Skip to main content

Plant Polyphenols as Epigenetic Modulators of Glutathione S-Transferase P1 Activity

  • Chapter
  • First Online:
  • 1868 Accesses

Abstract

Glutathione S-transferase P1 (GSTP1) is an enzyme that catalyzes the conjugation of glutathione and thioester bond formation to a variety of electrophilic substances, engaged as a housekeeper in the detoxification of xenobiotics. GSTP1 is abundantly expressed in some mammalian tissues and has been shown to act as a modulator of signal transduction pathways controlling proliferation and cell death. Loss of GSTP1 in normal tissues incurs increased oxidative damage to cells, making them susceptible to neoplastic transformation. In contrast, its overexpression in tumor cells leads to the development of resistance to anticancer agents. Use of dietary polyphenols and synthetic compounds to induce GSTP1 is a potential strategy for cancer prevention in humans. This chapter presents the current body of knowledge regarding GSTP1 and its roles in carcinogenesis, and highlights the need for further investigation of its potential in chemoprevention.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

GSTs:

Glutathione S-transferases

GSH:

Reduced glutathione

PGA2:

Prostaglandin A2

GSTα or GSTA:

Glutathione S transferase alpha or A

GSTμ or GSTM:

Glutathione S transferase mu or M

GSTπ or GSTP:

Glutathione S-transferase pi or P

GSTσ or GSTS:

Glutathione S-transferase sigma or S

GSTθ or GSTT:

Glutathione S-transferase theta or T

GSTω (omega) or GSTO:

Glutathione S-transferase omega or O

GSTζ or GSTZ:

Glutathione S-transferase zeta

PPAR γ:

Peroxisome proliferators-activated receptors

GPE1:

GSTP enhancer-1

C/EBPα:

CCAAT enhancer-binding protein alpha

MOZ:

Monocyte leukemia zinc finger protein

Sp1:

Specificity Protein 1

NF-κB:

Nuclear Factor-κappaB transcription factors

AP1:

Activator Protein 1

H2O2 :

Hydrogen peroxide

TPA:

12-O-tradecanoylphorbol-13-acetate

TBQH:

Tert-butylhydro-quinone

TNF-α:

Tumor necrosis factor alpha

miRNA:

microRNA

DNMTs:

DNA (cytosine-5-)-methyltransferases

EZH2:

Enhancer of zeste homolog 2 (Drosophila)

HDAC-1:

Histone deacetylase 1

JNK:

c-Jun NH2-terminal kinase

TRAF2:

TNF receptor-associated factor 2

ASK1:

Apoptosis signal-regulating kinase 1

MBD:

Methyl-CpG-binding domain

8-OHdG:

8-oxo-2′-deoxogunosine

ROS:

Reactive oxygen species

MAPK Kinase:

MAP kinase kinase

MRP1:

Multidrug resistance proteins 1

MRP2:

Multidrug resistance proteins 2

HDACs:

Histone deacetylases

EC:

Epicatechin

EGC:

Epigallocatechin

ECG:

Epicatechin-3-gallate

EGCG:

Epigallocatechin-3-gallate

NDEA:

N-nitrosodiethylamine

PH:

partial hepatectomy

CCL4 :

Carbon tetrachloride

GTP:

Green tea polyphenols

SFN:

Sulforaphane

PEITC:

Phenethyl isothiocyanate

BITC:

Benzyl isothiocyanate

Nrf2:

Nuclear factor erythroid 2-related factor 2

PBITC:

4-phenylbutyl isothiocyanate

PHITC:

6-phenylhexyl isothiocyanate

NNK:

4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone

D3T:

3H-1,2-dithiole-3-thione

oltipraz:

5-[2-pyrazinyl]-4-methyl-1,2-dithiol-3-thione

ADT:

5-[4-methoxyphenyl]-1,2-dithiole-3-thione anethole dithiolethione

References

  1. Seidegard J, Ekstrom G (1997) The role of human glutathione transferases and epoxide hydrolases in the metabolism of xenobiotics. Environ Health Perspect 105:791–799

    PubMed  CAS  Google Scholar 

  2. Buetler TM, Eaton DL (1992) Glutathione S-transferases: amino acid sequence comparison, classification and phylogenetic relationship. Environ Carcinogen Ecotoxicol Rev C10:181–203

    Article  CAS  Google Scholar 

  3. Mannervik B, Danielson UH (1998) Glutathione transferases – structure and catalytic activity. CRC Crit Rev Biochem 23:283–337

    Article  Google Scholar 

  4. Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16

    Article  PubMed  CAS  Google Scholar 

  5. Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88

    Article  PubMed  CAS  Google Scholar 

  6. Boyer TD (1989) The glutathione S-transferases: an update. Hepatology 9:486–496

    Article  PubMed  CAS  Google Scholar 

  7. Ruzza P, Rosato A, Rossi CR, Floreani M, Quintieri L (2009) Glutathione transferases as targets for cancer therapy. Anticancer Agents Med Chem 9:763–777

