Skip to main content

Epigenetics and MicroRNAs in Renal Cancer

  • Chapter
  • First Online:
Epigenetics and Cancer
  • 1896 Accesses

Abstract

Epigenetic states are orchestrated by several converging and reinforcing signals, including DNA methylation, histone modifications and non-coding RNAs. Growing evidence indicates that acquired epigenetic abnormalities participate with genetic alterations to cause cancer. In this review we describe recent advances in the field of cancer epigenomics and microRNAs (miRNAs) with special emphasis on renal cancer. We discuss whether epigenetic changes are the cause or consequence of cancer initiation and the use of epigenetic biomarkers and miRNAs for cancer diagnosis or prognosis. Finally we address the potential of epigenetic based anti-cancer therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waddington CH (2012) The epigenotype. 1942. Int J Epidemiol 41(1):10–13

    PubMed  CAS  Google Scholar 

  2. Russo VEA, Martienssen RA, Riggs AD (eds) (1996) Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press, Woodbury

    Google Scholar 

  3. Sandoval J, Esteller M (2012) Cancer epigenomics: beyond genomics. Curr Opin Genet Dev 22(1):50–55

    PubMed  CAS  Google Scholar 

  4. Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9(6):465–476

    PubMed  CAS  Google Scholar 

  5. Bird A (2007) Perceptions of epigenetics. Nature 447(7143):396–398

    PubMed  CAS  Google Scholar 

  6. Murrell A, Rakyan VK, Beck S (2005) From genome to epigenome. Hum Mol Genet 14(Spec No 1):R3–R10

    Google Scholar 

  7. Zhang TY, Meaney MJ (2010) Epigenetics and the environmental regulation of the genome and its function. Annu Rev Psychol 61(439–66):C1–C3

    Google Scholar 

  8. Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28(10):1057–1068

    PubMed  CAS  Google Scholar 

  9. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128(4):683–692

    PubMed  CAS  Google Scholar 

  10. Bird AP, Wolffe AP (1999) Methylation-induced repression–belts, braces, and chromatin. Cell 99(5):451–454

    PubMed  CAS  Google Scholar 

  11. Illingworth RS, Bird AP (2009) CpG islands – ‘a rough guide’. FEBS Lett 583(11):1713–1720

    PubMed  CAS  Google Scholar 

  12. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37(4):391–400

    PubMed  CAS  Google Scholar 

  13. Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R et al (2009) Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 41(12):1350–1353

    PubMed  CAS  Google Scholar 

  14. Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P et al (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41(2):178–186

    PubMed  CAS  Google Scholar 

  15. Ji H, Ehrlich LI, Seita J, Murakami P, Doi A, Lindau P et al (2010) Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467(7313):338–342

    PubMed  CAS  Google Scholar 

  16. Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301(5895):89–92

    PubMed  CAS  Google Scholar 

  17. Feinberg AP (2005) Cancer epigenetics is no Mickey Mouse. Cancer Cell 8(4):267–268

    PubMed  CAS  Google Scholar 

  18. Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7(1):21–33

    PubMed  CAS  Google Scholar 

  19. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358(11):1148–1159

    PubMed  CAS  Google Scholar 

  20. Rodriguez-Paredes M, Esteller M (2011) Cancer epigenetics reaches mainstream oncology. Nat Med 17(3):330–339

    PubMed  CAS  Google Scholar 

  21. Eden A, Gaudet F, Waghmare A, Jaenisch R (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300(5618):455

    PubMed  CAS  Google Scholar 

  22. Mancini V, Battaglia M, Ditonno P, Palazzo S, Lastilla G, Montironi R et al (2008) Current insights in renal cell cancer pathology. Urol Oncol 26(3):225–238

    PubMed  CAS  Google Scholar 

  23. Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML et al (1993) Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260(5112):1317–1320

    PubMed  CAS  Google Scholar 

  24. Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S et al (1994) Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A 91(21):9700–9704

    PubMed  CAS  Google Scholar 

  25. Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE et al (1995) Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 55(20):4525–4530

    PubMed  CAS  Google Scholar 

  26. Dulaimi E, Ibanez de Caceres I, Uzzo RG, Al-Saleem T, Greenberg RE, Polascik TJ et al (2004) Promoter hypermethylation profile of kidney cancer. Clin Cancer Res 10(12 Pt 1):3972–3979

    PubMed  CAS  Google Scholar 

  27. Kondratov AG, Kvasha SM, Stoliar LA, Romanenko AM, Zgonnyk YM, Gordiyuk VV et al (2012) Alterations of the WNT7A Gene in Clear Cell Renal Cell Carcinomas. PLoS One 7(10):e47012

    PubMed  CAS  Google Scholar 

  28. Ye YW, Jiang ZM, Li WH, Li ZS, Han YH, Sun L et al (2012) Down-regulation of TCF21 is associated with poor survival in clear cell renal cell carcinoma. Neoplasma 59(6):599–605

