Skip to main content

Epigenetic Regulation of EZH2 and Its Targeted MicroRNAs

  • Chapter
  • First Online:
  • 1936 Accesses

Abstract

Polycomb group (PcG) proteins are transcriptional repressors which function to silence expressions of developmental and differentiation genes in eukaryotic cells. PcG proteins assemble into complexes termed Polycomb Repressive Complex (PRC) 1 and 2, and they elicit a cascade of epigenetic silencing events starting from trimethylation of the 27th lysine residue on histone H3 by the core PRC2 protein Enhancer of Zeste Homolog 2 (EZH2). In human cancers, PcG-mediated epigenetic silencing activity is increased as a result of upregulation of EZH2 and other PcG proteins. Consequentially, EZH2 is implicated in cancer development through epigenetic repression of tumor suppressor genes. MicroRNAs (miRNAs) are small, endogenously produced non-coding RNAs which function to negatively regulate the expression of their target mRNAs. MiRNA regulation is widespread and virtually over all cellular processes. In recent years, miRNAs have emerged as critical mediators in cancer pathogenesis. Remarkably, EZH2 can epigenetically silence miRNAs, while miRNAs also exert negative control over EZH2 expression, establishing a self-regulatory loop to reinforce their cancer specific roles. In this chapter, we review the current understanding of EZH2 and its regulated miRNAs in malignancies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bracken AP, Helin K (2009) Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nat Rev Cancer 9:773–784

    Article  CAS  PubMed  Google Scholar 

  2. Sauvageau M, Sauvageau G (2010) Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell 7:299–313

    Article  CAS  PubMed  Google Scholar 

  3. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P et al (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298:1039–1043

    Article  CAS  PubMed  Google Scholar 

  4. Cao R, Tsukada Y, Zhang Y (2005) Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell 20:845–854

    Article  CAS  PubMed  Google Scholar 

  5. Cao Q, Yu J, Dhanasekaran SM, Kim JH, Mani RS, Tomlins SA et al (2008) Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 27(58):7274–7284

    Article  CAS  PubMed  Google Scholar 

  6. Sasaki M, Yamaguchi J, Itatsu K, Ikeda H, Nakanuma Y (2008) Over-expression of polycomb group protein EZH2 relates to decreased expression of p16 INK4a in cholangiocarcinogenesis in hepatolithiasis. J Pathol 215:175–183

    Article  CAS  PubMed  Google Scholar 

  7. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  8. Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276:565–570

    Article  CAS  PubMed  Google Scholar 

  9. Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM et al (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125:301–313

    Article  CAS  PubMed  Google Scholar 

  10. Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA, Wang H et al (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300:131–135

    Article  CAS  PubMed  Google Scholar 

  11. Pasini D, Bracken AP, Jensen MR, Lazzerini Denchi E, Helin K (2004) Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J 23:4061–4071

    Article  CAS  PubMed  Google Scholar 

  12. van der Vlag J, Otte AP (1999) Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation. Nat Genet 23:474–478

    Article  PubMed  CAS  Google Scholar 

  13. Gao Z, Zhang J, Bonasio R, Strino F, Sawai A, Parisi F et al (2012) PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol Cell 45:344–356

    Article  CAS  PubMed  Google Scholar 

  14. Otte AP, Kwaks TH (2003) Gene repression by Polycomb group protein complexes: a distinct complex for every occasion? Curr Opin Genet Dev 13:448–454

    Article  CAS  PubMed  Google Scholar 

  15. Qin J, Whyte WA, Anderssen E, Apostolou E, Chen HH, Akbarian S et al (2012) The polycomb group protein L3mbtl2 assembles an atypical PRC1-family complex that is essential in pluripotent stem cells and early development. Cell Stem Cell 11:319–332

    Article  CAS  PubMed  Google Scholar 

  16. Lehmann L, Ferrari R, Vashisht AA, Wohlschlegel JA, Kurdistani SK, Carey M (2012) Polycomb repressive complex 1 (PRC1) disassembles RNA polymerase II preinitiation complexes. J Biol Chem 287(43):35784–35794