    Article  PubMed  CAS  Google Scholar 

  8. Armstrong RN (1997) Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol 10:2–18

    Article  PubMed  CAS  Google Scholar 

  9. Kawamoto Y, Nakamura Y, Naito Y, Torii Y, Kumagai T, Osawa T, Ohigashi H, Satoh K, Imagawa M, Uchida K (2000) Cyclopentenone prostaglandins as potential inducers of phase II detoxification enzymes. 15-deoxy-delta(12,14)-prostaglandin j2-induced expression of glutathione S-transferases. J Biol Chem 275:11291–11299

    Article  PubMed  CAS  Google Scholar 

  10. Sánchez-Gómez FJ, Díez-Dacal B, Pajares MA, Llorca O, Pérez-Sala D (2010) Cyclopentenone prostaglandins with dienone structure promote cross-linking of the chemoresistance-inducing enzyme glutathione transferase P1-1. Mol Pharmacol 78:723–733

    Article  PubMed  CAS  Google Scholar 

  11. Nishihira J, Ishibashi T, Sakai M, Tsuda S, Hikichi K (1993) Identification of the hydrophobic ligand-binding region in recombinant glutathione S-transferase P and its binding effect on the conformational state of the enzyme. Arch Biochem Biophys 302:128–133

    Article  PubMed  CAS  Google Scholar 

  12. Nishihira J (1993) Identification and characterization of hydrophobic ligand binding region in glutathione S-transferase P. Hokkaido Igaku Zasshi 68:54–64

    PubMed  CAS  Google Scholar 

  13. Mannervik B, Alin P, Guthenberg C, Jensson H, Tahir MK, Warholm M, Jörnvall H (1985) Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci U S A 82:7202–7206

    Article  PubMed  CAS  Google Scholar 

  14. Meyer DJ, Coles B, Pemble SE, Gilmore KS, Fraser GM, Ketterer B (1991) Theta, a new class of glutathione transferases purified from rat and man. Biochem J 274:409–414

    PubMed  CAS  Google Scholar 

  15. Board PG, Baker RT, Chelvanayagam G, Jermiin LS (1997) Zeta, a novel class of glutathione transferases in a range of species from plants to humans. Biochem J 328:929–935

    PubMed  CAS  Google Scholar 

  16. Mannervik B, Awasthi YC, Board PG, Hayes JD, Di Ilio C, Ketterer B, Listowsky I, Morgenstern R, Muramatsu M, Pearson WR (1992) Nomenclature for human glutathione transferases. Biochem J 282:305–306

    PubMed  CAS  Google Scholar 

  17. Mannervik B, Board PG, Hayes JD, Listowsky I, Pearson WR (2005) Nomenclature for mammalian soluble glutathione transferases. Methods Enzymol 401:1–8

    Article  PubMed  CAS  Google Scholar 

  18. Guthenberg C, Warholm M, Rane A, Mannervik B (1986) Two distinct forms of glutathione transferase from human foetal liver. Purification and comparison with isoenzymes isolated from adult liver and placenta. Biochem J 235:741–745

    PubMed  CAS  Google Scholar 

  19. Strange RC, Davis BA, Faulder CG, Cotton W, Bain AD, Hopkinson DA, Hume R (1985) The human glutathione S-transferases: developmental aspects of the GST1, GST2, and GST3 loci. Biochem Genet 23:1011–1028

    Article  PubMed  CAS  Google Scholar 

  20. Faulder CG, Hirrell PA, Hume R, Strange RC (1987) Studies of the development of basic, neutral and acidic isoenzymes of glutathione S-transferase in human liver, adrenal, kidney and spleen. Biochem J 241:221–228

    PubMed  CAS  Google Scholar 

  21. Ruscoe JE, Rosario LA, Wang T, Gaté L, Arifoglu P, Wolf CR, Henderson CJ, Ronai Z, Tew KD (2001) Pharmacologic or genetic manipulation of glutathione S-transferase P1-1 (GSTpi) influences cell proliferation pathways. J Pharmacol Exp Ther 298:339–345

    PubMed  CAS  Google Scholar 

  22. Hu X, Xia H, Srivastava SK, Pal A, Awasthi YC, Zimniak P, Singh SV (1998) Catalytic efficiencies of allelic variants of human glutathione S-transferase P1-1 toward carcinogenic anti-diol epoxides of benzo[c]phenanthrene and benzo[g]chrysene. Cancer Res 58:5340–5343

    PubMed  CAS  Google Scholar 

  23. Tew KD, Townsend DM (2011) Regulatory functions of glutathione S-transferase P1-1 unrelated to detoxification. Drug Metab Rev 43:179–193

    Article  PubMed  CAS  Google Scholar 

  24. Di Ilio C, Aceto A, Bucciarelli T, Angelucci S, Felaco M, Grilli A, Zezza A, Tenaglia R, Federici G (1991) Glutathione transferase isoenzymes in normal and neoplastic human kidney tissue. Carcinogenesis 12:1471–1475

    Article  PubMed  Google Scholar 

  25. Schroer KT, Gibson AM, Sivaprasad U, Bass SA, Ericksen MB, Wills-Karp M, Lecras T, Fitzpatrick AM, Brown LA, Stringer KF, Hershey GK (2011) Downregulation of glutathione S-transferase pi in asthma contributes to enhanced oxidative stress. J Allergy Clin Immunol 128:539–548

