Skip to main content

Time-Independent Nonlinear Schrödinger Equation on Simplest Networks

  • Conference paper
  • First Online:
Low-Dimensional Functional Materials

Abstract

We treat the time-independent (cubic) nonlinear Schrödinger equation (NLSE) on simplest networks. In particular, the solutions are obtained for star and tree graphs with the boundary conditions providing vertex matching and flux conservation. It is shown that the method can be extended to the case of arbitrary number of bonds in star graphs and for other simplest topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zakharov VE, Shabat AB (1972) Sov Phys JETP 34:62

    MathSciNet  ADS  Google Scholar 

  2. Zakharov VE, Shabat AB (1974) Funct Anal Appl 8:226

    Article  MATH  Google Scholar 

  3. Zakharov VE, Shabat AB (1979) Funct Anal Appl 13:166

    MathSciNet  Google Scholar 

  4. Kivshar YS, Agarwal GP (2003) Optical solitons: from fibers to photonic crystals. Academic, San Diego

    Google Scholar 

  5. Ablowitz MJ, Clarkson PA (1999) Solitons, nonlinear evolution equations and inverse scattering. Cambridge University Press, Cambridge

    Google Scholar 

  6. Pethick CJ, Smith H (2002) Bose-Einstein condensation in dilute gases. Cambridge University Press, Cambridge

    Google Scholar 

  7. Pitaesvki L, Stringari S (2003) Bose-Einstein condensation. Oxford University Press, Oxford

    Google Scholar 

  8. Dauxois T, Peyrard M (2006) Physics of solitons. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  9. Carr LD, Clark CW, Reinhardt WP (2000) Phys Rev A 62:063610

    Article  ADS  Google Scholar 

  10. Carr LD, Clark CW, Reinhardt WP (2000) Phys Rev A 62:063611

    Article  ADS  Google Scholar 

  11. DAgosta R, Malomed BA, Presilla C (2000) Phys Lett A 275:424

    Google Scholar 

  12. Carr LD, Mahmud KW, Reinhardt WP (2001) Phys Rev A 64:033603

    Article  ADS  Google Scholar 

  13. Rapedius K, Witthaut D, Korsch HJ (2006) Phys Rev A 73:033608

    Article  ADS  Google Scholar 

  14. Infeld E, Zin P, Gocalek J, Trippenbach M (2006) Phys Rev E 74:026610

    Article  ADS  Google Scholar 

  15. Harary F (1969) Graph theory. Addison-Wesley, Reading

    Google Scholar 

  16. Kottos T, Smilansky U (1999) Ann Phys 76:274

    MathSciNet  Google Scholar 

  17. Gnutzmann S, Smilansky U (2006) Adv Phys 55:527

    Article  ADS  Google Scholar 

  18. Gnutzmann S, Keating JP, Piotet F (2010) Ann Phys 325:2595

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Exner P, Seba P, Stovicek P (1988) J Phys A 21:4009–4019

    Article  MathSciNet  ADS  Google Scholar 

  20. Exner P, Seba P (1989) Rep Math Phys 28:7

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Kostrykin V, Schrader R (1999) J Phys A 32:595

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Kuchment P (2004) Wave Random Media 14:S107

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Burioni R, Cassi D, Sodano P, Trombettoni A, Vezzani A (2006) Chaos 15:043501; Physica D 216:71

    Google Scholar 

  24. Leboeuf P, Pavloff N (2001) Phys Rev A 64:033602

    Article  ADS  Google Scholar 

  25. Bongs K et al (2001) Phys Rev A 63:031602 (R)

    Google Scholar 

  26. Paul T, Hartung M, Richter K, Schlagheck P (2007) Phys Rev A 76:063605

    Article  ADS  Google Scholar 

  27. de Oliveira IN (2010) Phys Rev E 81:030104(R)

    Google Scholar 

  28. Sobirov Z, Matrasulov D, Sabirov K, Sawada S, Nakamura K (2010) Phys Rev E 81:066602

    Article  MathSciNet  ADS  Google Scholar 

  29. Adami R, Cacciapuoti C, Finco D, Noja D (2011) Rev Math Phys 23:4

    Article  MathSciNet  Google Scholar 

  30. Cascaval RC, Hunter CT (2010) Libertas Math 30:85

    MathSciNet  MATH  Google Scholar 

  31. Banica V, Ignat L (2011) J Phys A 52:083703

    MathSciNet  Google Scholar 

  32. Gnutzmann S, Smilansky U, Derevyanko S (2011) Phys Rev A 83:033831

    Article  ADS  Google Scholar 

  33. Adami R, Cacciapuoti C, Finco D, Noja D (2012) J Phys A 45:192001

    Article  MathSciNet  ADS  Google Scholar 

  34. Bowman F (1961) Introduction to elliptic functions, with applications. Dover, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karimjon Sabirov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Sabirov, K., Sabirov, Z., Babajanov, D., Matrasulov, D. (2013). Time-Independent Nonlinear Schrödinger Equation on Simplest Networks. In: Egger, R., Matrasulov, D., Rakhimov, K. (eds) Low-Dimensional Functional Materials. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6618-1_13

Download citation

Publish with us

Policies and ethics