Skip to main content

Role of MicroRNAs in Cancer Epigenetics

  • Chapter
  • First Online:
Epigenetics and Cancer

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) with gene expression regulatory functions. Increasing evidence shows that, despite not translated, miRNAs undergo the same regulatory mechanisms of any other protein coding gene (PCG). In particular, they undergo epigenetic regulation. Intriguingly, cancer cells are able to epigenetically regulate the expression of selected miRNAs, therefore granting an overall shift of the transcriptome towards an oncogenic phenotype. In parallel, miRNAs also directly target the expression of key effectors of the epigenetic machinery, therefore indirectly modulating the expression of epigenetically controlled PCGs. This intertwined relationship between the miRNome and the epigenome is further complicated by the existence of other categories of ncRNAs, also modulated by miRNAs and their epigenetic interactions. Overall, the complex layers of reciprocal regulation between ncRNAs and epigenetics are discussed in this chapter and represent a fundamental aspect of the biology of cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambros V (2003) MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 113(6):673–676

    Article  PubMed  CAS  Google Scholar 

  2. Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10(10):704–714

    Article  PubMed  CAS  Google Scholar 

  3. Fabbri M, Calin GA (2010) Epigenetics and miRNAs in human cancer. Adv Genet 70:87–99

    Article  PubMed  CAS  Google Scholar 

  4. Fabbri M, Calore F, Paone A, Galli R, Calin GA (2013) Epigenetic regulation of miRNAs in cancer. Adv Exp Med Biol 754:137–148

    Article  PubMed  Google Scholar 

  5. Calin GA, Liu C, Ferracin M, Hyslop T, Spizzo R, Sevignani C et al (2007) Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell 12(3):215–229

    Article  PubMed  CAS  Google Scholar 

  6. Fabbri M, Bottoni A, Shimizu M, Spizzo R, Nicoloso MS, Rossi S et al (2011) Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia. J Am Med Assoc 305(1):59–67

    Article  CAS  Google Scholar 

  7. Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC (2006) Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res 66(3):1277–1281

    Article  PubMed  CAS  Google Scholar 

  8. Lehmann U, Hasemeier B, Christgen M, Muller M, Romermann D, Langer F et al (2008) Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol 214(1):17–24

    Article  PubMed  CAS  Google Scholar 

  9. Tavazoie SF, Alarcón C, Oskarsson T, Padua D, Wang Q, Bos PD et al (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451(7175):147–152

    Article  PubMed  CAS  Google Scholar 

  10. Xu Q, Jiang Y, Yin Y, Li Q, He J, Jing Y, Qi YT, Xu Q, Li W, Lu B, Peiper SS, Jiang BH, Liu LZ (2013) A regulatory circuit of miR-148a-152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1. J Mol Cell Biol 5(1):3–13. doi:10.1093/jmcb/mjs049

    Article  PubMed  CAS  Google Scholar 

  11. Chang S, Sharan SK (2012) Epigenetic control of an oncogenic microRNA, miR-155, by BRCA1. Oncotarget 3(1):5–6

    PubMed  Google Scholar 

  12. Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setien F et al (2007) Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 67(4):1424–1429

    Article  PubMed  CAS  Google Scholar 

  13. Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y et al (2008) Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68(11):4123–4132

    Article  PubMed  CAS  Google Scholar 

  14. Grady WM, Parkin RK, Mitchell PS, Lee JH, Kim YH, Tsuchiya KD et al (2008) Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene 27(27):3880–3888

    Article  PubMed  CAS  Google Scholar 

  15. Bandres E, Agirre X, Bitarte N, Ramirez N, Zarate R, Roman-Gomez J et al (2009) Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer 125(11):2737–2743

    Article  PubMed  CAS  Google Scholar 

  16. Yan HCA, Lee BH, Ting AH (2011) Identification and functional analysis of epigenetically silenced microRNAs in colorectal cancer cells. PLoS One 6(6):e20628. doi:10.1371/journal.pone.0020628

    Article  PubMed  CAS  Google Scholar 

  17. Chen WS, Leung CM, Pan HW, Hu LY, Li SC, Ho MR et al (2012) Silencing of miR-1-1 and miR-133a-2 cluster expression by DNA hypermethylation in colorectal cancer. Oncol Rep 28(3):1069–1076

    PubMed  CAS  Google Scholar 

  18. Vinci S, Gelmini S, Mancini I, Malentacchi F, Pazzagli M, Beltrami C et al (2013) Genetic and epigenetic factors in regulation of microRNA in colorectal cancers. Methods 59(1):138–146. doi:10.1016/j.ymeth.2012.09.002