    PubMed  CAS  Google Scholar 

  29. Ricketts CJ, Morris MR, Gentle D, Brown M, Wake N, Woodward ER et al (2012) Genome-wide CpG island methylation analysis implicates novel genes in the pathogenesis of renal cell carcinoma. Epigenetics 7(3):278–290

    PubMed  CAS  Google Scholar 

  30. Peters I, Eggers H, Atschekzei F, Hennenlotter J, Waalkes S, Trankenschuh W et al (2012) GATA5 CpG island methylation in renal cell cancer: a potential biomarker for metastasis and disease progression. BJU Int 110(2 Pt 2):E144–E152

    PubMed  CAS  Google Scholar 

  31. Kim WJ, Gersey Z, Daaka Y (2012) Rap1GAP regulates renal cell carcinoma invasion. Cancer Lett 320(1):65–71

    PubMed  CAS  Google Scholar 

  32. Morris MR, Ricketts CJ, Gentle D, McRonald F, Carli N, Khalili H et al (2011) Genome-wide methylation analysis identifies epigenetically inactivated candidate tumour suppressor genes in renal cell carcinoma. Oncogene 30(12):1390–1401

    PubMed  CAS  Google Scholar 

  33. Zhang Q, Ying J, Li J, Fan Y, Poon FF, Ng KM et al (2010) Aberrant promoter methylation of DLEC1, a critical 3p22 tumor suppressor for renal cell carcinoma, is associated with more advanced tumor stage. J Urol 184(2):731–737

    PubMed  CAS  Google Scholar 

  34. Vogt M, Munding J, Gruner M, Liffers ST, Verdoodt B, Hauk J et al (2011) Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch 458(3):313–322

    PubMed  Google Scholar 

  35. Hildebrandt MA, Gu J, Lin J, Ye Y, Tan W, Tamboli P et al (2010) Hsa-miR-9 methylation status is associated with cancer development and metastatic recurrence in patients with clear cell renal cell carcinoma. Oncogene 29(42):5724–5728

    PubMed  CAS  Google Scholar 

  36. Morris MR, Maher ER (2010) Epigenetics of renal cell carcinoma: the path towards new diagnostics and therapeutics. Genome Med 2(9):59

    PubMed  Google Scholar 

  37. Deguchi M, Shiina H, Igawa M, Kaneuchi M, Nakajima K, Dahiya R (2003) DNA mismatch repair genes in renal cell carcinoma. J Urol 169(6):2365–2371

    PubMed  CAS  Google Scholar 

  38. Nojima D, Nakajima K, Li LC, Franks J, Ribeiro-Filho L, Ishii N et al (2001) CpG methylation of promoter region inactivates E-cadherin gene in renal cell carcinoma. Mol Carcinog 32(1):19–27

    PubMed  CAS  Google Scholar 

  39. Breault JE, Shiina H, Igawa M, Ribeiro-Filho LA, Deguchi M, Enokida H et al (2005) Methylation of the gamma-catenin gene is associated with poor prognosis of renal cell carcinoma. Clin Cancer Res 11(2 Pt 1):557–564

    PubMed  CAS  Google Scholar 

  40. Majid S, Dar AA, Ahmad AE, Hirata H, Kawakami K, Shahryari V et al (2009) BTG3 tumor suppressor gene promoter demethylation, histone modification and cell cycle arrest by genistein in renal cancer. Carcinogenesis 30(4):662–670

    PubMed  CAS  Google Scholar 

  41. Urakami S, Shiina H, Enokida H, Hirata H, Kawamoto K, Kawakami T et al (2006) Wnt antagonist family genes as biomarkers for diagnosis, staging, and prognosis of renal cell carcinoma using tumor and serum DNA. Clin Cancer Res 12(23):6989–6997

    PubMed  CAS  Google Scholar 

  42. Kawakami K, Hirata H, Yamamura S, Kikuno N, Saini S, Majid S et al (2009) Functional significance of Wnt inhibitory factor-1 gene in kidney cancer. Cancer Res 69(22):8603–8610

    PubMed  CAS  Google Scholar 

  43. Kawakami K, Yamamura S, Hirata H, Ueno K, Saini S, Majid S et al (2010) Secreted frizzled-related protein-5 is epigenetically downregulated and functions as a tumor suppressor in kidney cancer. Int J Cancer 128(3):541–550

    Google Scholar 

  44. Kawamoto K, Hirata H, Kikuno N, Tanaka Y, Nakagawa M, Dahiya R (2008) DNA methylation and histone modifications cause silencing of Wnt antagonist gene in human renal cell carcinoma cell lines. Int J Cancer 123(3):535–542

    PubMed  CAS  Google Scholar 

  45. Hirata H, Hinoda Y, Nakajima K, Kawamoto K, Kikuno N, Kawakami K et al (2009) Wnt antagonist gene DKK2 is epigenetically silenced and inhibits renal cancer progression through apoptotic and cell cycle pathways. Clin Cancer Res 15(18):5678–5687

    PubMed  CAS  Google Scholar 

  46. Hirata H, Hinoda Y, Nakajima K, Kawamoto K, Kikuno N, Ueno K et al (2010) Wnt antagonist DKK1 acts as a tumor suppressor gene that induces apoptosis and inhibits proliferation in human renal cell carcinoma. Int J Cancer 128(8):1793–1803