    Article  PubMed  CAS  Google Scholar 

  26. Kuźma M, Jamrozik Z, Barańczyk-Kuźma A (2006) Activity and expression of glutathione S-transferase pi in patients with amyotrophic lateral sclerosis. Clin Chim Acta 364:217–221

    Article  PubMed  CAS  Google Scholar 

  27. Bohanec Grabar P, Logar D, Tomsic M, Rozman B, Dolzan V (2009) Genetic polymorphisms of glutathione S-transferases and disease activity of rheumatoid arthritis. Clin Exp Rheumatol 27:229–236

    PubMed  CAS  Google Scholar 

  28. Tew KD, Monks A, Barone L, Rosser D, Akerman G, Montali JA, Wheatley JB, Schmidt DE Jr (1996) Glutathione-associated enzymes in the human cell lines of the National Cancer Institute Drug Screening Program. Mol Pharmacol 50:149–159

    PubMed  CAS  Google Scholar 

  29. Bolufer P, Barragan E, Collado M, Cervera J, López JA, Sanz MA (2006) Influence of genetic polymorphisms on the risk of developing leukemia and on disease progression. Leuk Res 30:1471–1491

    Article  PubMed  CAS  Google Scholar 

  30. Kellen E, Hemelt M, Broberg K, Golka K, Kristensen VN, Hung RJ, Matullo G, Mittal RD, Porru S, Povey A, Schulz WA, Shen J, Buntinx F, Zeegers MP, Taioli E (2007) Pooled analysis and meta-analysis of the glutathione S-transferase P1 Ile 105Val polymorphism and bladder cancer: a HuGE-GSEC review. Am J Epidemiol 165:1221–1230

    Article  PubMed  Google Scholar 

  31. Hiyama T, Yoshihara M, Tanaka S, Chayama K (2007) Genetic polymorphisms and esophageal cancer risk. Int J Cancer 121:1643–1658

    Article  PubMed  CAS  Google Scholar 

  32. White DL, Li D, Nurgalieva Z, El-Serag HB (2008) Genetic variants of glutathione S-transferase as possible risk factors for hepatocellular carcinoma: a HuGE systematic review and meta-analysis. Am J Epidemiol 167:377–389

    Article  PubMed  Google Scholar 

  33. Katoh T, Yamano Y, Tsuji M, Watanabe M (2008) Genetic polymorphisms of human cytosol glutathione S-transferases and prostate cancer. Pharmacogenomics 9:93–104

    Article  PubMed  CAS  Google Scholar 

  34. Hiyama T, Yoshihara M, Tanaka S, Chayama K (2008) Genetic polymorphisms and head and neck cancer risk. Int J Oncol 32:945–973

    PubMed  CAS  Google Scholar 

  35. Josephy PD (2010) Genetic variations in human glutathione transferase enzymes: significance for pharmacology and toxicology. Hum Genomics Proteomics 2:876–940

    Google Scholar 

  36. Ishimoto TM, Ali-Osman F (2002) Allelic variants of the human glutathione S-transferase P1 gene confer differential cytoprotection against anticancer agents in Escherichia coli. Pharmacogenetics 12:543–553

    Article  PubMed  CAS  Google Scholar 

  37. Morrow CS, Chiu J, Cowan KH (1992) Posttranscriptional control of glutathione S-transferase pi gene expression in human breast cancer cells. J Biol Chem 267:10544–10550

    PubMed  CAS  Google Scholar 

  38. Wiener H (1986) Heterogeneity of dog-liver glutathione S-transferases. Evidence for a unique temperature dependence of the catalytic process. Eur J Biochem 157:351–363

    Article  PubMed  CAS  Google Scholar 

  39. Townsend DM, Manevich Y, He L, Hutchens S, Pazoles CJ, Tew KD (2009) Novel role for glutathione S-transferase pi. Regulator of protein S-Glutathionylation following oxidative and nitrosative stress. J Biol Chem 284:436–445

    Article  PubMed  CAS  Google Scholar 

  40. Shen H, Tsuchida S, Tamai K, Sato K (1993) Identification of cysteine residues involved in disulfide formation in the inactivation of glutathione transferase P-form by hydrogen peroxide. Arch Biochem Biophys 300:137–141

    Article  PubMed  CAS  Google Scholar 

  41. Morel F, Fardel O, Meyer DJ, Langouet S, Gilmore KS, Meunier B, Tu CP, Kensler TW, Ketterer B, Guillouzo A (1993) Preferential increase of glutathione S-transferase class alpha transcripts in cultured human hepatocytes by phenobarbital, 3-methylcholanthrene, and dithiolethiones. Cancer Res 53:231–234

    PubMed  CAS  Google Scholar 

  42. Knight TR, Choudhuri S, Klaassen CD (2008) Induction of hepatic glutathione S-transferases in male mice by prototypes of various classes of microsomal enzyme inducers. Toxicol Sci 106:329–338

    Article  PubMed  CAS  Google Scholar 

  43. Morrow CS, Cowan KH, Goldsmith ME (1989) Structure of the human genomic glutathione S-transferase-pi gene. Gene 75:3–11