    Article  PubMed  CAS  Google Scholar 

  19. Brueckner B, Stresemann C, Kuner R, Mund C, Musch T, Meister M et al (2007) The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 67(4):1419–1423

    Article  PubMed  CAS  Google Scholar 

  20. Lu L, Katsaros D, de la Longrais IA, Sochirca O, Yu H et al (2007) Hypermethylation of let-7a-3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Res 67(21):10117–10122

    Article  PubMed  CAS  Google Scholar 

  21. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9(3):189–198

    Article  PubMed  CAS  Google Scholar 

  22. Incoronato M, Urso L, Portela A, Laukkanen MO, Soini Y, Quintavalle C et al (2011) Epigenetic regulation of miR-212 expression in lung cancer. PLoS One 6(11):e27722

    Article  PubMed  CAS  Google Scholar 

  23. Incoronato M, Garofalo M, Urso L, Romano G, Quintavalle C, Zanca C et al (2010) miR-212 increases tumor necrosis factor-related apoptosis-inducing ligand sensitivity in non-small cell lung cancer by targeting the antiapoptotic protein PED. Cancer Res 70(9):3638–3646

    Article  PubMed  CAS  Google Scholar 

  24. Datta J, Kutay H, Nasser MW, Nuovo GJ, Wang B, Majumder S et al (2008) Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res 68(13):5049–5058

    Article  PubMed  CAS  Google Scholar 

  25. Yuan JH, Yang F, Chen BF, Lu Z, Huo XS, Zhou WP et al (2011) The histone deacetylase 4/SP1/microrna-200a regulatory network contributes to aberrant histone acetylation in hepatocellular carcinoma. Hepatology 54(6):2025–2035

    Article  PubMed  CAS  Google Scholar 

  26. He Y, Cui Y, Wang W, Gu J, Guo S, Ma K et al (2011) Hypomethylation of the hsa-miR-191 locus causes high expression of hsa-mir-191 and promotes the epithelial-to-mesenchymal transition in hepatocellular carcinoma. Neoplasia 13(9):841–853

    PubMed  CAS  Google Scholar 

  27. Wang Y, Toh HC, Chow P, Chung AY, Meyers DJ, Cole PA et al (2012) MicroRNA-224 is up-regulated in hepatocellular carcinoma through epigenetic mechanisms. FASEB J 26(7):3032–3041

    Article  PubMed  CAS  Google Scholar 

  28. Liu RF, Xu X, Huang J, Fei QL, Chen F, Li YD et al (2013) Down-regulation of miR-517a and miR-517c promotes proliferation of hepatocellular carcinoma cells via targeting Pyk2. Cancer Lett 329(2):164–173. doi:10.1016/j.canlet.2012.10.027

    Article  PubMed  CAS  Google Scholar 

  29. Mazar J, DeBlasio D, Govindarajan SS, Zhang S, Perera RJ et al (2011) Epigenetic regulation of microRNA-375 and its role in melanoma development in humans. FEBS Lett 585(15):2467–2476

    Article  PubMed  CAS  Google Scholar 

  30. Liu S, Howell PM, Riker AI (2013) Up-regulation of miR-182 expression after epigenetic modulation of human melanoma cells. Ann Surg Oncol 20(5):1745–1752. doi:10.1245/s10434-012-2467-3 [Epub ahead of print]

    Article  PubMed  Google Scholar 

  31. Asangani IA, Harms PW, Dodson L, Pandhi M, Kunju LP, Maher CA et al (2012) Genetic and epigenetic loss of microRNA-31 leads to feed-forward expression of EZH2 in melanoma. Oncotarget 3(9):1011–1025

    PubMed  Google Scholar 

  32. Agirre X, Vilas-Zornoza A, Jiménez-Velasco A, Martin-Subero JI, Cordeu L, Gárate L et al (2009) Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res 69(10):4443–4453

    Article  PubMed  CAS  Google Scholar 

  33. Roman-Gomez J, Agirre X, Jiménez-Velasco A, Arqueros V, Vilas-Zornoza A, Rodriguez-Otero P et al (2009) Epigenetic regulation of microRNAs in acute lymphoblastic leukemia. J Clin Oncol 27(8):1316–1322

    Article  PubMed  CAS  Google Scholar 

  34. Rodriguez-Otero P, Román-Gómez J, Vilas-Zornoza A, José-Eneriz ES, Martín-Palanco V, Rifón J et al (2011) Deregulation of FGFR1 and CDK6 oncogenic pathways in acute lymphoblastic leukaemia harbouring epigenetic modifications of the MIR9 family. Br J Haematol 155(1):73–83