    Article  CAS  PubMed  Google Scholar 

  17. Levine SS, King IF, Kingston RE (2004) Division of labor in polycomb group repression. Trends Biochem Sci 29:478–485

    Article  CAS  PubMed  Google Scholar 

  18. Sing A, Pannell D, Karaiskakis A, Sturgeon K, Djabali M, Ellis J et al (2009) A vertebrate Polycomb response element governs segmentation of the posterior hindbrain. Cell 138:885–897

    Article  CAS  PubMed  Google Scholar 

  19. Tanay A, O’Donnell AH, Damelin M, Bestor TH (2007) Hyperconserved CpG domains underlie Polycomb-binding sites. Proc Natl Acad Sci USA 104:5521–5526

    Article  CAS  PubMed  Google Scholar 

  20. Wilkinson FH, Park K, Atchison ML (2006) Polycomb recruitment to DNA in vivo by the YY1 REPO domain. Proc Natl Acad Sci USA 103:19296–19301

    Article  CAS  PubMed  Google Scholar 

  21. Pasini D, Cloos PA, Walfridsson J, Olsson L, Bukowski JP, Johansen JV et al (2010) JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 464:306–310

    Article  CAS  PubMed  Google Scholar 

  22. Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J et al (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32:232–246

    Article  CAS  PubMed  Google Scholar 

  23. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323

    Article  CAS  PubMed  Google Scholar 

  24. Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K (2006) Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 20:1123–1136

    Article  CAS  PubMed  Google Scholar 

  25. Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI et al (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441:349–353

    Article  CAS  PubMed  Google Scholar 

  26. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    Article  CAS  PubMed  Google Scholar 

  27. Pietersen AM, van Lohuizen M (2008) Stem cell regulation by polycomb repressors: postponing commitment. Curr Opin Cell Biol 20:201–207

    Article  CAS  PubMed  Google Scholar 

  28. Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L et al (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39:237–242

    Article  CAS  PubMed  Google Scholar 

  29. Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C et al (2007) Epigenetic stem cell signature in cancer. Nat Genet 39:157–158

    Article  CAS  PubMed  Google Scholar 

  30. Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA et al (2003) EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 100:11606–11611

    Article  CAS  PubMed  Google Scholar 

  31. Au SL, Wong CC, Lee JM, Fan DN, Tsang FH, Ng IO et al (2012) Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis. Hepatology 56:622–631

    Article  CAS  PubMed  Google Scholar 

  32. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG et al (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629

    Article  CAS  PubMed  Google Scholar 

  33. Kalisch WE, Rasmuson B (1974) Changes of zeste phenotype induced by autosomal mutations in Drosophila melanogaster. Hereditas 78:97–104

    Article  CAS  PubMed  Google Scholar 

  34. Laible G, Wolf A, Dorn R, Reuter G, Nislow C, Lebersorger A et al (1997) Mammalian homologues of the Polycomb-group gene Enhancer of zeste mediate gene silencing in Drosophila heterochromatin and at S. cerevisiae telomeres. EMBO J 16:3219–3232

    Article  CAS  PubMed  Google Scholar 

  35. Chen H, Rossier C, Antonarakis SE (1996) Cloning of a human homolog of the Drosophila enhancer of zeste gene (EZH2) that maps to chromosome 21q22.2. Genomics 38:30–37

    Article  CAS  PubMed  Google Scholar 

  36. Cardoso C, Mignon C, Hetet G, Grandchamps B, Fontes M, Colleaux L (2000) The human EZH2 gene: genomic organisation and revised mapping in 7q35 within the critical region for malignant myeloid disorders. Eur J Hum Genet 8:174–180

    Article  CAS  PubMed  Google Scholar 

  37. Gunster MJ, Raaphorst FM, Hamer KM, den Blaauwen JL, Fieret E, Meijer CJ et al (2001) Differential expression of human Polycomb group proteins in various tissues and cell types. J Cell Biochem Suppl 36:129–143

    Article  PubMed  Google Scholar 

  38. Hobert O, Sures I, Ciossek T, Fuchs M, Ullrich A (1996) Isolation and developmental expression analysis of Enx-1, a novel mouse Polycomb group gene. Mech Dev 55:171–184