    Article  PubMed  CAS  Google Scholar 

  44. Morceau F, Duvoix A, Delhalle S, Schnekenburger M, Dicato M, Diederich M (2004) Regulation of glutathione S-transferase P1-1 gene expression by NF-kappaB in tumor necrosis factor alpha-treated K562 leukemia cells. Biochem Pharmacol 67:1227–1238

    Article  PubMed  CAS  Google Scholar 

  45. Moffat GJ, McLaren AW, Wolf CR (1996) Sp1-mediated transcriptional activation of the human Pi class glutathione S-transferase promoter. J Biol Chem 271:1054–1060

    Article  PubMed  CAS  Google Scholar 

  46. Sakai M, Muramatsu M (2007) Regulation of glutathione transferase P: a tumor marker of hepatocarcinogenesis. Biochem Biophys Res Commun 357:575–578

    Article  PubMed  CAS  Google Scholar 

  47. Ikeda H, Omoteyama K, Yoshida K, Nishi S, Sakai M (2006) CCAAT enhancer-binding protein alpha suppresses the rat placental glutathione S-transferase gene in normal liver. J Biol Chem 81:6734–6741

    Article  CAS  Google Scholar 

  48. Ohta K, Ohigashi M, Naganawa A, Ikeda H, Sakai M, Nishikawa J, Imagawa M, Osada S, Nishihara T (2007) Histone acetyltransferase MOZ acts as a co-activator of Nrf2-MafK and induces tumour marker gene expression during hepatocarcinogenesis. Biochem J 402:559–566

    Article  PubMed  CAS  Google Scholar 

  49. Schnekenburger M, Morceau F, Henry E, Blasius R, Dicato M, Trentesaux C, Diederich M (2006) Transcriptional and post-transcriptional regulation of glutathione S-transferase P1 expression during butyric acid-induced differentiation of K562 cells. Leuk Res 30:561–568

    Article  PubMed  CAS  Google Scholar 

  50. Duvoix A, Schnekenburger M, Delhalle S, Blasius R, Borde-Chiché P, Morceau F, Dicato M, Diederich M (2004) Expression of glutathione S-transferase P1-1 in leukemic cells is regulated by inducible AP-1 binding. Cancer Lett 216:207–219

    Article  PubMed  CAS  Google Scholar 

  51. Duvoix A, Delhalle S, Blasius R, Schnekenburger M, Morceau F, Fougère M, Henry E, Galteau MM, Dicato M, Diederich M (2004) Effect of chemopreventive agents on glutathione S-transferase P1-1 gene expression mechanisms via activating protein 1 and nuclear factor kappaB inhibition. Biochem Pharmacol 68:1101–1111

    Article  PubMed  CAS  Google Scholar 

  52. Xia C, Taylor JB, Spencer SR, Ketterer B (1993) The human glutathione S-transferase P1-1 gene: modulation of expression by retinoic acid and insulin. Biochem J 292:845–850

    PubMed  CAS  Google Scholar 

  53. Kusano Y, Horie S, Morishita N, Shibata T, Uchida K (2012) Constitutive expression of an antioxidant enzyme, glutathione S-transferase P1, during differentiation of human intestinal Caco-2 cells. Free Radic Biol Med 53:347–356

    Article  PubMed  CAS  Google Scholar 

  54. Lo HW, Stephenson L, Cao X, Milas M, Pollock R, Ali-Osman F (2008) Identification and functional characterization of the human glutathione S-transferase P1 gene as a novel transcriptional target of the p53 tumor suppressor gene. Mol Cancer Res 6:843–850

    Article  PubMed  CAS  Google Scholar 

  55. Nakayama M, Gonzalgo ML, Yegnasubramanian S, Lin X, De Marzo AM, Nelson WG (2004) GSTP1 CpG island hypermethylation as a molecular biomarker for prostate cancer. J Cell Biochem 91:540–552

    Article  PubMed  CAS  Google Scholar 

  56. Harden SV, Guo Z, Epstein JI, Sidransky D (2003) Quantitative GSTP1 methylation clearly distinguishes benign prostatic tissue and limited prostate adenocarcinoma. J Urol 169:1138–1142

    Article  PubMed  CAS  Google Scholar 

  57. Jerónimo C, Varzim G, Henrique R, Oliveira J, Bento MJ, Silva C, Lopes C, Sidransky D (2002) I105V polymorphism and promoter methylation of the GSTP1 gene in prostate adenocarcinoma. Cancer Epidemiol Biomarkers Prev 11:445–450

    PubMed  Google Scholar 

  58. Meiers I, Shanks JH, Bostwick DG (2007) Glutathione S-transferase pi (GSTP1) hypermethylation in prostate cancer. Pathology 39:299–304

    Article  PubMed  CAS  Google Scholar 

  59. Millar DS, Ow KK, Paul CL, Russell PJ, Molloy PL (1999) Detailed methylation analysis of the glutathione S-transferase pi (GSTP1) gene in prostate cancer. Oncogene 18:1313–1324

    Article  PubMed  CAS  Google Scholar 

  60. Song JZ, Stirzaker C, Harrison J, Melki JR, Clark SJ (2002) Hypermethylation trigger of the glutathione-S-transferase gene (GSTP1) in prostate cancer cells. Oncogene 21:1048–1061

