Skip to main content

Are Scattering Properties of Networks Uniquely Connected to Their Shapes?

  • Conference paper
  • First Online:
Book cover Low-Dimensional Functional Materials

Abstract

Are scattering properties of networks uniquely connected to their shapes? This is a modification of the famous question of Mark Kac “Can one hear the shape of a drum: revisited. which can be asked in the case of scattering systems such as quantum graphs and microwave networks. We present the experimental approach to this problem (Hul et al., Phys Rev Lett 109:040402, 2012). Our experimental results indicate a negative answer to the above question. To demonstrate this we constructed a pair of isospectral microwave networks consisting of vertices connected by microwave coaxial cables and extended them to scattering systems by connecting leads to infinity to form isoscattering networks. We show that the amplitudes and phases of the determinants of the scattering matrices of such networks are the same within the experimental uncertainties. Additionally, we demonstrate that the scattering matrices of the networks are conjugated by the transplantation relation. The experimental results are in perfect agreement with the theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hul O, Ławniczak M, Bauch S, Sawicki A, Kuś M, Sirko L (2012) Are scattering properties of graphs uniquely connected to their shapes? Phys Rev Lett 109:040402

    Article  ADS  Google Scholar 

  2. Kac M (1966) Can one hear the shape of the drum? Am Math Mon 73:1

    Article  MATH  Google Scholar 

  3. Gordon C, Webb D, Wolpert S (1992) Isospectral plane domains and surfaces via Riemannian orbifolds. Invent Math 110:1

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Gordon C, Webb D, Wolpert S (1992) One cannot hear the shape of a drum. Bull Am Math Soc 27:134

    Article  MathSciNet  MATH  Google Scholar 

  5. Sunada T (1985) Riemannian coverings and isospectral manifolds. Ann Math 121:169

    Article  MathSciNet  MATH  Google Scholar 

  6. Sridhar S, Kudrolli A (1994) Experiments on not hearing the shape of drums. Phys Rev Lett 72:2175

    Article  ADS  Google Scholar 

  7. Dhar A, Rao DM, Shankar U, Sridhar S (2003) Isospectrality in chaotic billiards. Phys Rev E 68:026208

    Article  MathSciNet  ADS  Google Scholar 

  8. Okada Y, Shudo A, Tasaki S, Harayama T (2005) Can one hear the shape of a drum? J Phys A 38:L163

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Gutkin B, Smilansky U (2001) Can one hear the shape of a graph? J Phys A 34:6061

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Band R, Parzanchevski O, Ben-Shach G (2009) The isospectral fruits of representation theory: quantum graphs and drums. J Phys A 42:175202

    Article  MathSciNet  ADS  Google Scholar 

  11. Parzanchevski O, Band R (2010) Linear representations and isospectrality with boundary conditions. J Geom Anal 20:439

    Article  MathSciNet  MATH  Google Scholar 

  12. Band R, Sawicki A, Smilansky U (2010) Scattering from isospectral quantum graphs. J Phys A 43:415201

    Article  MathSciNet  Google Scholar 

  13. Band R, Sawicki A, Smilansky U (2011) Note on the role of symmetry in scattering from isospectral graphs and drums. Acta Phys Pol. A 120:A149

    Google Scholar 

  14. Gnutzmann S, Smilansky U (2006) Quantum graphs: applications to quantum chaos and universal spectral statistics. Adv Phys 55:527

    Article  ADS  Google Scholar 

  15. Dick KA, Deppert K, Larsson MW, Märtensson T, Seifert W, Wallenberg LR, Samuelson L (2004) Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nat Mater 3:380

    Article  ADS  Google Scholar 

  16. Heo K et al (2008) Large-Scale assembly of silicon nanowire network-based devices using conventional microfabrication facilities. Nano Lett 8:4523

    Article  ADS  Google Scholar 

  17. Hul O, Bauch S, Pakonski P, Savytskyy N, Życzkowski K, Sirko L (2004) Experimental simulation of quantum graphs by microwave networks. Phys Rev E 69:056205