    Article  CAS  PubMed  Google Scholar 

  39. Raaphorst FM, Otte AP, van Kemenade FJ, Blokzijl T, Fieret E, Hamer KM et al (2001) Distinct BMI-1 and EZH2 expression patterns in thymocytes and mature T cells suggest a role for Polycomb genes in human T cell differentiation. J Immunol 166:5925–5934

    CAS  PubMed  Google Scholar 

  40. Shaw T, Martin P (2009) Epigenetic reprogramming during wound healing: loss of polycomb-mediated silencing may enable upregulation of repair genes. EMBO Rep 10:881–886

    Article  CAS  PubMed  Google Scholar 

  41. Ezhkova E, Pasolli HA, Parker JS, Stokes N, Su IH, Hannon G et al (2009) Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell 136:1122–1135

    Article  CAS  PubMed  Google Scholar 

  42. Hernandez-Munoz I, Taghavi P, Kuijl C, Neefjes J, van Lohuizen M (2005) Association of BMI1 with polycomb bodies is dynamic and requires PRC2/EZH2 and the maintenance DNA methyltransferase DNMT1. Mol Cell Biol 25:11047–11058

    Article  CAS  PubMed  Google Scholar 

  43. Hansen KH, Bracken AP, Pasini D, Dietrich N, Gehani SS, Monrad A et al (2008) A model for transmission of the H3K27me3 epigenetic mark. Nat Cell Biol 10:1291–1300

    Article  CAS  PubMed  Google Scholar 

  44. Su IH, Dobenecker MW, Dickinson E, Oser M, Basavaraj A, Marqueron R et al (2005) Polycomb group protein ezh2 controls actin polymerization and cell signaling. Cell 121:425–436

    Article  CAS  PubMed  Google Scholar 

  45. Bryant RJ, Winder SJ, Cross SS, Hamdy FC, Cunliffe VT (2008) The Polycomb Group protein EZH2 regulates actin polymerization in human prostate cancer cells. Prostate 68:255–263

    Article  CAS  PubMed  Google Scholar 

  46. Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15:2343–2360

    Article  CAS  PubMed  Google Scholar 

  47. Dillon SC, Zhang X, Trievel RC, Cheng X (2005) The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol 6:227

    Article  PubMed  CAS  Google Scholar 

  48. Czermin B, Melfi R, McCabe D, Seitz V, Imhof A, Pirrotta V (2002) Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111:185–196

    Article  CAS  PubMed  Google Scholar 

  49. Han Z, Xing X, Hu M, Zhang Y, Liu P, Chai J (2007) Structural basis of EZH2 recognition by EED. Structure 15:1306–1315

    Article  CAS  PubMed  Google Scholar 

  50. Yamamoto K, Sonoda M, Inokuchi J, Shirasawa S, Sasazuki T (2004) Polycomb group suppressor of zeste 12 links heterochromatin protein 1alpha and enhancer of zeste 2. J Biol Chem 279:401–406

    Article  CAS  PubMed  Google Scholar 

  51. Kaneko S, Li G, Son J, Xu CF, Margueron R, Neubert TA et al (2010) Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA. Genes Dev 24:2615–2620

    Article  CAS  PubMed  Google Scholar 

  52. Chen S, Bohrer LR, Rai AN, Pan Y, Gan L, Zhou X et al (2010) Cyclin-dependent kinases regulate epigenetic gene silencing through phosphorylation of EZH2. Nat Cell Biol 12:1108–1114

    Article  CAS  PubMed  Google Scholar 

  53. Wei Y, Chen YH, Li LY, Lang J, Yeh SP, Shi B et al (2011) CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells. Nat Cell Biol 13:87–94

    Article  CAS  PubMed  Google Scholar 

  54. Cha TL, Zhou BP, Xia W, Wu Y, Yang CC, Chen CT et al (2005) Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science 310:306–310

    Article  CAS  PubMed  Google Scholar 

  55. Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K (2003) EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 22:5323–5335