    Google Scholar 

  47. Saini S, Liu J, Yamamura S, Majid S, Kawakami K, Hirata H et al (2009) Functional significance of secreted Frizzled-related protein 1 in metastatic renal cell carcinomas. Cancer Res 69(17):6815–6822

    PubMed  CAS  Google Scholar 

  48. Yamamura S, Kawakami K, Hirata H, Ueno K, Saini S, Majid S et al (2010) Oncogenic functions of secreted Frizzled-related protein 2 in human renal cancer. Mol Cancer Ther 9(6):1680–1687

    PubMed  CAS  Google Scholar 

  49. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    PubMed  CAS  Google Scholar 

  50. Rando OJ, Chang HY (2009) Genome-wide views of chromatin structure. Annu Rev Biochem 78:245–271

    PubMed  CAS  Google Scholar 

  51. Wolffe AP, Hayes JJ (1999) Chromatin disruption and modification. Nucleic Acids Res 27(3):711–720

    PubMed  CAS  Google Scholar 

  52. Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14(11):1025–1040

    PubMed  CAS  Google Scholar 

  53. Gardner KE, Allis CD, Strahl BD (2011) Operating on chromatin, a colorful language where context matters. J Mol Biol 409(1):36–46

    PubMed  CAS  Google Scholar 

  54. Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128(4):707–719

    PubMed  CAS  Google Scholar 

  55. Zaratiegui M, Irvine DV, Martienssen RA (2007) Noncoding RNAs and gene silencing. Cell 128(4):763–776

    PubMed  CAS  Google Scholar 

  56. Agrelo R, Wutz A (2010) X inactivation and disease. Semin Cell Dev Biol 21(2):194–200

    PubMed  CAS  Google Scholar 

  57. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323

    PubMed  CAS  Google Scholar 

  58. Karlic R, Chung HR, Lasserre J, Vlahovicek K, Vingron M (2010) Histone modification levels are predictive for gene expression. Proc Natl Acad Sci U S A 107(7):2926–2931

    PubMed  CAS  Google Scholar 

  59. Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M et al (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435(7046):1262–1266

    PubMed  CAS  Google Scholar 

  60. Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A et al (2010) Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463(7279):360–363

    PubMed  CAS  Google Scholar 

  61. Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P et al (2011) Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469(7331):539–542

    PubMed  CAS  Google Scholar 

  62. Niu X, Zhang T, Liao L, Zhou L, Lindner DJ, Zhou M et al (2012) The von Hippel-Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C. Oncogene 31(6):776–786

    PubMed  CAS  Google Scholar 

  63. Duns G, van den Berg E, van Duivenbode I, Osinga J, Hollema H, Hofstra RM et al (2010) Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Cancer Res 70(11):4287–4291

    PubMed  CAS  Google Scholar 

  64. Sun XJ, Wei J, Wu XY, Hu M, Wang L, Wang HH et al (2005) Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase. J Biol Chem 280(42):35261–35271

    PubMed  CAS  Google Scholar 

  65. Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, Lee KK et al (2005) Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123(4):581–592

    PubMed  CAS  Google Scholar 

  66. Hong S, Cho YW, Yu LR, Yu H, Veenstra TD, Ge K (2007) Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci U S A 104(47):18439–18444

    PubMed  CAS  Google Scholar 

  67. Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J et al (2007) UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449(7163):731–734

    PubMed  CAS  Google Scholar 

  68. Lee MG, Villa R, Trojer P, Norman J, Yan KP, Reinberg D et al (2007) Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318(5849):447–450

    PubMed  CAS  Google Scholar 

  69. Xia X, Lemieux ME, Li W, Carroll JS, Brown M, Liu XS et al (2009) Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc Natl Acad Sci U S A 106(11):4260–4265

    PubMed  CAS  Google Scholar 

  70. Beyer S, Kristensen MM, Jensen KS, Johansen JV, Staller P (2008) The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. J Biol Chem 283(52):36542–36552

    PubMed  CAS  Google Scholar 

  71. Krieg AJ, Rankin EB, Chan D, Razorenova O, Fernandez S, Giaccia AJ (2010) Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1 alpha enhances hypoxic gene expression and tumor growth. Mol Cell Biol 30(1):344–353

    PubMed  CAS  Google Scholar 

  72. Guo X, Shi M, Sun L, Wang Y, Gui Y, Cai Z et al (2011) The expression of histone demethylase JMJD1A in renal cell carcinoma. Neoplasma 58(2):153–157

    PubMed  CAS  Google Scholar 

  73. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M et al (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292(5516):464–468

    PubMed  CAS  Google Scholar 

  74. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ et al (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292(5516):468–472

    PubMed  CAS  Google Scholar 

  75. Zhou X, Sun H, Chen H, Zavadil J, Kluz T, Arita A et al (2010) Hypoxia induces trimethylated H3 lysine 4 by inhibition of JARID1A demethylase. Cancer Res 70(10):4214–4221