    Article  PubMed  CAS  Google Scholar 

  61. Viré E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, Bollen M, Esteller M, Di Croce L, de Launoit Y, Fuks F (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439:871–874

    Article  PubMed  CAS  Google Scholar 

  62. Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J, Eden E, Yakhini Z, Ben-Shushan E, Reubinoff BE, Bergman Y, Simon I, Cedar H (2007) Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39:232–236

    Article  PubMed  CAS  Google Scholar 

  63. Arzenani MK, Zade AE, Ming Y, Vijverberg SJ, Zhang Z, Khan Z, Sadique S, Kallenbach L, Hu L, Vukojević V, Ekström TJ (2011) Genomic DNA hypomethylation by histone deacetylase inhibition implicates DNMT1 nuclear dynamics. Mol Cell Biol 31:4119–4128

    Article  PubMed  CAS  Google Scholar 

  64. Li X, Kaplun A, Lonardo F, Heath E, Sarkar FH, Irish J, Sakr W, Sheng S (2011) HDAC1 inhibition by maspin abrogates epigenetic silencing of glutathione S-transferase pi in prostate carcinoma cells. Mol Cancer Res 9:733–745

    Article  PubMed  CAS  Google Scholar 

  65. Patron JP, Fendler A, Bild M, Jung U, Müller H, Arntzen MØ, Piso C, Stephan C, Thiede B, Mollenkopf HJ, Jung K, Kaufmann SH, Schreiber J (2012) MiR-133b targets antiapoptotic genes and enhances death receptor-induced apoptosis. PLoS One 7:e35345

    Article  PubMed  CAS  Google Scholar 

  66. Uchida Y, Chiyomaru T, Enokida H, Kawakami K, Tatarano S, Kawahara K, Nishiyama K, Seki N, Nakagawa M (2011) MiR-133a induces apoptosis through direct regulation of GSTP1 in bladder cancer cell lines. Urol Oncol 31(1):115–123

    PubMed  Google Scholar 

  67. Moriya Y, Nohata N, Kinoshita T, Mutallip M, Okamoto T, Yoshida S, Suzuki M, Yoshino I, Seki N (2012) Tumor suppressive microRNA-133a regulates novel molecular networks in lung squamous cell carcinoma. J Hum Genet 57:38–45

    Article  PubMed  CAS  Google Scholar 

  68. Mutallip M, Nohata N, Hanazawa T, Kikkawa N, Horiguchi S, Fujimura L, Kawakami K, Chiyomaru T, Enokida H, Nakagawa M, Okamoto Y, Seki N (2011) Glutathione S-transferase P1 (GSTP1) suppresses cell apoptosis and its regulation by miR-133α in head and neck squamous cell carcinoma (HNSCC). Int J Mol Med 27:345–352

    PubMed  CAS  Google Scholar 

  69. Wang T, Arifoglu P, Ronai Z, Tew KD (2001) Glutathione S-transferase P1-1 (GSTP1-1) inhibits c-Jun N-terminal kinase (JNK1) signaling through interaction with the C terminus. J Biol Chem 276:20999–21003

    Article  PubMed  CAS  Google Scholar 

  70. Adler V, Yin Z, Fuchs SY, Benezra M, Rosario L, Tew KD, Pincus MR, Sardana M, Henderson CJ, Wolf CR, Davis RJ, Ronai Z (1999) Regulation of JNK signaling by GSTp. EMBO J 18:1321–1334

    Article  PubMed  CAS  Google Scholar 

  71. Elsby R, Kitteringham NR, Goldring CE, Lovatt CA, Chamberlain M, Henderson CJ, Wolf CR, Park BK (2003) Increased constitutive c-Jun N-terminal kinase signaling in mice lacking glutathione S-transferase Pi. J Biol Chem 278:22243–22249

    Article  PubMed  CAS  Google Scholar 

  72. Wu Y, Fan Y, Xue B, Luo L, Shen J, Zhang S, Jiang Y, Yin Z (2006) Human glutathione S-transferase P1-1 interacts with TRAF2 and regulates TRAF2-ASK1 signals. Oncogene 25:5787–8800

    Article  PubMed  CAS  Google Scholar 

  73. Asakura T, Sasagawa A, Takeuchi H, Shibata S, Marushima H, Mamori S, Ohkawa K (2007) Conformational change in the active center region of GST P1-1, due to binding of a synthetic conjugate of DXR with GSH, enhanced JNK-mediated apoptosis. Apoptosis 12:1269–1280

    Article  PubMed  CAS  Google Scholar 

  74. Townsend DM, Tew KD (2003) The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 22:7369–7375

    Article  PubMed  CAS  Google Scholar 

  75. Joshi MB, Shirota Y, Danenberg KD, Conlon DH, Salonga DS, Herndon JE 2nd, Danenberg PV, Harpole DH Jr (2005) High gene expression of TS1, GSTP1, and ERCC1 are risk factors for survival in patients treated with trimodality therapy for esophageal cancer. Clin Cancer Res 11:2215–2221