    Article  CAS  PubMed  Google Scholar 

  56. Harris AL (2002) Hypoxia – a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47

    Article  CAS  PubMed  Google Scholar 

  57. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME et al (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275

    Article  CAS  PubMed  Google Scholar 

  58. Chang CJ, Yang JY, Xia W, Chen CT, Xie X, Chao CH et al (2011) EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1-beta-catenin signaling. Cancer Cell 19:86–100

    Article  CAS  PubMed  Google Scholar 

  59. Sasaki M, Ikeda H, Itatsu K, Yamaguchi J, Sawada S, Minato H et al (2008) The overexpression of polycomb group proteins Bmi1 and EZH2 is associated with the progression and aggressive biological behavior of hepatocellular carcinoma. Lab Invest 88:873–882

    Article  CAS  PubMed  Google Scholar 

  60. Paul TA et al (2010) Signatures of polycomb repression and reduced H3K4 trimethylation are associated with p15INK4b DNA methylation in AML. Blood 115(15):3098–3108

    Article  CAS  PubMed  Google Scholar 

  61. Yang X et al (2009) CDKN1C (p57) is a direct target of EZH2 and suppressed by multiple epigenetic mechanisms in breast cancer cells. PLoS One 4(4):e5011

    Article  PubMed  CAS  Google Scholar 

  62. Fan T et al (2011) EZH2-dependent suppression of a cellular senescence phenotype in melanoma cells by inhibition of p21/CDKN1A expression. Mol Cancer Res 9(4):418–429

    Article  CAS  PubMed  Google Scholar 

  63. Fujii S et al (2008) Enhancer of zeste homologue 2 (EZH2) down-regulates RUNX3 by increasing histone H3 methylation. J Biol Chem 283(25):17324–17332

    Article  CAS  PubMed  Google Scholar 

  64. Gonzalez ME et al (2009) Downregulation of EZH2 decreases growth of estrogen receptor-negative invasive breast carcinoma and requires BRCA1. Oncogene 28(6):843–853

    Article  PubMed  CAS  Google Scholar 

  65. Lee J et al (2008) Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell 13(1):69–80

    Article  CAS  PubMed  Google Scholar 

  66. Cheng AS et al (2011) EZH2-mediated concordant repression of Wnt antagonists promotes {beta}-catenin-dependent hepatocarcinogenesis. Cancer Res 71(11):4028–4039

    Article  CAS  PubMed  Google Scholar 

  67. Min J, Zaslavsky A, Fedele G, McLaughlin SK, Reczek EE, De Raedt T et al (2010) An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. Nat Med 16(3):286–294

    Article  CAS  PubMed  Google Scholar 

  68. Banerjee R et al (2011) The tumor suppressor gene rap1GAP is silenced by miR-101-mediated EZH2 overexpression in invasive squamous cell carcinoma. Oncogene 30(42):4339–4349

    Article  CAS  PubMed  Google Scholar 

  69. Yu J et al (2010) The neuronal repellent SLIT2 is a target for repression by EZH2 in prostate cancer. Oncogene 29(39):5370–5380

    Article  CAS  PubMed  Google Scholar 

  70. Beke L et al (2007) The gene encoding the prostatic tumor suppressor PSP94 is a target for repression by the Polycomb group protein EZH2. Oncogene 26(31):4590–4595

    Article  CAS  PubMed  Google Scholar 

  71. Yu J et al (2007) Integrative genomics analysis reveals silencing of beta-adrenergic signaling by polycomb in prostate cancer. Cancer Cell 12(5):419–431

    Article  CAS  PubMed  Google Scholar 

  72. Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R et al (2010) Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 42:181–185

    Article  CAS  PubMed  Google Scholar 

  73. Yap DB, Chu J, Berg T, Schapira M, Cheng SW, Moradian A et al (2011) Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood 117:2451–2459

    Article  CAS  PubMed  Google Scholar 

  74. McCabe MT, Graves AP, Ganji G, Diaz E, Halsey WS, Jiang Y et al (2012) Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). Proc Natl Acad Sci USA 109:2989–2994