    PubMed  CAS  Google Scholar 

  76. Xia X, Kung AL (2009) Preferential binding of HIF-1 to transcriptionally active loci determines cell-type specific response to hypoxia. Genome Biol 10(10):R113

    PubMed  Google Scholar 

  77. Kenneth NS, Mudie S, van Uden P, Rocha S (2009) SWI/SNF regulates the cellular response to hypoxia. J Biol Chem 284(7):4123–4131

    PubMed  CAS  Google Scholar 

  78. Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM et al (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126(6):1203–1217

    PubMed  CAS  Google Scholar 

  79. Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV et al (2004) MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279(50):52361–52365

    PubMed  CAS  Google Scholar 

  80. Hornstein E, Mansfield JH, Yekta S, Hu JK, Harfe BD, McManus MT et al (2005) The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature 438(7068):671–674

    PubMed  CAS  Google Scholar 

  81. Leung AK, Sharp PA (2007) microRNAs: a safeguard against turmoil? Cell 130(4):581–585

    PubMed  CAS  Google Scholar 

  82. Garzon R, Calin GA, Croce CM (2009) MicroRNAs in Cancer. Annu Rev Med 60:167–179

    PubMed  CAS  Google Scholar 

  83. Shi XB, Tepper CG, White RW (2008) MicroRNAs and prostate cancer. J Cell Mol Med 12(5A):1456–1465

    PubMed  CAS  Google Scholar 

  84. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103(7):2257–2261

    PubMed  CAS  Google Scholar 

  85. Michael MZ, O’Connor SM, van Holst Pellekaan NG, Young GP, James RJ (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1(12):882–891

    PubMed  CAS  Google Scholar 

  86. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9(3):189–198

    PubMed  CAS  Google Scholar 

  87. Bargaje R, Hariharan M, Scaria V, Pillai B (2009) Consensus miRNA expression profiles derived from interplatform normalization of microarray data. RNA 16(1):16–25

    PubMed  Google Scholar 

  88. Saunders MA, Lim LP (2009) (micro)Genomic medicine: microRNAs as therapeutics and biomarkers. RNA Biol 6(3):324–328

    PubMed  CAS  Google Scholar 

  89. Chuang JC, Jones PA (2007) Epigenetics and microRNAs. Pediatr Res 61(5 Pt 2):24R–29R

    PubMed  CAS  Google Scholar 

  90. Majid S, Dar AA, Saini S, Shahryari V, Arora S, Zaman MS et al (2012) MicroRNA-34b inhibits prostate cancer through demethylation, active chromatin modifications and AKT pathways. Clin Cancer Res. [Epub ahead of print]. PMID: 23147995

    Google Scholar 

  91. Majid S, Dar AA, Saini S, Arora S, Shahryari V, Zaman MS et al (2012) MicroRNA-23b represses proto-oncogene Src kinase, functions as a methylation-silenced tumor suppressor with diagnostic and prognostic significance in prostate cancer. Cancer Res. [Epub ahead of print]. PMID: 23074286

    Google Scholar 

  92. Huang YW, Liu JC, Deatherage DE, Luo J, Mutch DG, Goodfellow PJ et al (2009) Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer. Cancer Res 69(23):9038–9046

    PubMed  CAS  Google Scholar 

  93. Lujambio A, Esteller M (2009) How epigenetics can explain human metastasis: a new role for microRNAs. Cell Cycle 8(3):377–382

    PubMed  CAS  Google Scholar 

  94. Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setien F et al (2007) Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 67(4):1424–1429

    PubMed  CAS  Google Scholar 

  95. Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA et al (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9(6):435–443

    PubMed  CAS  Google Scholar 

  96. Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y et al (2008) Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68(11):4123–4132

    PubMed  CAS  Google Scholar 

  97. Cui L, Zhou H, Zhao H, Zhou Y, Xu R, Xu X et al (2012) MicroRNA-99a induces G1-phase cell cycle arrest and suppresses tumorigenicity in renal cell carcinoma. BMC Cancer 12(1):546

    PubMed  CAS  Google Scholar 

  98. Yamasaki T, Seki N, Yamada Y, Yoshino H, Hidaka H, Chiyomaru T et al (2012) Tumor suppressive microRNA138 contributes to cell migration and invasion through its targeting of vimentin in renal cell carcinoma. Int J Oncol 41(3):805–817

    PubMed  CAS  Google Scholar 

  99. Mikhaylova O, Stratton Y, Hall D, Kellner E, Ehmer B, Drew AF et al (2012) VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell 21(4):532–546

    PubMed  CAS  Google Scholar 

  100. Saini S, Yamamura S, Majid S, Shahryari V, Hirata H, Tanaka Y et al (2011) MicroRNA-708 induces apoptosis and suppresses tumorigenicity in renal cancer cells. Cancer Res 71(19):6208–6219

    PubMed  CAS  Google Scholar 

  101. Kawakami K, Enokida H, Chiyomaru T, Tatarano S, Yoshino H, Kagara I et al (2012) The functional significance of miR-1 and miR-133a in renal cell carcinoma. Eur J Cancer 48(6):827–836