    Article  PubMed  CAS  Google Scholar 

  35. Fazi F, Racanicchi S, Zardo G, Starnes LM, Mancini M, Travaglini L et al (2007) Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 12(5):457–466

    Article  PubMed  CAS  Google Scholar 

  36. Chim CS, Wong KY, Leung CY, Chung LP, Hui PK, Chan SY et al (2011) Epigenetic inactivation of the hsa-miR-203 in haematological malignancies. J Cell Mol Med 15(12):2760–2767

    Article  PubMed  CAS  Google Scholar 

  37. Chim CS, Wong KY, Qi Y, Loong F, Lam WL, Wong LG et al (2010) Epigenetic inactivation of the miR-34a in hematological malignancies. Carcinogenesis 31(4):745–750

    Article  PubMed  CAS  Google Scholar 

  38. Wong KY, So CC, Loong F, Chung LP, Lam WW, Liang R et al (2011) Epigenetic inactivation of the miR-124-1 in haematological malignancies. PLoS One 6(4):e19027

    Article  PubMed  CAS  Google Scholar 

  39. Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S et al (2008) The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 10(2):202–210

    Article  PubMed  CAS  Google Scholar 

  40. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449(7163):682–688

    Article  PubMed  CAS  Google Scholar 

  41. Lujambio A, Calin GA, Villanueva A, Ropero S, Sánchez-Céspedes M, Blanco D et al (2008) A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA 105(36):13556–13561

    Article  PubMed  CAS  Google Scholar 

  42. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E et al (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104(40):15805–15810

    Article  PubMed  CAS  Google Scholar 

  43. Garzon R, Volinia S, Liu CG, Fernandez-Cymering C, Palumbo T, Pichiorri F et al (2008) MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 111(6):3183–3189

    Article  PubMed  CAS  Google Scholar 

  44. Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E, Schwind S, Pang J et al (2009) MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 113(25):6411–6418

    Article  PubMed  CAS  Google Scholar 

  45. Duursma AM, Kedde M, Schrier M, le Sage C, Agami R et al (2008) miR-148 targets human DNMT3b protein coding region. RNA 14(5):872–877

    Article  PubMed  CAS  Google Scholar 

  46. Benetti R, Gonzalo S, Jaco I, Muñoz P, Gonzalez S, Schoeftner S et al (2008) A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol 15(3):268–279

    Article  PubMed  CAS  Google Scholar 

  47. Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F, Artus-Revel CG et al (2008) MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol 15(3):259–267

    Article  PubMed  CAS  Google Scholar 

  48. Huang J, Wang Y, Guo Y, Sun S et al (2010) Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology 52(1):60–70

    Article  PubMed  CAS  Google Scholar 

  49. Houbaviy HB, Murray MF, Sharp PA (2003) Embryonic stem cell-specific MicroRNAs. Dev Cell 5(2):351–358

    Article  PubMed  CAS  Google Scholar 

  50. Liu L, Bailey SM, Okuka M, Muñoz P, Li C, Zhou L et al (2007) Telomere lengthening early in development. Nat Cell Biol 9(12):1436–1441

    Article  PubMed  CAS  Google Scholar 

  51. Braconi C, Huang N, Patel T (2010) MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology 51(3):881–890

    PubMed  CAS  Google Scholar 

  52. Meng F, Wehbe-Janek H, Henson R, Smith H, Patel T et al (2008) Epigenetic regulation of microRNA-370 by interleukin-6 in malignant human cholangiocytes. Oncogene 27(3):378–386

    Article  PubMed  CAS  Google Scholar 

  53. Das S, Foley N, Bryan K, Watters KM, Bray I, Murphy DM et al (2010) MicroRNA mediates DNA demethylation events triggered by retinoic acid during neuroblastoma cell differentiation. Cancer Res 70(20):7874–7881

    Article  PubMed  CAS  Google Scholar 

  54. Lu F, Stedman W, Yousef M, Renne R, Lieberman PM et al (2010) Epigenetic regulation of Kaposi’s sarcoma-associated herpesvirus latency by virus-encoded microRNAs that target Rta and the cellular Rbl2-DNMT pathway. J Virol 84(6):2697–2706

    Article  PubMed  CAS  Google Scholar 

  55. Wang H, Wu J, Meng X, Ying X, Zuo Y, Liu R et al (2011) MicroRNA-342 inhibits colorectal cancer cell proliferation and invasion by directly targeting DNA methyltransferase 1. Carcinogenesis 32(7):1033–1042