    Article  CAS  PubMed  Google Scholar 

  75. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  76. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

    Article  CAS  PubMed  Google Scholar 

  77. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    Article  CAS  PubMed  Google Scholar 

  78. Kim VN, Nam JW (2006) Genomics of microRNA. Trends Genet 22:165–173

    Article  CAS  PubMed  Google Scholar 

  79. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    Article  CAS  PubMed  Google Scholar 

  80. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303:95–98

    Article  CAS  PubMed  Google Scholar 

  81. Azuma-Mukai A, Oguri H, Mituyama T, Qian ZR, Asai K, Siomi H et al (2008) Characterization of endogenous human Argonautes and their miRNA partners in RNA silencing. Proc Natl Acad Sci USA 105:7964–7969

    Article  CAS  PubMed  Google Scholar 

  82. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature reviews. Genetics 9:102–114

    CAS  PubMed  Google Scholar 

  83. Houbaviy HB, Murray MF, Sharp PA (2003) Embryonic stem cell-specific MicroRNAs. Dev Cell 5:351–358

    Article  CAS  PubMed  Google Scholar 

  84. Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T et al (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19:489–501

    Article  CAS  PubMed  Google Scholar 

  85. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ et al (2003) Dicer is essential for mouse development. Nat Genet 35:215–217

    Article  CAS  PubMed  Google Scholar 

  86. Juan AH, Kumar RM, Marx JG, Young RA, Sartorelli V (2009) Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol Cell 36:61–74

    Article  CAS  PubMed  Google Scholar 

  87. Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R (2008) Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet 40:1478–1483

    Article  CAS  PubMed  Google Scholar 

  88. Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, Johnstone S et al (2008) Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134:521–533

    Article  CAS  PubMed  Google Scholar 

  89. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529

    Article  CAS  PubMed  Google Scholar 

  90. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE et al (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801

    Article  CAS  PubMed  Google Scholar 

  91. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  CAS  PubMed  Google Scholar 

  92. Mendell JT (2008) miRiad roles for the miR-17-92 cluster in development and disease. Cell 133:217–222

    Article  CAS  PubMed  Google Scholar 

  93. Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S et al (2004) Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res 64:3087–3095

    Article  CAS  PubMed  Google Scholar 

  94. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833

    Article  CAS  PubMed  Google Scholar 

  95. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843

    Article  PubMed  CAS  Google Scholar 

  96. Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I et al (2008) E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 13:272–286

    Article  CAS  PubMed  Google Scholar 

  97. Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E et al (2006) Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38:1060–1065

    Article  CAS  PubMed  Google Scholar 

  98. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033

    Article  CAS  PubMed  Google Scholar 

  99. Pan X, Wang ZX, Wang R (2011) MicroRNA-21: a novel therapeutic target in human cancer. Cancer Biol Ther 10:1224–1232

    Google Scholar 

  100. Loffler D, Brocke-Heidrich K, Pfeifer G, Stocsits C, Hackermuller J, Kretzschmar AK et al (2007) Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 110:1330–1333

    Article  PubMed  CAS  Google Scholar 

  101. Davis BN, Hilyard AC, Lagna G, Hata A (2008) SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454:56–61

    Article  CAS  PubMed  Google Scholar 

  102. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658

    Article  CAS  PubMed  Google Scholar 

  103. Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH (2008) Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283:1026–1033

    Article  CAS  PubMed  Google Scholar 

  104. Zhu S, Si ML, Wu H, Mo YY (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282:14328–14336

    Article  CAS  PubMed  Google Scholar 

  105. Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS et al (2008) MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 28:5369–5380

    Article  CAS  PubMed  Google Scholar 

  106. Sayed D, Rane S, Lypowy J, He M, Chen IY, Vashistha H et al (2008) MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Mol Biol Cell 19:3272–3282

    Article  CAS  PubMed  Google Scholar 

  107. Ma L, Weinberg RA (2008) MicroRNAs in malignant progression. Cell Cycle 7:570–572

    Article  CAS  PubMed  Google Scholar 

  108. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688

    Article  CAS  PubMed  Google Scholar 

  109. Gabriely G, Yi M, Narayan RS, Niers JM, Wurdinger T, Imitola J et al (2011) Human glioma growth is controlled by microRNA-10b. Cancer Res 71:3563–3572