    PubMed  CAS  Google Scholar 

  102. Hirata H, Hinoda Y, Ueno K, Nakajima K, Ishii N, Dahiya R (2012) MicroRNA-1826 directly targets beta-catenin (CTNNB1) and MEK1 (MAP2K1) in VHL-inactivated renal cancer. Carcinogenesis 33(3):501–508

    PubMed  CAS  Google Scholar 

  103. Yamamura S, Saini S, Majid S, Hirata H, Ueno K, Chang I et al (2012) MicroRNA-34a suppresses malignant transformation by targeting c-Myc transcriptional complexes in human renal cell carcinoma. Carcinogenesis 33(2):294–300

    PubMed  CAS  Google Scholar 

  104. Majid S, Saini S, Dar AA, Hirata H, Shahryari V, Tanaka Y et al (2011) MicroRNA-205 inhibits Src-mediated oncogenic pathways in renal cancer. Cancer Res 71(7):2611–2621

    PubMed  CAS  Google Scholar 

  105. Ueno K, Hirata H, Shahryari V, Chen Y, Zaman MS, Singh K et al (2010) Tumour suppressor microRNA-584 directly targets oncogene Rock-1 and decreases invasion ability in human clear cell renal cell carcinoma. Br J Cancer 104(2):308–315

    PubMed  Google Scholar 

  106. Liu W, Zabirnyk O, Wang H, Shiao YH, Nickerson ML, Khalil S et al (2010) miR-23b targets proline oxidase, a novel tumor suppressor protein in renal cancer. Oncogene 29(35):4914–4924

    PubMed  CAS  Google Scholar 

  107. Dey N, Das F, Ghosh-Choudhury N, Mandal CC, Parekh DJ, Block K et al (2012) microRNA-21 governs TORC1 activation in renal cancer cell proliferation and invasion. PLoS One 7(6):e37366

    PubMed  CAS  Google Scholar 

  108. Zaman MS, Shahryari V, Deng G, Thamminana S, Saini S, Majid S et al (2012) Up-regulation of microRNA-21 correlates with lower kidney cancer survival. PLoS One 7(2):e31060

    PubMed  CAS  Google Scholar 

  109. Liu H, Brannon AR, Reddy AR, Alexe G, Seiler MW, Arreola A et al (2010) Identifying mRNA targets of microRNA dysregulated in cancer: with application to clear cell Renal Cell Carcinoma. BMC Syst Biol 4:51

    PubMed  Google Scholar 

  110. Chow TF, Mankaruos M, Scorilas A, Youssef Y, Girgis A, Mossad S et al (2010) The miR-17-92 cluster is over expressed in and has an oncogenic effect on renal cell carcinoma. J Urol 183(2):743–751

    PubMed  CAS  Google Scholar 

  111. Tachibana M, Matsumura Y, Fukuda M, Kimura H, Shinkai Y (2008) G9a/GLP complexes independently mediate H3K9 and DNA methylation to silence transcription. EMBO J 27(20):2681–2690

    PubMed  CAS  Google Scholar 

  112. Zhao Q, Rank G, Tan YT, Li H, Moritz RL, Simpson RJ et al (2009) PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat Struct Mol Biol 16(3):304–311

    PubMed  CAS  Google Scholar 

  113. Esteve PO, Chin HG, Benner J, Feehery GR, Samaranayake M, Horwitz GA et al (2009) Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proc Natl Acad Sci U S A 106(13):5076–5081

    PubMed  Google Scholar 

  114. Wang J, Hevi S, Kurash JK, Lei H, Gay F, Bajko J et al (2009) The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet 41(1):125–129

    PubMed  CAS  Google Scholar 

  115. Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T (2003) The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 278(6):4035–4040

    PubMed  CAS  Google Scholar 

  116. Valeri N, Vannini I, Fanini F, Calore F, Adair B, Fabbri M (2009) Epigenetics, miRNAs, and human cancer: a new chapter in human gene regulation. Mamm Genome 20(9–10):573–580

    PubMed  CAS  Google Scholar 

  117. Choudhry H, Catto JW (2011) Epigenetic regulation of microRNA expression in cancer. Methods Mol Biol 676:165–184

    PubMed  CAS  Google Scholar 

  118. Cairns P (2007) Gene methylation and early detection of genitourinary cancer: the road ahead. Nat Rev Cancer 7(7):531–543

    PubMed  CAS  Google Scholar 

  119. Costa VL, Henrique R, Ribeiro FR, Pinto M, Oliveira J, Lobo F et al (2007) Quantitative promoter methylation analysis of multiple cancer-related genes in renal cell tumors. BMC Cancer 7:133

    PubMed  Google Scholar 

  120. Fernandez AF, Assenov Y, Martin-Subero JI, Balint B, Siebert R, Taniguchi H et al (2012) A DNA methylation fingerprint of 1628 human samples. Genome Res 22(2):407–419

