energy utilization. Report of the basic energy sciences workshop on solar energy utilization, April 18021, 2005, Second Printing, October 2005, U.S. Department of Energy (DOE)

    Google Scholar 

  2. Beard MC et al (2009) Variations in the quantum efficiency of multiple exciton generation for a series of chemically treated PbSe nanocrystal films. Nano Lett 9:836

    Article  ADS  Google Scholar 

  3. Bohm D (1952) Quantum theory. Prentice-Holl, New York

    MATH  Google Scholar 

  4. Bothe W (1926) Uber die Kopplung zwischen elementaren Strah-lungsvorgangen, Zeitschrift fur Physik 37:547

    Article  ADS  Google Scholar 

  5. Chepic DI, Efros Al L, Ekimov AI et al (1990) Auger ionization of semiconductor quantum dots in a glass matrix. J Luminescence 47:113

    Article  ADS  Google Scholar 

  6. Cunningham PD et al (2011) Enhanced multiple exciton generation in quasi-one- dimensional semiconductors. Nano Lett 11:3476

    Article  Google Scholar 

  7. Demkov YN (1963) Recharging under little defect of resonance. J Exp Theor Phys 45:195

    Google Scholar 

  8. Ellingson R, Beard M, Jonson J et al (2005) Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett 5:865

    Article  ADS  Google Scholar 

  9. Fermi E (1950) High energy nuclear events. Progr Theor Phys 5:570

    Article  MathSciNet  ADS  Google Scholar 

  10. Franceschetti A, Anh J, Zunger A (2006) Impact ionization can explain carrier multiplication in PbSe quantum dots. Nano Lett 6:2191

    Article  ADS  Google Scholar 

  11. Haroche S, Kleppner D (1989) Cavity quantum electrodynamics. Phys Today 42(1):24

    Article  ADS  Google Scholar 

  12. Hulet RG, Hilfer ES, Kleppner D (1985) Inhibited spontaneous emission by a Rydberg atom. Phys Rev Lett 55:2137

    Article  ADS  Google Scholar 

  13. Klimov VI, McGuire JA, Sykora M et al (2010) Apparent versus true carrier multiplication yields in semiconductor nanocrystals. Nano Lett 10:20492057.

    Google Scholar 

  14. Mller C (1931) Uber den Sto? zweier Teilchen unter Berucksichtigung der Retardierung der Krafte. Z fr Phys 70:786

    Article  ADS  Google Scholar 

  15. Migdal AB(1975) Quality methods of quantum theory. Nauka, Moscow

    Google Scholar 

  16. Nozik AJ (2002) Quantum dot solar cells. Physica E 14:115

    Article  ADS  Google Scholar 

  17. Nozik AJ, Beard MC, Midgett AG et al (2010) Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: Implications for enhancement of solar energy conversion. Nano Lett 10:30193027

    Article  Google Scholar 

  18. Oksengendler BL, Turaeva NN, Rashidova SS (2009) Statistic theory of multiple exciton generation in quantum dots. Appl Sol Ener 3:36

    Google Scholar 

  19. Oksengendler BL, Turaeva NN (2010) Surface Tamm states of curved surface of ionic crystals. Dokl Acad Nauk Russia 434:1

    Google Scholar 

  20. Oksengendler BL, Turaeva NN, Maksimov SE et al (2010) Peculiarities of radiation defect production in nanocrystals embedded in solid matrix. J Exp Theor Phys 111:415

    Article  ADS  Google Scholar 

  21. Oksengendler BL, Turaeva NN, Uralov I et al (2012) Statistics, synergetics, and mechanism of multiple photogeneration of excitons in quantum dots: Fundamental and applied aspects. Appl Sol Ener 3:6

    Google Scholar 

  22. Oksengendler BL, Turaeva NN, Rashidova S (2012) Advanced theory of multiple exciton generation effect in quantum dots. Eur Phys J B 85:218

    Article  ADS  Google Scholar 

  23. Schaller R, Klimov VI (2004) Spontaneous emission probabilities at radio frequencies. Phys Rev Lett 92:186601

    Article  ADS  Google Scholar 

  24. Schaller RD, Agranovich VM, Klimov VI (2005) High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Nat Phys 1:189

    Article  Google Scholar 

  25. Schaller RD, Petruska MA, Klimov VI (2005) High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states. Appl Phys Lett 87:253102

    Article  ADS  Google Scholar 

  26. Turaeva NN, Oksengendler BL, Uralov I (2011) Non-Poissonian exciton populations in semiconductor nanocrystals via carrier multiplication. Appl Phys Lett 98:243103

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigora Turaeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Turaeva, N., Oksengendler, B., Marasulov, M., Nuraliev, S. (2013). Optimization of Carrier Harvest in MEG Based Hybrid Solar Cells. In: Egger, R., Matrasulov, D., Rakhimov, K. (eds) Low-Dimensional Functional Materials. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6618-1_16

Download citation

Publish with us

Policies and ethics