    Article  CAS  PubMed  Google Scholar 

  110. Vrba L, Jensen TJ, Garbe JC, Heimark RL, Cress AE, Dickinson S et al (2010) Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One 5:e8697

    Article  PubMed  CAS  Google Scholar 

  111. Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E et al (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7:1267–1278

    Article  CAS  PubMed  Google Scholar 

  112. Choi PS, Zakhary L, Choi WY, Caron S, Alvarez-Saavedra E, Miska EA et al (2008) Members of the miRNA-200 family regulate olfactory neurogenesis. Neuron 57:41–55

    Article  CAS  PubMed  Google Scholar 

  113. Hurteau GJ, Carlson JA, Spivack SD, Brock GJ (2007) Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res 67:7972–7976

    Article  CAS  PubMed  Google Scholar 

  114. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593–601

    Article  CAS  PubMed  Google Scholar 

  115. Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S et al (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9:582–589

    Article  CAS  PubMed  Google Scholar 

  116. Bussing I, Slack FJ, Grosshans H (2008) let-7 microRNAs in development, stem cells and cancer. Trends Mol Med 14:400–409

    Article  PubMed  CAS  Google Scholar 

  117. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647

    Article  CAS  PubMed  Google Scholar 

  118. Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P et al (2007) MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 67:9762–9770

    Article  CAS  PubMed  Google Scholar 

  119. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM et al (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40:43–50

    Article  CAS  PubMed  Google Scholar 

  120. Lee YS, Dutta A (2007) The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 21:1025–1030

    Article  CAS  PubMed  Google Scholar 

  121. Liang L, Wong CM, Ying Q, Fan DN, Huang S, Ding J et al (2010) MicroRNA-125b suppressesed human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B2. Hepatology 52:1731–1740

    Article  CAS  PubMed  Google Scholar 

  122. Kappelmann M, Kuphal S, Meister G, Vardimon L, Bosserhoff AK (2012) MicroRNA miR-125b controls melanoma progression by direct regulation of c-Jun protein expression. Oncogene. doi:10.1038/onc.2012.307.[Epub ahead of print]

  123. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070

    Article  CAS  PubMed  Google Scholar 

  124. Gong J, Zhang JP, Li B, Zeng C, You K, Chen MX et al (2012) MicroRNA-125b promotes apoptosis by regulating the expression of Mcl-1, Bcl-w and IL-6R. Oncogene. doi:10.1038/onc.2012.318.[Epub ahead of print]

  125. Fan DN, Tsang FH, Tam AH, Au SL, Wong CC, Wei L et al (2012) Histone lysine methyltransferase, SUV39H1, promotes HCC progression and is negatively regulated by microRNA-125b. Hepatology 57(2):637–647

    Google Scholar 

  126. Wong CC, Wong CM, Tung EK, Au SL, Lee JM, Poon RT et al (2011) The microRNA miR-139 suppresses metastasis and progression of hepatocellular carcinoma by down-regulating Rho-kinase 2. Gastroenterology 140:322–331

    Article  CAS  PubMed  Google Scholar 

  127. Bao W, Fu HJ, Xie QS, Wang L, Zhang R, Guo ZY et al (2011) HER2 interacts with CD44 to up-regulate CXCR4 via epigenetic silencing of microRNA-139 in gastric cancer cells. Gastroenterology 141(2076–2087):e6

    PubMed  Google Scholar 

  128. Shen K, Liang Q, Xu K, Cui D, Jiang L, Yin P et al (2012) MiR-139 inhibits invasion and metastasis of colorectal cancer by targeting the type I insulin-like growth factor receptor. Biochem Pharmacol 84:320–330

    Article  CAS  PubMed  Google Scholar 

  129. Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B et al (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322:1695–1699