    PubMed  CAS  Google Scholar 

  121. Hoque MO, Begum S, Topaloglu O, Jeronimo C, Mambo E, Westra WH et al (2004) Quantitative detection of promoter hypermethylation of multiple genes in the tumor, urine, and serum DNA of patients with renal cancer. Cancer Res 64(15):5511–5517

    PubMed  CAS  Google Scholar 

  122. Peters I, Rehmet K, Wilke N, Kuczyk MA, Hennenlotter J, Eilers T et al (2007) RASSF1A promoter methylation and expression analysis in normal and neoplastic kidney indicates a role in early tumorigenesis. Mol Cancer 6:49

    PubMed  Google Scholar 

  123. van Vlodrop IJ, Baldewijns MM, Smits KM, Schouten LJ, van Neste L, van Criekinge W et al (2010) Prognostic significance of Gremlin1 (GREM1) promoter CpG island hypermethylation in clear cell renal cell carcinoma. Am J Pathol 176(2):575–584

    PubMed  Google Scholar 

  124. Christoph F, Kempkensteffen C, Weikert S, Kollermann J, Krause H, Miller K et al (2006) Methylation of tumour suppressor genes APAF-1 and DAPK-1 and in vitro effects of demethylating agents in bladder and kidney cancer. Br J Cancer 95(12):1701–1707

    PubMed  CAS  Google Scholar 

  125. Kim HL, Seligson D, Liu X, Janzen N, Bui MH, Yu H et al (2005) Using tumor markers to predict the survival of patients with metastatic renal cell carcinoma. J Urol 173(5):1496–1501

    PubMed  CAS  Google Scholar 

  126. Kagara I, Enokida H, Kawakami K, Matsuda R, Toki K, Nishimura H et al (2008) CpG hypermethylation of the UCHL1 gene promoter is associated with pathogenesis and poor prognosis in renal cell carcinoma. J Urol 180(1):343–351

    PubMed  CAS  Google Scholar 

  127. Yamada D, Kikuchi S, Williams YN, Sakurai-Yageta M, Masuda M, Maruyama T et al (2006) Promoter hypermethylation of the potential tumor suppressor DAL-1/4.1B gene in renal clear cell carcinoma. Int J Cancer 118(4):916–923

    PubMed  CAS  Google Scholar 

  128. Morris MR, Ricketts C, Gentle D, Abdulrahman M, Clarke N, Brown M et al (2010) Identification of candidate tumour suppressor genes frequently methylated in renal cell carcinoma. Oncogene 29(14):2104–2117

    PubMed  CAS  Google Scholar 

  129. Muller-Tidow C, Klein HU, Hascher A, Isken F, Tickenbrock L, Thoennissen N et al (2010) Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia. Blood 116(18):3564–3571

    PubMed  Google Scholar 

  130. Kondo Y, Shen L, Cheng AS, Ahmed S, Boumber Y, Charo C et al (2008) Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet 40(6):741–750

    PubMed  CAS  Google Scholar 

  131. Seligson DB, Horvath S, McBrian MA, Mah V, Yu H, Tze S et al (2009) Global levels of histone modifications predict prognosis in different cancers. Am J Pathol 174(5):1619–1628

    PubMed  CAS  Google Scholar 

  132. Ellinger J, Kahl P, Mertens C, Rogenhofer S, Hauser S, Hartmann W et al (2010) Prognostic relevance of global histone H3 lysine 4 (H3K4) methylation in renal cell carcinoma. Int J Cancer 127(10):2360–2366

    PubMed  CAS  Google Scholar 

  133. Minardi D, Lucarini G, Filosa A, Milanese G, Zizzi A, Di Primio R et al (2009) Prognostic role of global DNA-methylation and histone acetylation in pT1a clear cell renal carcinoma in partial nephrectomy specimens. J Cell Mol Med 13(8B):2115–2121

    PubMed  Google Scholar 

  134. Mosashvilli D, Kahl P, Mertens C, Holzapfel S, Rogenhofer S, Hauser S et al (2010) Global histone acetylation levels: prognostic relevance in patients with renal cell carcinoma. Cancer Sci 101(12):2664–2669

    PubMed  CAS  Google Scholar 

  135. Rosenfeld N, Aharonov R, Meiri E, Rosenwald S, Spector Y, Zepeniuk M et al (2008) MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 26(4):462–469

    PubMed  CAS  Google Scholar 

  136. Heinzelmann J, Henning B, Sanjmyatav J, Posorski N, Steiner T, Wunderlich H et al (2011) Specific miRNA signatures are associated with metastasis and poor prognosis in clear cell renal cell carcinoma. World J Urol 29(3):367–373

    PubMed  CAS  Google Scholar 

  137. Kosaka N, Iguchi H, Ochiya T (2010) Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 101(10):2087–2092

    PubMed  CAS  Google Scholar 

  138. Juan D, Alexe G, Antes T, Liu H, Madabhushi A, Delisi C et al (2010) Identification of a microRNA panel for clear-cell kidney cancer. Urology 75(4):835–841

