Skip to main content

\(1/(N - 1)\) Expansion for an SU(N) Impurity Anderson Model: A New Large-N Scheme Based on a Perturbation Theory in U

  • Conference paper
  • First Online:
Low-Dimensional Functional Materials

Abstract

Low-energy properties of an SU(N) Anderson model are studied, using the \(1/(N - 1)\) expansion based on a perturbation theory in the Coulomb interaction U. This approach is different from conventional large N theories, such as from the usual 1 ∕ N expansion and the non-crossing approximation based on the expansion in the hybridization matrix element between the impurity orbital and conduction band. In our approach the scaling factor N − 1 appears as the total number of interacting orbitals excluding the one prohibited by the Pauli principle, and it captures the low-energy local Fermi-liquid behavior correctly. We find that the next-leading-order results of the renormalized parameters agree closely with the numerical renormalization group results in a wide range of electron fillings at N = 4, where the degeneracy is still not so large. This ensures the reliability of the next-leading order results for N > 4. Furthermore, we apply this approach to nonequilibrium current through a quantum dot in the Kondo regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hewson AC (1993) The Kondo problem to heavy fermions. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Grobis M, Rau IG, Potok RM, Shtrikman H, Goldhaber-Gordon D (2008) Phys Rev Lett 100:246601

    Article  ADS  Google Scholar 

  3. Scott GD, Keane ZK, Ciszek JW, Tour JM, Natelson D (2009) Phys Rev B 79:165413

    Article  ADS  Google Scholar 

  4. Kaminski A, Yu Nazarov V, Glazman LI (2000) Phys Rev B 62:8154

    Article  ADS  Google Scholar 

  5. Oguri A (2001) Phys Rev B 64:153305

    Article  ADS  Google Scholar 

  6. Fujii T, Ueda K (2003) Phys Rev B 68:155310

    Article  ADS  Google Scholar 

  7. Hewson AC, Bauer J, Oguri A (2005) J Phys Condes Matter 17:5413

    Article  ADS  Google Scholar 

  8. Zarchin O, Zaffalon M, Heiblum M, Mahalu D, Umansky V (2008) Phys Rev B 77:241303

    Article  ADS  Google Scholar 

  9. Yamauchi Y, Sekiguchi K, Chida K, Arakawa T, Nakamura S, Kobayashi K, Ono T, Teruo, Fujii T, Sakano R (2011) Phys Rev Lett 106:17660

    Google Scholar 

  10. Gogolin AO, Komnik A (2006) Phys Rev B 73:195301

    Article  ADS  Google Scholar 

  11. Gogolin AO, Komnik A (2006) Phys Rev Lett 97:016602

    Article  ADS  Google Scholar 

  12. Golub A (2006) Phys Rev B 73:233310

    Article  ADS  Google Scholar 

  13. Sela E, Malecki J (2009) Phys Rev B 80:233103

    Article  ADS  Google Scholar 

  14. Fujii T (2010) J Phys Soc Jpn 79:044714

    Article  ADS  Google Scholar 

  15. Delattre T, Feuillet-Palma C, Herrmann LG, Morfin P, Berroir J-M, Fève G, Plaçais B, Glattli DC, Choi M-S, Mora C, Kontos T (2009) Nat Phys 5:208

    Article  Google Scholar 

  16. Mora C, Vitushinsky P, Leyronas X, Clerk AA, Le Hur K (2009) Phys Rev B 80:155322

    Article  ADS  Google Scholar 

  17. Sakano R, Fujii T, Oguri A (2011) Phys Rev B 83:075440

    Article  ADS  Google Scholar 

  18. Sakano R, Oguri A, Kato T, Tarucha S (2011) Phys Rev B 83:241301

    Article  ADS  Google Scholar 

  19. Sakano R, Nishikawa Y, Oguri A, Hewson AC, Tarucha S (2012) Phys Rev Lett 108:056402

    Article  Google Scholar 

  20. Krishna-murthy HR, Wilkins JW, Wilson KG (1980) Phys Rev B 21:1003

    Article  ADS  Google Scholar 

  21. Izumida W, Sakai O, Shimizu Y (1998) J Phys Soc Jpn 67:2444

    Article  ADS  Google Scholar 

  22. Choi M-S, López R, Aguado R (2005) Phys Rev Lett 95:067204

    Article  ADS  Google Scholar 

  23. Anders FB, Logan DE, Galpin MR, Finkelstein G (2008) Phys Rev Lett 100:086809

    Article  ADS  Google Scholar 

  24. Nishikawa Y, Crow DJG, Hewson AC (2010) Phys Rev B 82:245109

    Article  ADS  Google Scholar 

  25. Coleman P (1983) Phys Rev B 28:5255

    Article  ADS  Google Scholar 

  26. Bickers N (1987) Rev Mod Phys 59:845

    Article  ADS  Google Scholar 

  27. Haule K, Kirchner S, Kroha J, Wölfle P (2001) Phys Rev B 64:155111

    Article  ADS  Google Scholar 

  28. Otsuki J, Kuramoto Y (2006) J Phys Soc Jpn 75:064707

    Article  ADS  Google Scholar 

  29. Oguri A, Sakano R, Fujii T (2011) Phys Rev B 84:113301

    Article  ADS  Google Scholar 

  30. Oguri A (2012) Phys Rev B 85:155404

    Article  ADS  Google Scholar 

  31. Yoshimori A (1976) Prog Theor Phys 55:67

    Article  ADS  Google Scholar 

  32. Zlatić V, Horvatić B (1983) Phys Rev B 28:6904

    Article  ADS  Google Scholar 

  33. Meir Y, Wingreen NS (1992) Phys Rev Lett 68:2512

    Article  ADS  Google Scholar 

  34. Hershfield S, Davies JH, Wilkins JW (1992) Phys Rev B 46:7046

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank T. Kato and A.C. Hewson for discussions. This work is supported by the JSPS Grant-in-Aid for Scientific Research C (No. 23540375, and No. 24540316). Numerical computation was partly carried out at the Yukawa Institute Computer Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Oguri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Oguri, A., Sakano, R., Fujii, T. (2013). \(1/(N - 1)\) Expansion for an SU(N) Impurity Anderson Model: A New Large-N Scheme Based on a Perturbation Theory in U . In: Egger, R., Matrasulov, D., Rakhimov, K. (eds) Low-Dimensional Functional Materials. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6618-1_14

Download citation

Publish with us

Policies and ethics