    Article  PubMed  Google Scholar 

  76. Sau A, Filomeni G, Pezzola S, D’Aguanno S, Tregno FP, Urbani A, Serra M, Pasello M, Picci P, Federici G, Caccuri AM (2012) Targeting GSTP1-1 induces JNK activation and leads to apoptosis in cisplatin-sensitive and -resistant human osteosarcoma cell lines. Mol Biosyst 8:994–1006

    Article  PubMed  CAS  Google Scholar 

  77. Arai T, Miyoshi Y, Kim SJ, Akazawa K, Maruyama N, Taguchi T, Tamaki Y, Noguchi S (2008) Association of GSTP1 expression with resistance to docetaxel and paclitaxel in human breast cancers. Eur J Surg Oncol 34:734–738

    Article  PubMed  CAS  Google Scholar 

  78. Miyake T, Nakayama T, Naoi Y, Yamamoto N, Otani Y, Kim SJ, Shimazu K, Shimomura A, Maruyama N, Tamaki Y, Noguchi S (2012) GSTP1 expression predicts poor pathological complete response to neoadjuvant chemotherapy in ER-negative breast cancer. Cancer Sci 103:913–920

    Article  PubMed  CAS  Google Scholar 

  79. Henderson CJ, Smith AG, Ure J, Brown K, Bacon EJ, Wolf CR (1998) Increased skin tumorigenesis in mice lacking pi class glutathione S-transferases. Proc Natl Acad Sci U S A 95:5275–5280

    Article  PubMed  CAS  Google Scholar 

  80. Ritchie KJ, Walsh S, Sansom OJ, Henderson CJ, Wolf CR (2009) Markedly enhanced colon tumorigenesis in Apc(Min) mice lacking glutathione S-transferase Pi. Proc Natl Acad Sci U S A 106:20859–20864

    Article  PubMed  CAS  Google Scholar 

  81. Kobayashi Y (1999) A study on diagnosis of oral squamous cell carcinoma (oral SCC) by glutathione-S-transferase-pi(GSTP-pi). J Stomat Soc Jpn 66:46–56

    Article  CAS  Google Scholar 

  82. Ali-Osman F, Brunner JM, Kutluk TM, Hess K (1997) Prognostic significance of glutathione S-transferase π expression and subcellular localization in human gliomas. Clin Cancer Res 3:2253–2261

    PubMed  CAS  Google Scholar 

  83. Kamada K, Goto S, Okunaga T, Ihara Y, Tsuji K, Kawai Y, Uchida K, Osawa T, Matsuo T, Nagata I, Kondo T (2004) Nuclear glutathione S-transferase pi prevents apoptosis by reducing the oxidative stress-induced formation of exocyclic DNA products. Free Radic Biol Med 37:1875–1884

    Article  PubMed  CAS  Google Scholar 

  84. Goto S, Kamada K, Soh Y, Ihara Y, Kondo T (2002) Significance of nuclear glutathione S-transferase pi in resistance to anti-cancer drugs. Jpn J Cancer Res 93:1047–1056

    Article  PubMed  CAS  Google Scholar 

  85. Raza H (2011) Dual localization of glutathione S-transferase in the cytosol and mitochondria: implications in oxidative stress, toxicity and disease. FEBS J 278:4243–4251

    Article  PubMed  CAS  Google Scholar 

  86. Majumdar S, Buckles E, Estrada J, Koochekpour S (2011) Aberrant DNA methylation and prostate cancer. Curr Genomics 12:486–505

    Article  PubMed  CAS  Google Scholar 

  87. Lin X, Tascilar M, Lee WH, Vles WJ, Lee BH, Veeraswamy R, Asgari K, Freije D, van Rees B, Gage WR, Bova GS, Isaacs WB, Brooks JD, DeWeese TL, De Marzo AM, Nelson WG (2001) GSTP1 CpG island hypermethylation is responsible for the absence of GSTP1 expression in human prostate cancer cells. Am J Pathol 159:1815–1826

    Article  PubMed  CAS  Google Scholar 

  88. Lin X, Nelson WG (2003) Methyl-CpG-binding domain protein-2 mediates transcriptional repression associated with hypermethylated GSTP1 CpG islands in MCF-7 breast cancer cells. Cancer Res 63:498–504

    PubMed  CAS  Google Scholar 

  89. Nelson CP, Kidd LC, Sauvageot J, Isaacs WB, De Marzo AM, Groopman JD, Nelson WG, Kensler TW (2001) Protection against 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine cytotoxicity and DNA adduct formation in human prostate by glutathione S-transferase P1. Cancer Res 61:103–109

    PubMed  CAS  Google Scholar 

  90. Kanwal R, Pandey M, Bhaskaran N, Maclennan GT, Fu P, Ponsky LE, Gupta S. Mol Carcinog, 25 July 2012. doi:10.1002/mc.21939. [Epub ahead of print] PMID: 22833520

  91. Nakazato H, Suzuki K, Matsui H, Koike H, Okugi H, Ohtake N, Takei T, Nakata S, Hasumi M, Ito K, Kurokawa K, Yamanaka H (2003) Association of genetic polymorphisms of glutathione-S-transferase genes (GSTM1, GSTT1 and GSTP1) with familial prostate cancer risk in a Japanese population. Anticancer Res 23:2897–2902