    PubMed  Google Scholar 

  139. Jung M, Mollenkopf HJ, Grimm C, Wagner I, Albrecht M, Waller T et al (2009) MicroRNA profiling of clear cell renal cell cancer identifies a robust signature to define renal malignancy. J Cell Mol Med 13(9B):3918–3928

    PubMed  Google Scholar 

  140. Valera VA, Walter BA, Linehan WM, Merino MJ (2011) Regulatory Effects of microRNA-92 (miR-92) on VHL Gene Expression and the Hypoxic Activation of miR-210 in Clear Cell Renal Cell Carcinoma. J Cancer 2:515–526

    PubMed  CAS  Google Scholar 

  141. Youssef YM, White NM, Grigull J, Krizova A, Samy C, Mejia-Guerrero S et al (2011) Accurate molecular classification of kidney cancer subtypes using microRNA signature. Eur Urol 59(5):721–730

    PubMed  CAS  Google Scholar 

  142. Wulfken LM, Moritz R, Ohlmann C, Holdenrieder S, Jung V, Becker F et al (2011) MicroRNAs in renal cell carcinoma: diagnostic implications of serum miR-1233 levels. PLoS One 6(9):e25787

    PubMed  CAS  Google Scholar 

  143. Neal CS, Michael MZ, Rawlings LH, Van der Hoek MB, Gleadle JM (2010) The VHL-dependent regulation of microRNAs in renal cancer. BMC Med 8:64

    PubMed  Google Scholar 

  144. Petillo D, Kort EJ, Anema J, Furge KA, Yang XJ, Teh BT (2009) MicroRNA profiling of human kidney cancer subtypes. Int J Oncol 35(1):109–114

    PubMed  CAS  Google Scholar 

  145. Slaby O, Jancovicova J, Lakomy R, Svoboda M, Poprach A, Fabian P et al (2010) Expression of miRNA-106b in conventional renal cell carcinoma is a potential marker for prediction of early metastasis after nephrectomy. J Exp Clin Cancer Res 29:90

    PubMed  Google Scholar 

  146. White NM, Khella HW, Grigull J, Adzovic S, Youssef YM, Honey RJ et al (2011) miRNA profiling in metastatic renal cell carcinoma reveals a tumour-suppressor effect for miR-215. Br J Cancer 105(11):1741–1749

    PubMed  CAS  Google Scholar 

  147. Khella HW, White NM, Faragalla H, Gabril M, Boazak M, Dorian D et al (2012) Exploring the role of miRNAs in renal cell carcinoma progression and metastasis through bioinformatic and experimental analyses. Tumour Biol 33(1):131–140

    PubMed  CAS  Google Scholar 

  148. Lin J, Horikawa Y, Tamboli P, Clague J, Wood CG, Wu X (2010) Genetic variations in microRNA-related genes are associated with survival and recurrence in patients with renal cell carcinoma. Carcinogenesis 31(10):1805–1812

    PubMed  CAS  Google Scholar 

  149. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194(4260):23–28

    PubMed  CAS  Google Scholar 

  150. Lengauer C, Kinzler KW, Vogelstein B (1997) DNA methylation and genetic instability in colorectal cancer cells. Proc Natl Acad Sci U S A 94(6):2545–2550

    PubMed  CAS  Google Scholar 

  151. Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447(7143):433–440

    PubMed  CAS  Google Scholar 

  152. Veigl ML, Kasturi L, Olechnowicz J, Ma AH, Lutterbaugh JD, Periyasamy S et al (1998) Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc Natl Acad Sci U S A 95(15):8698–8702

    PubMed  CAS  Google Scholar 

  153. Bachman KE, Park BH, Rhee I, Rajagopalan H, Herman JG, Baylin SB et al (2003) Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell 3(1):89–95

    PubMed  CAS  Google Scholar 

  154. Weksberg R, Shen DR, Fei YL, Song QL, Squire J (1993) Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiedemann syndrome. Nat Genet 5(2):143–150

    PubMed  CAS  Google Scholar 

  155. Hatada I, Ohashi H, Fukushima Y, Kaneko Y, Inoue M, Komoto Y et al (1996) An imprinted gene p57KIP2 is mutated in Beckwith-Wiedemann syndrome. Nat Genet 14(2):171–173

    PubMed  CAS  Google Scholar 

  156. Tycko B (1999) Genomic imprinting and cancer. Results Probl Cell Differ 25:133–169

    PubMed  CAS  Google Scholar 

  157. DeBaun MR, Niemitz EL, McNeil DE, Brandenburg SA, Lee MP, Feinberg AP (2002) Epigenetic alterations of H19 and LIT1 distinguish patients with Beckwith-Wiedemann syndrome with cancer and birth defects. Am J Hum Genet 70(3):604–611

    PubMed  CAS  Google Scholar 

  158. DeBaun MR, Tucker MA (1998) Risk of cancer during the first four years of life in children from The Beckwith-Wiedemann Syndrome Registry. J Pediatr 132(3 Pt 1):398–400