    Article  PubMed  CAS  Google Scholar 

  56. Ji W, Yang L, Yuan J, Yang L, Zhang M, Qi D et al (2013) MicroRNA-152 targets DNA methyltransferase 1 in NiS-transformed cells via a feedback mechanism. Carcinogenesis 34(2):446–453. doi:10.1093/carcin/bgs343

    Article  PubMed  CAS  Google Scholar 

  57. Tuddenham L, Wheeler G, Ntounia-Fousara S, Waters J, Hajihosseini MK, Clark I et al (2006) The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett 580(17):4214–4217

    Article  PubMed  CAS  Google Scholar 

  58. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM et al (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38(2):228–233

    Article  PubMed  CAS  Google Scholar 

  59. Noonan EJ, Place RF, Pookot D, Basak S, Whitson JM, Hirata H et al (2009) miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene 28(14):1714–1724

    Article  PubMed  CAS  Google Scholar 

  60. Song B, Wang Y, Xi Y, Kudo K, Bruheim S, Botchkina GI et al (2009) Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene 28(46):4065–4074

    Article  PubMed  CAS  Google Scholar 

  61. Roccaro AM, Sacco A, Jia X, Azab AK, Maiso P, Ngo HT et al (2010) microRNA-dependent modulation of histone acetylation in Waldenstrom macroglobulinemia. Blood 116(9):1506–1514

    Article  PubMed  CAS  Google Scholar 

  62. Jeon HS, Lee SY, Lee EJ, Yun SC, Cha EJ, Choi E et al (2012) Combining microRNA-449a/b with a HDAC inhibitor has a synergistic effect on growth arrest in lung cancer. Lung Cancer 76(2):171–176

    Article  PubMed  Google Scholar 

  63. Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B et al (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322(5908):1695–1699

    Article  PubMed  CAS  Google Scholar 

  64. Friedman JM, Liang G, Liu CC, Wolff EM, Tsai YC, Ye W et al (2009) The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res 69(6):2623–2629

    Article  PubMed  CAS  Google Scholar 

  65. Smits M, Nilsson J, Mir SE, van der Stoop PM, Hulleman E, Niers JM et al (2010) miR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis. Oncotarget 1(8):710–720

    PubMed  Google Scholar 

  66. Wang HJ, Ruan HJ, He XJ, Ma YY, Jiang XT, Xia YJ et al (2010) MicroRNA-101 is down-regulated in gastric cancer and involved in cell migration and invasion. Eur J Cancer 46(12):2295–2303

    Article  PubMed  CAS  Google Scholar 

  67. Zhang JG, Guo JF, Liu DL, Liu Q, Wang JJ et al (2011) MicroRNA-101 exerts tumor-suppressive functions in non-small cell lung cancer through directly targeting enhancer of zeste homolog 2. J Thorac Oncol 6(4):671–678

    Article  PubMed  Google Scholar 

  68. Cao P, Deng Z, Wan M, Huang W, Cramer SD, Xu J et al (2010) MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1 alpha/HIF-1 beta. Mol Cancer 9:108. doi:http://dx.doi.org/10.1016/j.canlet.2012.12.006

    Google Scholar 

  69. Sander S, Bullinger L, Klapproth K, Fiedler K, Kestler HA, Barth TF et al (2008) MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 112(10):4202–4212

    Article  PubMed  CAS  Google Scholar 

  70. Juan AH, Kumar RM, Marx JG, Young RA, Sartorelli V et al (2009) Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol Cell 36(1):61–74

    Article  PubMed  CAS  Google Scholar 

  71. Alajez NM, Shi W, Hui AB, Bruce J, Lenarduzzi M, Ito E et al (2010) Enhancer of zeste homolog 2 (EZH2) is overexpressed in recurrent nasopharyngeal carcinoma and is regulated by miR-26a, miR-101, and miR-98. Cell Death Dis 1:e85. doi:10.1038/cddis.2010.64

    Article  PubMed  CAS  Google Scholar 

  72. Chiang CW, Huang Y, Leong KW, Chen LC, Chen HC, Chen SJ et al (2010) PKCalpha mediated induction of miR-101 in human hepatoma HepG2 cells. J Biomed Sci 17:35

    Article  PubMed  Google Scholar 

  73. Smits M, Mir SE, Nilsson RJ, van der Stoop PM, Niers JM, Marquez VE et al (2011) Down-regulation of miR-101 in endothelial cells promotes blood vessel formation through reduced repression of EZH2. PLoS One 6(1):e16282

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muller Fabbri MD, Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Challagundla, K.B., Wise, P., Fabbri, M. (2013). Role of MicroRNAs in Cancer Epigenetics. In: Sarkar, F. (eds) Epigenetics and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6612-9_2

Download citation

Publish with us

Policies and ethics