Skip to main content

Exploiting Epigenetic Modifiers to Circumvent Melanoma Dual Resistance to TCR-Engineered Immunotherapy- and BRAFV600E-Kinase Inhibitor

  • Chapter
  • First Online:
Epigenetics and Cancer
  • 1842 Accesses

Abstract

The discovery of activating BRAFV600E mutation in vast majority of melanoma patients has paved the way for novel drug discovery. Targeted therapy using selective BRAFV600E inhibitor Vemurafenib (PLX4032) and adoptive cell therapy (ACT) using MART-1 T-cell receptor (TCR)-engineered T lymphocytes (F5 CTL) both produce dramatic, but transient, clinical responses in most patients with metastatic melanoma. Adoption of bypass survival signaling pathways (e.g., AKT) and aberrant apoptotic machinery may confer resistance to death signals delivered by Vemurafenib and transgenic CTLs. We have established an in vitro model of resistant (R) lines from F5 CTL- and Vemurafenib-sensitive lines harboring BRAFV600E under selective pressure. Interestingly, PLX-resistant tumors, while surviving high PLX4032 concentrations, develop cross-resistance to F5 CTL-killing, suggesting the use of a common apoptotic pathway by both modalities. Preliminary experiments suggest that the acquired resistance can be reversed with the histone deacetylase inhibitor (HDACi) SAHA, possibly through modulation of the expression profile of apoptotic genes. Future studies are warranted to identify the bypass signaling pathways and the molecular determinants responsible for immune- and PLX-resistance. Moreover, the exact underlying molecular mechanisms of SAHA-mediated immunosensitization need to be defined. However, these and other studies suggest that the addition of an HDACi to BRAFV600E-based targeted therapy will immuno-sensitize PLX-resistant metastatic melanomas to F5 CTL ACT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avery OT, MacLeod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J Exp Med 79:137–158

    Article  PubMed  CAS  Google Scholar 

  2. Watson JD, Crick FHC (1953) A structure of deoxyribose nucleic acid. Nature 171:737–738

    Article  PubMed  CAS  Google Scholar 

  3. Galm O, Herman JG, Baylin SB (2006) The fundamental role of epigenetics in hematopoietic malignancies. Blood Rev 20:1–13

    Article  PubMed  CAS  Google Scholar 

  4. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074

    Article  PubMed  CAS  Google Scholar 

  5. Grewal SI, Moazed D (2003) Heterochromatin and epigenetic control of gene expression. Science 301:798–802

    Article  PubMed  CAS  Google Scholar 

  6. Lodish H, Berk A, Zipursky LS, Matsudaira P, Baltimore D, Darnell J (2000) Molecular cell biology, 4th edn. WH Feeman, New York, pp 320–324

    Google Scholar 

  7. Emanuele S, Lauricella M, Tesoriere G (2008) Histone deacetylase inhibitors: apoptotic effects and clinical implications (Review). Int J Oncol 33:637–638

    PubMed  CAS  Google Scholar 

  8. Kurdistani SK (2007) Histone modifications as markers of cancer prognosis: a cellular view. Br J Cancer 97:1–5

    Article  PubMed  CAS  Google Scholar 

  9. Carew JS, Nawrocki ST, Kahue CN, Zhang H, Yang C, Chung L et al (2007) Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 110:313–322

    Article  PubMed  CAS  Google Scholar 

  10. Walkinshaw DR, Yang XJ (2008) Histone deacetylase inhibitors as novel anticancer therapeutics. Curr Oncol 15:1–11

    Google Scholar 

  11. Kuendgen A, Lubbert M (2008) Current status of epigenetic treatment in myelodysplastic syndromes. Ann Hematol 87:601–611

    Article  PubMed  CAS  Google Scholar 

  12. Jazirehi AR (2010) Regulation of apoptosis-associated genes by histone deacetylase inhibitors (HDACi): implications in cancer therapy. Anticancer Drugs 21:805–813

    Article  PubMed  CAS  Google Scholar 

  13. Sangeetha SR, Singh N, Vender JR, Dhandapani KM (2009) Suberoylanilide hydroxamic acid (SAHA) induces growth arrest and apoptosis in pituitary adenoma cells. Endocrine 35:389–396

    Article  PubMed  CAS  Google Scholar 

  14. Heider U, von Metzler I, Kaiser M, Rosche M, Sterz J, Rötzer S et al (2008) Synergistic interaction of the histone deacetylase inhibitor SAHA with the proteasome inhibitor bortezomib in mantle cell lymphoma. Eur J Haematol 80:133–142

    Article  PubMed  CAS  Google Scholar 

  15. Agar N, Young AR (2005) Melanogenesis: a photoprotective response to DNA damage? Mutat Res 571:121–132

    Article  PubMed  CAS  Google Scholar 

  16. Boissy RE, Nordlund JJ (1997) Molecular bases of congenital hypopigmentary disorders in humans: a review. Pigment Cell Res 10:12–24