    Article  ADS  Google Scholar 

  18. Jones DS (1964) Theory of electromagnetism. Pergamon Press, Oxford

    MATH  Google Scholar 

  19. Landau LD, Lifshitz EM (1960) Electrodynamics of continuous media. Pergamon Press, Oxford

    MATH  Google Scholar 

  20. Goubau G (1961) Electromagnetic waveguides and cavities. Pergamon Press, Oxford

    Google Scholar 

  21. Kottos T, Smilansky U (1999) Periodic orbit theory and spectral statistics for quantum graphs. Ann Phy 274:76

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Hul O, Tymoshchuk O, Bauch S, Koch PM, Sirko L (2005) Experimental investigation of Wigner’s reaction matrix for irregular graphs with absorption. J Phys A 38:10489

    Article  MathSciNet  ADS  Google Scholar 

  23. Ławniczak M, Hul O, Bauch S, Šeba P, Sirko L (2008) Experimental and numerical investigation of the reflection coefficient and the distributions of Wigner’s reaction matrix for irregular graphs with absorption. Phys Rev E 77:056210

    Article  ADS  Google Scholar 

  24. Ławniczak M, Bauch S, Hul O, Sirko L (2009) Experimental investigation of properties of hexagon networks with and without time reversal symmetry. Phys Scr T135:014050

    Article  ADS  Google Scholar 

  25. Ławniczak M, Hul O, Bauch S, Sirko L (2009) Experimental and numerical studies of one-dimensional and three-dimensional chaotic open systems. Acta Phys Pol A 116:749

    ADS  Google Scholar 

  26. Ławniczak M, Bauch S, Hul O, Sirko L (2010) Experimental investigation of the enhancement factor for microwave irregular networks with preserved and broken time reversal symmetry in the presence of absorption. Phys Rev E 81:046204

    Article  ADS  Google Scholar 

  27. Blümel R, Buchleitner A, Graham R, Sirko L, Smilansky U, Walther H (1991) Dynamic localization in the microwave interaction of rydberg atoms and the influence of noise. Phys Rev A 44:4521

    Article  ADS  Google Scholar 

  28. Bellermannn M, Bergemann T, Haffmanns A, Koch PM, Sirko L (1992) Electric-field dependence of E1 transitions between highly excited hydrogen Stark sublevels. Phys Rev A 46:5836

    Article  ADS  Google Scholar 

  29. Sirko L, Yoakum S, Haffmans A, Koch PM (1993) Microwave-driven He Rydberg atoms: Floquet-state degeneracy lifted by a second frequency, Stueckelberg oscillations, and their destruction by added noise. Phys Rev A 47:R782

    Article  ADS  Google Scholar 

  30. Sirko L, Koch PM (1995) The pendulum approximation for the main quantal resonance in periodically driven Hydrogen atoms. Appl Phys B 60:S195

    Google Scholar 

  31. Sirko L, Haffmans A, Bellermann MRW, Koch PM (1996) Microwave “ionization” of excited hydrogen atoms: frequency dependence in a resonance zone. Europhysics Letters 33:181

    Article  ADS  Google Scholar 

  32. Sirko L, Zelazny SA, Koch PM (2001) Use of the relative phase in a bichromatic field pulse to control a quasienergy gap. Phys Rev Lett 87:043002

    Article  ADS  Google Scholar 

  33. Sirko L, Koch PM (2002) Control of common resonances in bichromatically driven hydrogen atoms. Phys Rev Lett 89:274101

    Article  ADS  Google Scholar 

  34. Stöckmann HJ, Stein J (1990) “Quantum” chaos in billiards studied by microwave absorption. Phys Rev Lett 64:2215

    Article  ADS  Google Scholar 

  35. Sridhar S (1991) Experimental observation of scarred eigenfunctions of chaotic microwave cavities. Phys Rev Lett 67:785

    Article  ADS  Google Scholar 

  36. Alt H, Gräf H-D, Harner HL, Hofferbert R, Lengeler H, Richter A, Schardt P, Weidenmüller A (1995) Gaussian orthogonal ensemble statistics in a microwave stadium billiard with chaotic dynamics: Porter-Thomas distribution and algebraic decay of time correlations. Phys Rev Lett 74:62

