\(1/(N - 1)\) Expansion for an SU(N) Impurity Anderson Model: A New Large-N Scheme Based on a Perturbation Theory in U

Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


Low-energy properties of an SU(N) Anderson model are studied, using the \(1/(N - 1)\) expansion based on a perturbation theory in the Coulomb interaction U. This approach is different from conventional large N theories, such as from the usual 1 ∕ N expansion and the non-crossing approximation based on the expansion in the hybridization matrix element between the impurity orbital and conduction band. In our approach the scaling factor N − 1 appears as the total number of interacting orbitals excluding the one prohibited by the Pauli principle, and it captures the low-energy local Fermi-liquid behavior correctly. We find that the next-leading-order results of the renormalized parameters agree closely with the numerical renormalization group results in a wide range of electron fillings at N = 4, where the degeneracy is still not so large. This ensures the reliability of the next-leading order results for N > 4. Furthermore, we apply this approach to nonequilibrium current through a quantum dot in the Kondo regime.


Anderson Impurity Model Next-leading Order Hybridization Matrix Element Kondo Regime Numerical Renormalization Group (NRG) 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank T. Kato and A.C. Hewson for discussions. This work is supported by the JSPS Grant-in-Aid for Scientific Research C (No. 23540375, and No. 24540316). Numerical computation was partly carried out at the Yukawa Institute Computer Facility.


  1. 1.
    Hewson AC (1993) The Kondo problem to heavy fermions. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. 2.
    Grobis M, Rau IG, Potok RM, Shtrikman H, Goldhaber-Gordon D (2008) Phys Rev Lett 100:246601ADSCrossRefGoogle Scholar
  3. 3.
    Scott GD, Keane ZK, Ciszek JW, Tour JM, Natelson D (2009) Phys Rev B 79:165413ADSCrossRefGoogle Scholar
  4. 4.
    Kaminski A, Yu Nazarov V, Glazman LI (2000) Phys Rev B 62:8154ADSCrossRefGoogle Scholar
  5. 5.
    Oguri A (2001) Phys Rev B 64:153305ADSCrossRefGoogle Scholar
  6. 6.
    Fujii T, Ueda K (2003) Phys Rev B 68:155310ADSCrossRefGoogle Scholar
  7. 7.
    Hewson AC, Bauer J, Oguri A (2005) J Phys Condes Matter 17:5413ADSCrossRefGoogle Scholar
  8. 8.
    Zarchin O, Zaffalon M, Heiblum M, Mahalu D, Umansky V (2008) Phys Rev B 77:241303ADSCrossRefGoogle Scholar
  9. 9.
    Yamauchi Y, Sekiguchi K, Chida K, Arakawa T, Nakamura S, Kobayashi K, Ono T, Teruo, Fujii T, Sakano R (2011) Phys Rev Lett 106:17660Google Scholar
  10. 10.
    Gogolin AO, Komnik A (2006) Phys Rev B 73:195301ADSCrossRefGoogle Scholar
  11. 11.
    Gogolin AO, Komnik A (2006) Phys Rev Lett 97:016602ADSCrossRefGoogle Scholar
  12. 12.
    Golub A (2006) Phys Rev B 73:233310ADSCrossRefGoogle Scholar
  13. 13.
    Sela E, Malecki J (2009) Phys Rev B 80:233103ADSCrossRefGoogle Scholar
  14. 14.
    Fujii T (2010) J Phys Soc Jpn 79:044714ADSCrossRefGoogle Scholar
  15. 15.
    Delattre T, Feuillet-Palma C, Herrmann LG, Morfin P, Berroir J-M, Fève G, Plaçais B, Glattli DC, Choi M-S, Mora C, Kontos T (2009) Nat Phys 5:208CrossRefGoogle Scholar
  16. 16.
    Mora C, Vitushinsky P, Leyronas X, Clerk AA, Le Hur K (2009) Phys Rev B 80:155322ADSCrossRefGoogle Scholar
  17. 17.
    Sakano R, Fujii T, Oguri A (2011) Phys Rev B 83:075440ADSCrossRefGoogle Scholar
  18. 18.
    Sakano R, Oguri A, Kato T, Tarucha S (2011) Phys Rev B 83:241301ADSCrossRefGoogle Scholar
  19. 19.
    Sakano R, Nishikawa Y, Oguri A, Hewson AC, Tarucha S (2012) Phys Rev Lett 108:056402CrossRefGoogle Scholar
  20. 20.
    Krishna-murthy HR, Wilkins JW, Wilson KG (1980) Phys Rev B 21:1003ADSCrossRefGoogle Scholar
  21. 21.
    Izumida W, Sakai O, Shimizu Y (1998) J Phys Soc Jpn 67:2444ADSCrossRefGoogle Scholar
  22. 22.
    Choi M-S, López R, Aguado R (2005) Phys Rev Lett 95:067204ADSCrossRefGoogle Scholar
  23. 23.
    Anders FB, Logan DE, Galpin MR, Finkelstein G (2008) Phys Rev Lett 100:086809ADSCrossRefGoogle Scholar
  24. 24.
    Nishikawa Y, Crow DJG, Hewson AC (2010) Phys Rev B 82:245109ADSCrossRefGoogle Scholar
  25. 25.
    Coleman P (1983) Phys Rev B 28:5255ADSCrossRefGoogle Scholar
  26. 26.
    Bickers N (1987) Rev Mod Phys 59:845ADSCrossRefGoogle Scholar
  27. 27.
    Haule K, Kirchner S, Kroha J, Wölfle P (2001) Phys Rev B 64:155111ADSCrossRefGoogle Scholar
  28. 28.
    Otsuki J, Kuramoto Y (2006) J Phys Soc Jpn 75:064707ADSCrossRefGoogle Scholar
  29. 29.
    Oguri A, Sakano R, Fujii T (2011) Phys Rev B 84:113301ADSCrossRefGoogle Scholar
  30. 30.
    Oguri A (2012) Phys Rev B 85:155404ADSCrossRefGoogle Scholar
  31. 31.
    Yoshimori A (1976) Prog Theor Phys 55:67ADSCrossRefGoogle Scholar
  32. 32.
    Zlatić V, Horvatić B (1983) Phys Rev B 28:6904ADSCrossRefGoogle Scholar
  33. 33.
    Meir Y, Wingreen NS (1992) Phys Rev Lett 68:2512ADSCrossRefGoogle Scholar
  34. 34.
    Hershfield S, Davies JH, Wilkins JW (1992) Phys Rev B 46:7046ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of PhysicsOsaka City UniversityOsakaJapan
  2. 2.Institute for Solid State PhysicsUniversity of TokyoKashiwaJapan

Personalised recommendations