    Article  PubMed  CAS  Google Scholar 

  17. Robinson JK, Baker MK, Hillhouse JJ (2012) New approaches to melanoma prevention. Dermatol Clin 30:405–412

    Google Scholar 

  18. Jemal A, Thomas A, Murray T, Thun M (2002) Cancer statistics 2002. CA Cancer J Clin 52:23–47

    Article  PubMed  Google Scholar 

  19. Lang J, Boxer M, MacKie R (2003) Absence of exon 15 BRAF germline mutations in familial melanoma. Hum Mutat 21:327–330

    Article  PubMed  CAS  Google Scholar 

  20. Megahed M, Schon M, Selimovic D, Schon MP (2002) Reliability of diagnosis of melanoma in situ. Lancet 359:1921–1922

    Article  PubMed  Google Scholar 

  21. Gray-Schopfer VC, Karasarides M, Hayward R, Marais R (2007) Tumor necrosis factor-α blocks apoptosis in melanoma cells when BRAF signaling is inhibited. Cancer Res 67:122–129

    Article  PubMed  CAS  Google Scholar 

  22. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915

    Article  PubMed  CAS  Google Scholar 

  23. Ribas A (2006) Update on immunotherapy for melanoma. J Natl Comp Cancer Netw 4:687–694

    CAS  Google Scholar 

  24. Kirkwood J (2002) Cancer immunotherapy: the interferon-alpha experience. Semin Oncol 29:18–26

    Article  PubMed  CAS  Google Scholar 

  25. Kammula US, White DE, Rosenberg SA (1998) Trends in the safety high dose bolus interleukin-2 administration in patients with metastatic cancer. Cancer 83:797–805

    Article  PubMed  CAS  Google Scholar 

  26. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al (2009) (V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci U S A 106:4519–4524

    Article  Google Scholar 

  27. Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H et al (2010) Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467:596–599

    Article  PubMed  CAS  Google Scholar 

  28. Boni A, Cogdill AP, Dang P, Udayakumar D, Njauw CN, Sloss CM et al (2010) Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res 70:5213–5219

    Article  PubMed  CAS  Google Scholar 

  29. Smalley KS, Flaherty KT (2009) Integrating BRAF/MEK inhibitors into combination therapy for melanoma. Br J Cancer 100:431–435

    Article  PubMed  CAS  Google Scholar 

  30. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–977

    Article  PubMed  CAS  Google Scholar 

  31. Friedlander P, Hodi FS (2010) Advances in targeted therapy for melanoma. Clin Adv Hematol Oncol 8:619–627

    PubMed  Google Scholar 

  32. Joseph RW, Peddareddigari VR, Liu P, Miller PW, Overwijk WW, Bekele NB et al (2011) Impact of clinical and pathologic features on tumor-infiltrating lymphocyte expansion from surgically excised melanoma metastases for adoptive T-cell therapy. Clin Cancer Res 17:4882–4891

    Article  PubMed  CAS  Google Scholar 

  33. Sheridan C, Brumatti G, Martin SJ (2008) Oncogenic B-RafV600E inhibits apoptosis and promotes ERK-dependent inactivation of Bad and Bim. J Biol Chem 283:22128–22135

    Article  PubMed  CAS  Google Scholar 

  34. Stegmeier F, Warmuth M, Sellers WR, Dorsch M (2010) Targeted cancer therapies in the twenty-first century: lessons from imatinib. Clin Pharmacol Ther 87:543–552

    Article  PubMed  CAS  Google Scholar 

  35. Yadav V, Zhang X, Liu J, Estrem S, Li S, Gong XQ et al (2012) Reactivation of mitogen-activated protein kinase (MAPK) pathway by FGF receptor 3 (FGFR3)/Ras mediates resistance to vemurafenib in human B-RAF V600E mutant melanoma. J Biol Chem 287:28087–28098

    Article  PubMed  CAS  Google Scholar 

  36. Howell PM Jr, Liu S, Ren S, Behlen C, Fodstad O, Riker AI (2009) Epigenetics in human melanoma. Cancer Control 16:200–218

    PubMed  Google Scholar 

  37. Ren S, Liu S, Howell P Jr, Xi Y, Enkemann SA, Ju J, Riker AI (2008) The impact of genomics in understanding human melanoma progression and metastasis. Cancer Control 15:202–215

    PubMed  Google Scholar 

  38. Rothhammer T, Bosserhoff AK (2007) Epigenetic events in malignant melanoma. Pigment Cell Res 20:92–111

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Center for Research Resources and the National Cancer Institute (NCI) of the National Institutes of Health through Grant Number NIH1R21CA149938-01A1. This work is dedicated to Dawn Holland for unwavering support and to the loving memory of Mori Forouzandeh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali R. Jazirehi CLS, Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jazirehi, A.R. (2013). Exploiting Epigenetic Modifiers to Circumvent Melanoma Dual Resistance to TCR-Engineered Immunotherapy- and BRAFV600E-Kinase Inhibitor. In: Sarkar, F. (eds) Epigenetics and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6612-9_11

Download citation

Publish with us

Policies and ethics