    PubMed  CAS  Google Scholar 

  159. McKenna ES, Sansam CG, Cho YJ, Greulich H, Evans JA, Thom CS et al (2008) Loss of the epigenetic tumor suppressor SNF5 leads to cancer without genomic instability. Mol Cell Biol 28(20):6223–6233

    PubMed  CAS  Google Scholar 

  160. Kohashi K, Oda Y, Yamamoto H, Tamiya S, Oshiro Y, Izumi T et al (2008) SMARCB1/INI1 protein expression in round cell soft tissue sarcomas associated with chromosomal translocations involving EWS: a special reference to SMARCB1/INI1 negative variant extraskeletal myxoid chondrosarcoma. Am J Surg Pathol 32(8):1168–1174

    PubMed  Google Scholar 

  161. Trobaugh-Lotrario AD, Tomlinson GE, Finegold MJ, Gore L, Feusner JH (2009) Small cell undifferentiated variant of hepatoblastoma: adverse clinical and molecular features similar to rhabdoid tumors. Pediatr Blood Cancer 52(3):328–334

    PubMed  Google Scholar 

  162. Biegel JA, Zhou JY, Rorke LB, Stenstrom C, Wainwright LM, Fogelgren B (1999) Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res 59(1):74–79

    PubMed  CAS  Google Scholar 

  163. Feinberg AP, Gehrke CW, Kuo KC, Ehrlich M (1988) Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res 48(5):1159–1161

    PubMed  CAS  Google Scholar 

  164. Finch PW, He X, Kelley MJ, Uren A, Schaudies RP, Popescu NC et al (1997) Purification and molecular cloning of a secreted, Frizzled-related antagonist of Wnt action. Proc Natl Acad Sci U S A 94(13):6770–6775

    PubMed  CAS  Google Scholar 

  165. Suzuki H, Watkins DN, Jair KW, Schuebel KE, Markowitz SD, Chen WD et al (2004) Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet 36(4):417–422

    PubMed  CAS  Google Scholar 

  166. Yan PS, Venkataramu C, Ibrahim A, Liu JC, Shen RZ, Diaz NM et al (2006) Mapping geographic zones of cancer risk with epigenetic biomarkers in normal breast tissue. Clin Cancer Res 12(22):6626–6636

    PubMed  CAS  Google Scholar 

  167. Cheng AS, Culhane AC, Chan MW, Venkataramu CR, Ehrich M, Nasir A et al (2008) Epithelial progeny of estrogen-exposed breast progenitor cells display a cancer-like methylome. Cancer Res 68(6):1786–1796

    PubMed  CAS  Google Scholar 

  168. Yamada Y, Jackson-Grusby L, Linhart H, Meissner A, Eden A, Lin H et al (2005) Opposing effects of DNA hypomethylation on intestinal and liver carcinogenesis. Proc Natl Acad Sci U S A 102(38):13580–13585

    PubMed  CAS  Google Scholar 

  169. Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R (1998) DNA hypomethylation leads to elevated mutation rates. Nature 395(6697):89–93

    PubMed  CAS  Google Scholar 

  170. Silverman LR, Demakos EP, Peterson BL, Kornblith AB, Holland JC, Odchimar-Reissig R et al (2002) Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 20(10):2429–2440

    PubMed  CAS  Google Scholar 

  171. Oki Y, Jelinek J, Shen L, Kantarjian HM, Issa JP (2008) Induction of hypomethylation and molecular response after decitabine therapy in patients with chronic myelomonocytic leukemia. Blood 111(4):2382–2384

    PubMed  CAS  Google Scholar 

  172. Shang D, Liu Y, Xu X, Han T, Tian Y (2011) 5-aza-2′-deoxycytidine enhances susceptibility of renal cell carcinoma to paclitaxel by decreasing LEF1/phospho-beta-catenin expression. Cancer Lett 311(2):230–236

    PubMed  CAS  Google Scholar 

  173. Takano Y, Iwata H, Yano Y, Miyazawa M, Virgona N, Sato H et al (2010) Up-regulation of connexin 32 gene by 5-aza-2′-deoxycytidine enhances vinblastine-induced cytotoxicity in human renal carcinoma cells via the activation of JNK signalling. Biochem Pharmacol 80(4):463–470

    PubMed  CAS  Google Scholar 

  174. Mahalingam D, Medina EC, Esquivel JA 2nd, Espitia CM, Smith S, Oberheu K et al (2010) Vorinostat enhances the activity of temsirolimus in renal cell carcinoma through suppression of survivin levels. Clin Cancer Res 16(1):141–153

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

 We thank Dr. Roger Erickson for his support and assistance with the preparation of the manuscript. This study was supported by National Center for Research Resources of the National Institutes of Health through Grant Number RO1CA138642, RO1CA130860, VA Merit Review grants, VA Program Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajvir Dahiya Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Majid, S., Saini, S., Deng, G., Dahiya, R. (2013). Epigenetics and MicroRNAs in Renal Cancer. In: Sarkar, F. (eds) Epigenetics and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6612-9_4

Download citation

Publish with us

Policies and ethics