    PubMed  CAS  Google Scholar 

  92. Tew KD, Manevich Y, Grek C, Xiong Y, Uys J, Townsend DM (2011) The role of glutathione S-transferase P in signaling pathways and S-glutathionylation in cancer. Free Radic Biol Med 51:299–313

    Article  PubMed  CAS  Google Scholar 

  93. Nelson WG, De Marzo AM, DeWeese TL (2001) The molecular pathogenesis of prostate cancer: Implications for prostate cancer prevention. Urology 57:39–45

    Article  PubMed  CAS  Google Scholar 

  94. Turella P, Cerella C, Filomeni G, Bullo A, De Maria F, Ghibelli L, Ciriolo MR, Cianfriglia M, Mattei M, Federici G, Ricci G, Caccuri AM (2005) Proapoptotic activity of new glutathione S-transferase inhibitors. Cancer Res 65:3751–3761

    Article  PubMed  CAS  Google Scholar 

  95. Leslie EM, Haimeur A, Waalkes MP (2004) Arsenic transport by the human multidrug resistance protein 1 (MRP1/ABCC1). Evidence that a tri-glutathione conjugate is required. J Biol Chem 279:32700–32708

    Article  PubMed  CAS  Google Scholar 

  96. Huang G, Mills L, Worth LL (2007) Expression of human glutathione S-transferase P1 mediates the chemosensitivity of osteosarcoma cells. Mol Cancer Ther 6:1610–1619

    Article  PubMed  CAS  Google Scholar 

  97. Gyamfi MA, Ohtani II, Shinno E, Aniya Y (2004) Inhibition of glutathione S-transferases by thonningianin A, isolated from the African medicinal herb, Thonningia sanguinea, in vitro. Food Chem Toxicol 42:1401–1408

    Article  PubMed  CAS  Google Scholar 

  98. Benz CC, Keniry MA, Ford JM, Townsend AJ, Cox FW, Palayoor S, Matlin SA, Hait WN, Cowan KH (1990) Biochemical correlates of the antitumor and antimitochondrial properties of gossypol enantiomers. Mol Pharmacol 37:840–847

    PubMed  CAS  Google Scholar 

  99. van Zanden JJ, Ben Hamman O, van Iersel ML, Boeren S, Cnubben NH, Lo Bello M, Vervoort J, van Bladeren PJ, Rietjens IM (2003) Inhibition of human glutathione S-transferase P1-1 by the flavonoid quercetin. Chem Biol Interact 145:139–148

    Article  PubMed  CAS  Google Scholar 

  100. Kristensen LS, Nielsen HM, Hansen LL (2009) Epigenetics and cancer treatment. Eur J Pharmacol 625:131–142

    Article  PubMed  CAS  Google Scholar 

  101. Russo M, Spagnuolo C, Tedesco I, Russo GL (2010) Phytochemicals in cancer prevention and therapy: truth or dare? Toxins 2:517–551

    Article  PubMed  CAS  Google Scholar 

  102. Martin KR, Appel CL (2010) Polyphenols as dietary supplements: a double-edged sword. Nutr Dietary Suppl 2:1–12

    CAS  Google Scholar 

  103. Ross JA, Kasum CM (2002) DIETARY FLAVONOIDS: bioavailability, metabolic effects, and safety. Annu Rev Nutr 22:19–34

    Article  PubMed  CAS  Google Scholar 

  104. Shukla Y (2007) Tea and cancer chemoprevention: a comprehensive review. Asian Pacific J Cancer Prev 8:155–166

    Google Scholar 

  105. Araújo JR, Gonçalves P, Martel F (2011) Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines. Nutr Res 31:77–87

    Article  PubMed  CAS  Google Scholar 

  106. Gong Y, Han C, Chen J (2000) Effect of tea polyphenols and tea pigments on the inhibition of precancerous liver lesions in rats. Nutr Cancer 38:81–86

    Article  PubMed  CAS  Google Scholar 

  107. Chen C, Yu R, Owuor ED, Kong AN (2000) Activation of antioxidant-response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death. Arch Pharm Res 23:605–612

    Article  PubMed  CAS  Google Scholar 

  108. Pandey M, Shukla S, Gupta S (2010) Promoter demethylation and chromatin remodeling by green tea polyphenols leads to re-expression of GSTP1 in human prostate cancer cells. Int J Cancer 126:2520–2533

    PubMed  CAS  Google Scholar 

  109. Lin D, Xiao Y, Tan W (1998) Chemoprotection by green tea against the formation of food-borne carcinogen 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP)-DNA adducts in rats. Zhonghua Yu Fang Yi Xue Za Zhi 32:261–264

    PubMed  CAS  Google Scholar 

  110. Chow HH, Hakim IA, Vining DR, Crowell JA, Tome ME, Ranger-Moore J, Cordova CA, Mikhael DM, Briehl MM, Alberts DS (2007) Modulation of human glutathione s-transferases by polyphenon e intervention. Cancer Epidemiol Biomarkers Prev 16:1662–1666

    Article  PubMed  CAS  Google Scholar 

  111. Stoewsand GS (1995) Bioactive organosulfur phytochemicals in Brassica oleracea vegetables – a review. Food Chem Toxicol 33:537–543