    Article  ADS  Google Scholar 

  37. So P, Anlage SM, Ott E, Oerter RN (1995) Wave chaos experiments with and without time reversal symmetry: GUE and GOE statistics. Phys Rev Lett 74:2662

    Article  ADS  Google Scholar 

  38. Stoffregen U, Stein J, Stöckmann H-J, Kuś M, Haake F (1995) Microwave billiards with broken time reversal symmetry. Phys Rev Lett 74:2666

    Article  ADS  Google Scholar 

  39. Haake F, Kuś M, Šeba P, Stöckmann H-J, Stoffregen U (1996) Microwave billiards with broken time reversal invariance. J Phys A 29:5745

    Article  ADS  MATH  Google Scholar 

  40. Sirko L, Koch PM, Blümel R (1997) Experimental identification of non-Newtownian orbits produced by ray splitting in a dielectric-loaded microwave cavity. Phys Rev Lett 78:2940

    Article  ADS  Google Scholar 

  41. Bauch S, Błȩdowski A, Sirko L, Koch PM, Blümel R (1998) Signature of non-Newtownian orbits in ray splitting cavities. Phys Rev E 57:304

    Article  ADS  Google Scholar 

  42. Sirko L, Bauch S, Hlushchuk Y, Koch PM, Blümel R, Barth M, Kuhl U, Stöckmann H-J (2000) Observation of dynamical localization in a rough microwave cavity. Phys Lett A 266:331–335

    Article  ADS  Google Scholar 

  43. Blümel R, Koch PM, Sirko L (2001) Ray-splitting billiards. Found Phys 31:269

    Article  MathSciNet  Google Scholar 

  44. Hlushchuk Y, Sirko L, Kuhl U, Barth M, Stöckmann H-J (2001) Experimental investigation of a regime of Wigner ergodicity in microwave rough billiards. Phys Rev E 63:046208

    Article  ADS  Google Scholar 

  45. Savytskyy N, Bauch S, Błȩdowski A, Hul O, Sirko L (2002) Properties of eigenfunctions in the quantum cantori regime. Acta Phys Pol B 33:2123

    ADS  Google Scholar 

  46. Savytskyy N, Hul O, Sirko L (2004) Experimental investigation of nodal domains in the chaotic microwave rough billiard. Phys Rev E 70:056209

    Article  ADS  Google Scholar 

  47. Hul O, Savytskyy N, Tymoshchuk O, Bauch S, Sirko L (2005) Investigation of nodal domains in the chaotic microwave ray-splitting rough billiard. Phys Rev E 72:066212

    Article  ADS  Google Scholar 

  48. Deus S, Koch PM, Sirko L (1995) Statistical properties of eigenfrequency distribution of three-dimensional microwave cavities. Phys Rev E 52:1146

    Article  ADS  Google Scholar 

  49. Dörr U, Stöckmann H-J, Barth M, Kuhl U (1998) Scarred and chaotic field distributions in a three-dmensional Sinai-microwave resonator. Phys Rev Lett 80:1030

    Article  ADS  Google Scholar 

  50. Dembowski C, Dietz B, Gräf H-D, Heine A, Papenbrock T, Richter A, Richter C (2002) Experimental test of a trace formula for a chaotic three-dimensional microwave cavity. Phys Rev Lett 89:064101-1

    Article  ADS  Google Scholar 

  51. Tymoshchuk O, Savytskyy N, Hul O, Bauch S, Sirko L (2007) Experimental investigation of electric field distributions in a chaotic three-dimensional microwave rough billiard. Phys Rev E 75:037202

    Article  ADS  Google Scholar 

  52. Hul O, Sirko L (2011) Parameter-dependent spectral statistics of chaotic quantum graphs: Neumann versus circular orthogonal ensemble boundary conditions. Phys Rev E 83:066204

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leszek Sirko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Hul, O., Ławniczak, M., Bauch, S., Sawicki, A., Kuś, M., Sirko, L. (2013). Are Scattering Properties of Networks Uniquely Connected to Their Shapes?. In: Egger, R., Matrasulov, D., Rakhimov, K. (eds) Low-Dimensional Functional Materials. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6618-1_10

Download citation

Publish with us

Policies and ethics