Advertisement

Optimization of Carrier Harvest in MEG Based Hybrid Solar Cells

Conference paper
  • 970 Downloads
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

In this work the statistic theory of multiple exciton generation in quantum dots based on the Fermi approach to the problem of multiple elementary particles generation at nucleon-nucleon collisions is generalized taking into account the generation of phonons along with electrons and holes. Size and shape optimization of quantum dot has been performed to receive the maximum multiplicity of MEG effect. The role of interface electronic states of quantum dot and ligand has been considered by means of quantum mechanics approaches. Besides the resonance tunneling of electrons and holes through interface described by two barriers potential well has been considered in the classical approximation. The efficiency of photon energy conversion into electrical one at presence of MEG effect in QDs has been calculated in the frame of Fermi statistical mechanism. The process of fast decay of exciton in polymer matrix by effective acceptor doping has been theoretically analyzed by means of Migdal’s approach in weakly ionized plasma.

Keywords

Solar Cell Resonance Tunneling Exciton Lifetime Multiple Exciton Generation Purcell Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Basic research needs for solar energy utilization. Report of the basic energy sciences workshop on solar energy utilization, April 18021, 2005, Second Printing, October 2005, U.S. Department of Energy (DOE)Google Scholar
  2. 2.
    Beard MC et al (2009) Variations in the quantum efficiency of multiple exciton generation for a series of chemically treated PbSe nanocrystal films. Nano Lett 9:836ADSCrossRefGoogle Scholar
  3. 3.
    Bohm D (1952) Quantum theory. Prentice-Holl, New YorkzbMATHGoogle Scholar
  4. 4.
    Bothe W (1926) Uber die Kopplung zwischen elementaren Strah-lungsvorgangen, Zeitschrift fur Physik 37:547ADSCrossRefGoogle Scholar
  5. 5.
    Chepic DI, Efros Al L, Ekimov AI et al (1990) Auger ionization of semiconductor quantum dots in a glass matrix. J Luminescence 47:113ADSCrossRefGoogle Scholar
  6. 6.
    Cunningham PD et al (2011) Enhanced multiple exciton generation in quasi-one- dimensional semiconductors. Nano Lett 11:3476CrossRefGoogle Scholar
  7. 7.
    Demkov YN (1963) Recharging under little defect of resonance. J Exp Theor Phys 45:195Google Scholar
  8. 8.
    Ellingson R, Beard M, Jonson J et al (2005) Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett 5:865ADSCrossRefGoogle Scholar
  9. 9.
    Fermi E (1950) High energy nuclear events. Progr Theor Phys 5:570MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Franceschetti A, Anh J, Zunger A (2006) Impact ionization can explain carrier multiplication in PbSe quantum dots. Nano Lett 6:2191ADSCrossRefGoogle Scholar
  11. 11.
    Haroche S, Kleppner D (1989) Cavity quantum electrodynamics. Phys Today 42(1):24ADSCrossRefGoogle Scholar
  12. 12.
    Hulet RG, Hilfer ES, Kleppner D (1985) Inhibited spontaneous emission by a Rydberg atom. Phys Rev Lett 55:2137ADSCrossRefGoogle Scholar
  13. 13.
    Klimov VI, McGuire JA, Sykora M et al (2010) Apparent versus true carrier multiplication yields in semiconductor nanocrystals. Nano Lett 10:20492057.Google Scholar
  14. 14.
    Mller C (1931) Uber den Sto? zweier Teilchen unter Berucksichtigung der Retardierung der Krafte. Z fr Phys 70:786ADSCrossRefGoogle Scholar
  15. 15.
    Migdal AB(1975) Quality methods of quantum theory. Nauka, MoscowGoogle Scholar
  16. 16.
    Nozik AJ (2002) Quantum dot solar cells. Physica E 14:115ADSCrossRefGoogle Scholar
  17. 17.
    Nozik AJ, Beard MC, Midgett AG et al (2010) Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: Implications for enhancement of solar energy conversion. Nano Lett 10:30193027CrossRefGoogle Scholar
  18. 18.
    Oksengendler BL, Turaeva NN, Rashidova SS (2009) Statistic theory of multiple exciton generation in quantum dots. Appl Sol Ener 3:36Google Scholar
  19. 19.
    Oksengendler BL, Turaeva NN (2010) Surface Tamm states of curved surface of ionic crystals. Dokl Acad Nauk Russia 434:1Google Scholar
  20. 20.
    Oksengendler BL, Turaeva NN, Maksimov SE et al (2010) Peculiarities of radiation defect production in nanocrystals embedded in solid matrix. J Exp Theor Phys 111:415ADSCrossRefGoogle Scholar
  21. 21.
    Oksengendler BL, Turaeva NN, Uralov I et al (2012) Statistics, synergetics, and mechanism of multiple photogeneration of excitons in quantum dots: Fundamental and applied aspects. Appl Sol Ener 3:6Google Scholar
  22. 22.
    Oksengendler BL, Turaeva NN, Rashidova S (2012) Advanced theory of multiple exciton generation effect in quantum dots. Eur Phys J B 85:218ADSCrossRefGoogle Scholar
  23. 23.
    Schaller R, Klimov VI (2004) Spontaneous emission probabilities at radio frequencies. Phys Rev Lett 92:186601ADSCrossRefGoogle Scholar
  24. 24.
    Schaller RD, Agranovich VM, Klimov VI (2005) High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Nat Phys 1:189CrossRefGoogle Scholar
  25. 25.
    Schaller RD, Petruska MA, Klimov VI (2005) High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states. Appl Phys Lett 87:253102ADSCrossRefGoogle Scholar
  26. 26.
    Turaeva NN, Oksengendler BL, Uralov I (2011) Non-Poissonian exciton populations in semiconductor nanocrystals via carrier multiplication. Appl Phys Lett 98:243103ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Biological DepartmentWebster UniversitySt. LouisUSA
  2. 2.Theoretical DepartmentInstitute of Polymer Chemistry and PhysicsTashkentUzbekistan

Personalised recommendations