    Article  PubMed  CAS  Google Scholar 

  112. Brooks JD, Paton VG, Vidanes G (2001) Potent induction of phase 2 enzymes in human prostate cells by sulforaphane. Cancer Epidemiol Biomarkers Prev 10:949–954

    PubMed  CAS  Google Scholar 

  113. Wang LG, Beklemisheva A, Liu XM, Ferrari AC, Feng J, Chiao JW (2007) Dual action on promoter demethylation and chromatin by an isothiocyanate restored GSTP1 silenced in prostate cancer. Mol Carcinog 46:24–31

    Article  PubMed  CAS  Google Scholar 

  114. Sibhatu MB, Smitherman PK, Townsend AJ, Morrow CS (2008) Expression of MRP1 and GSTP1-1 modulate the acute cellular response to treatment with the chemopreventive isothiocyanate, sulforaphane. Carcinogenesis 29:807–815

    Article  PubMed  CAS  Google Scholar 

  115. Zhang Y, Talalay P, Cho CG, Posner GH (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci U S A 89:2399–2403

    Article  PubMed  CAS  Google Scholar 

  116. Guo Z, Smith TJ, Wang E, Eklind KI, Chung FL, Yang CS (1993) Structure-activity relationships of arylalkyl isothiocyanates for the inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone metabolism and the modulation of xenobiotic-metabolizing enzymes in rats and mice. Carcinogenesis 14:1167–1173

    Article  PubMed  CAS  Google Scholar 

  117. Nakamura Y, Ohigashi H, Masuda S, Murakami A, Morimitsu Y, Kawamoto Y, Osawa T, Imagawa M, Uchida K (2000) Redox regulation of glutathione S-transferase induction by benzyl isothiocyanate: correlation of enzyme induction with the formation of reactive oxygen intermediates. Cancer Res 60:219–225

    PubMed  CAS  Google Scholar 

  118. Lee SA, Fowke JH, Lu W, Ye C, Zheng Y, Cai Q, Gu K, Gao YT, Shu XO, Zheng W (2008) Cruciferous vegetables, the GSTP1 Ile105Val genetic polymorphism, and breast cancer risk. Am J Clin Nutr 87:753–760

    PubMed  CAS  Google Scholar 

  119. Powolny AA, Bommareddy A, Hahm ER, Normolle DP, Beumer JH, Nelson JB, Singh SV (2011) Chemopreventative potential of the cruciferous vegetable constituent phenethyl isothiocyanate in a mouse model of prostate cancer. J Natl Cancer Inst 103:571–584

    Article  PubMed  CAS  Google Scholar 

  120. Roebuck BD, Curphey TJ, Li Y, Baumgartner KJ, Bodreddigari S, Yan J, Gange SJ, Kensler TW, Sutter TR (2003) Evaluation of the cancer chemopreventive potency of dithiolethione analogs of oltipraz. Carcinogenesis 24:1919–1928

    Article  PubMed  CAS  Google Scholar 

  121. Munday R, Munday CM (2004) Induction of phase II enzymes by 3H-1,2-dithiole-3-thione: dose-response study in rats. Carcinogenesis 25:1721–1725

    Article  PubMed  CAS  Google Scholar 

  122. Munday R, Zhang Y, Munday CM, Li J (2006) Structure-activity relationships in the induction of Phase II enzymes by derivatives of 3H-1,2-dithiole-3-thione in rats. Chem Biol Interact 160:115–122

    Article  PubMed  CAS  Google Scholar 

  123. Piper JT, Singhal SS, Salameh MS, Torman RT, Awasthi YC, Awasthi S (1998) Mechanisms of anticarcinogenic properties of curcumin: the effect of curcumin on glutathione linked detoxification enzymes in rat liver. Int J Biochem Cell Biol 30:445–456

    Article  PubMed  CAS  Google Scholar 

  124. van Iersel ML, Ploemen JP, Lo Bello M, Federici G, van Bladeren PJ (1997) Interactions of alpha, beta-unsaturated aldehydes and ketones with human glutathione S-transferase P1-1. Chem Biol Interact 108:67–78

    Article  PubMed  Google Scholar 

  125. Sharma RA, Gescher AJ, Steward WP (2005) Curcumin: the story so far. Eur J Cancer 41:1955–1968

    Article  PubMed  CAS  Google Scholar 

  126. Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, Shen TS, Ko JY, Lin JT, Lin BR, Ming-Shiang W, Yu HS, Jee SH, Chen GS, Chen TM, Chen CA, Lai MK, Pu YS, Pan MH, Wang YJ, Tsai CC, Hsieh CY (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21:2895–2900

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The original work from author’s laboratory outlined in this review was supported by United States Public Health Service Grants RO1CA108512, RO1CA115491 and RO1AT002709. We apologize to those investigators whose original work could not be cited owing to the space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Gupta Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Thakur, V.S., Gupta, S. (2013). Plant Polyphenols as Epigenetic Modulators of Glutathione S-Transferase P1 Activity. In: Sarkar, F. (eds) Epigenetics and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6612-9_13

Download citation

Publish with us

Policies and ethics