    Article  CAS  PubMed  Google Scholar 

  130. Wong CF, Tellam RL (2008) MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis. J Biol Chem 283:9836–9843

    Article  CAS  PubMed  Google Scholar 

  131. Sander S, Bullinger L, Klapproth K, Fiedler K, Kestler HA, Barth TF et al (2008) MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 112:4202–4212

    Article  CAS  PubMed  Google Scholar 

  132. Lu J, He ML, Wang L, Chen Y, Liu X, Dong Q et al (2011) MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer Res 71:225–233

    Article  CAS  PubMed  Google Scholar 

  133. Zhang B, Liu XX, He JR, Zhou CX, Guo M, He M et al (2011) Pathologically decreased miR-26a antagonizes apoptosis and facilitates carcinogenesis by targeting MTDH and EZH2 in breast cancer. Carcinogenesis 32:2–9

    Article  CAS  PubMed  Google Scholar 

  134. Zheng F, Liao YJ, Cai MY, Liu YH, Liu TH, Chen SP et al (2012) The putative tumour suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2. Gut 61:278–289

    Article  CAS  PubMed  Google Scholar 

  135. Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I, Inazawa J (2010) miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis 31:766–776

    Article  CAS  PubMed  Google Scholar 

  136. Hatziapostolou M, Polytarchou C, Aggelidou E, Drakaki A, Poultsides GA, Jaeger SA et al (2011) An HNF4alpha-miRNA inflammatory feedback circuit regulates hepatocellular oncogenesis. Cell 147:1233–1247

    Article  CAS  PubMed  Google Scholar 

  137. Yamagishi M, Nakano K, Miyake A, Yamochi T, Kagami Y, Tsutsumi A et al (2012) Polycomb-mediated loss of miR-31 activates NIK-dependent NF-kappaB pathway in adult T cell leukemia and other cancers. Cancer Cell 21:121–135

    Article  CAS  PubMed  Google Scholar 

  138. Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC et al (2009) A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137:1032–1046

    Article  CAS  PubMed  Google Scholar 

  139. Cao Q, Mani RS, Ateeq B, Dhanasekaran SM, Asangani IA, Prensner JR et al (2011) Coordinated regulation of Polycomb group complexes through microRNAs in cancer. Cancer Cell 20:187–199

    Article  CAS  PubMed  Google Scholar 

  140. Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, Struhl K (2010) Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell 39:761–772

    Article  CAS  PubMed  Google Scholar 

  141. Chiba T, Suzuki E, Negishi M, Saraya A, Miyagi S, Konuma T et al (2012) 3-Deazaneplanocin A is a promising therapeutic agent for the eradication of tumor-initiating hepatocellular carcinoma cells. Int J Cancer J Int Cancer 130:2557–2567

    Article  CAS  Google Scholar 

  142. Tan J, Yang X, Zhuang L, Jiang X, Chen W, Lee PL et al (2007) Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev 21:1050–1063

    Article  CAS  PubMed  Google Scholar 

  143. Tsuda N, Ishiyama S, Li Y, Ioannides CG, Abbruzzese JL, Chang DZ (2006) Synthetic microRNA designed to target glioma-associated antigen 1 transcription factor inhibits division and induces late apoptosis in pancreatic tumor cells. Clin Cancer Res Off J Am Assoc Cancer Res 12:6557–6564

    Article  CAS  Google Scholar 

  144. Ma L, Reinhardt F, Pan E, Soutschek J, Bhat B, Marcusson EG et al (2010) Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol 28:341–347

    Article  CAS  PubMed  Google Scholar 

  145. Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW et al (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137:1005–1017

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This Chapter was supported in part by Hong Kong Research Grants Council General Research Fund (HKU 782411M to C. M. Wong) and Hong Kong Research Grants Council Collaborative Research Fund (HKU 7/CRG/09 to I.O.L. Ng). I.O.L. Ng is Loke Yew Professor in Pathology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Irene Oi-Lin Ng or Chun-Ming Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Au, S.LK., Ng, I.OL., Wong, CM. (2013). Epigenetic Regulation of EZH2 and Its Targeted MicroRNAs. In: Sarkar, F. (eds) Epigenetics and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6612-9_3

Download citation

Publish with us

Policies and ethics