Skip to main content

Epigenetic Signatures of Breast Cancer Genes

  • Chapter
  • First Online:
Epigenetics and Cancer

Abstract

Breast cancer is a leading malignancy among women with higher western countries, suggesting significant role for environmental factors in developing breast cancer. Recently, epigenetic modifications such as aberrant methylation and acetylation of genes and histones have been shown to play a critical role in breast cancer development. There are several articles published in the recent years with the major epigenetic signatures of breast cancer genes. Therefore compiling these information could lead to a greater understanding of the development of breast cancer and novel approaches for chemoprevention. Here we have provided different modes of epigenetic regulation including DNA methylation, histone modification, polycomb group of proteins, and non-coding RNAs. In addition, we have provided information on chemotherapeutic drugs that act through regulation of epigenetics and have progressed to clinical trials. Most importantly, we have analyzed the epigenetic regulation in the chemotherapy resistant breast cancer stem cell population. Furthermore, the epigenetic regulatory mechanisms of various breast cancer related genes are discussed in detail. Taken together, in this review we have discussed the current understanding of the modes of epigenetic regulation, and the epigenetic signatures seen in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sikora MJ, Jankowitz RC, Dabbs DJ, Oesterreich S (2012) Invasive lobular carcinoma of the breast: patient response to systemic endocrine therapy and hormone response in model systems. Steroids pii: S0039-128X(12):00302–00309

    Google Scholar 

  2. Krontiras H, Bramlett R, Umphrey H (2013) How do I screen patients for breast cancer? Curr Treat Options Oncol 14(1):88–96

    Article  PubMed  Google Scholar 

  3. Holliday R (2006) Epigenetics: a historical overview. Epigenetics 1:76–80

    Article  PubMed  Google Scholar 

  4. Zovkic IB, Sweatt JD (2013) Epigenetic mechanisms in learned fear: implications for PTSD. Neuropsychopharmacology 38:77–93

    Article  PubMed  CAS  Google Scholar 

  5. Sager R, Kitchin R (1975) Selective silencing of eukaryotic DNA. Science 189:426–433

    Article  PubMed  CAS  Google Scholar 

  6. Chandler LA, DeClerck YA, Bogenmann E, Jones PA (1986) Patterns of DNA methylation and gene expression in human tumor cell lines. Cancer Res 46:2944–2949

    PubMed  CAS  Google Scholar 

  7. Wakim BT, Aswad GD (1994) Ca(2+)-calmodulin-dependent phosphorylation of arginine in histone 3 by a nuclear kinase from mouse leukemia cells. J Biol Chem 269:2722–2727

    PubMed  CAS  Google Scholar 

  8. Nystrom M, Mutanen M (2009) Diet and epigenetics in colon cancer. World J Gastroenterol 15:257–263

    Article  PubMed  CAS  Google Scholar 

  9. Mense SM, Hei TK, Ganju RK, Bhat HK (2008) Phytoestrogens and breast cancer prevention: possible mechanisms of action. Environ Health Perspect 116:426–433

    Article  PubMed  CAS  Google Scholar 

  10. Gavery MR, Roberts SB (2010) DNA methylation patterns provide insight into epigenetic regulation in the Pacific oyster (Crassostrea gigas). BMC Genomics 11:483

    Article  PubMed  CAS  Google Scholar 

  11. Takai D, Jones PA (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A 99:3740–3745

    Article  PubMed  CAS  Google Scholar 

  12. Laird PW (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3:253–266

    Article  PubMed  CAS  Google Scholar 

  13. Antequera F, Bird A (1999) CpG islands as genomic footprints of promoters that are associated with replication origins. Curr Biol 9:R661–R667

    Article  PubMed  CAS  Google Scholar 

  14. Bestor T, Laudano A, Mattaliano R, Ingram V (1988) Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol 203:971–983

    Article  PubMed  CAS  Google Scholar 

  15. Athanasiadou R, de Sousa D, Myant K, Merusi C, Stancheva I et al (2010) Targeting of de novo DNA methylation throughout the Oct-4 gene regulatory region in differentiating embryonic stem cells. PLoS One 5:e9937

    Article  PubMed  CAS  Google Scholar 

  16. Howe LR, Brown AM (2004) Wnt signaling and breast cancer. Cancer Biol Ther 3:36–41

    Article  PubMed  CAS  Google Scholar 

  17. Kawano Y, Kypta R (2003) Secreted antagonists of the Wnt signalling pathway. J Cell Sci 116:2627–2634

    Article  PubMed  CAS  Google Scholar 

  18. Bovolenta P, Esteve P, Ruiz JM, Cisneros E, Lopez-Rios J (2008) Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J Cell Sci 121:737–746

    Article  PubMed  CAS  Google Scholar 

  19. Veeck J, Noetzel E, Bektas N, Jost E, Hartmann A et al (2008) Promoter hypermethylation of the SFRP2 gene is a high-frequent alteration and tumor-specific epigenetic marker in human breast cancer. Mol Cancer 7:83

    Article  PubMed  Google Scholar 

  20. Veeck J, Niederacher D, An H, Klopocki E, Wiesmann F et al (2006) Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer is associated with unfavourable prognosis. Oncogene 25:3479–3488

    Article  PubMed  CAS  Google Scholar 

  21. Veeck J, Geisler C, Noetzel E, Alkaya S, Hartmann A et al (2008) Epigenetic inactivation of the secreted frizzled-related protein-5 (SFRP5) gene in human breast cancer is associated with unfavorable prognosis. Carcinogenesis 29:991–998

    Article  PubMed  CAS  Google Scholar 

  22. Nilsson S, Makela S, Treuter E, Tujague M, Thomsen J et al (2001) Mechanisms of estrogen action. Physiol Rev 81:1535–1565

    PubMed  CAS  Google Scholar 

  23. Goulart AC, Zee RY, Pradhan A, Rexrode KM (2009) Associations of the estrogen receptors 1 and 2 gene polymorphisms with the metabolic syndrome in women. Metab Syndr Relat Disord 7:111–117

    Article  PubMed  CAS  Google Scholar 

  24. Mann M, Cortez V, Vadlamudi RK (2011) Epigenetics of estrogen receptor signaling: role in hormonal cancer progression and therapy. Cancers (Basel) 3:1691–1707

    Article  CAS  Google Scholar 

  25. Bandyopadhyay A, Wang L, Chin SH, Sun LZ (2007) Inhibition of skeletal metastasis by ectopic ERalpha expression in ERalpha-negative human breast cancer cell lines. Neoplasia 9:113–118

    Article  PubMed  CAS  Google Scholar 

  26. Ottaviano YL, Issa JP, Parl FF, Smith HS, Baylin SB et al (1994) Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res 54:2552–2555

    PubMed  CAS  Google Scholar 

  27. Melki JR, Vincent PC, Clark SJ (1999) Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer Res 59:3730–3740

    PubMed  CAS  Google Scholar 

  28. Yang X, Yan L, Davidson NE (2001) DNA methylation in breast cancer. Endocr Relat Cancer 8:115–127

    Article  PubMed  CAS  Google Scholar 

  29. Ferguson AT, Vertino PM, Spitzner JR, Baylin SB, Muller MT et al (1997) Role of estrogen receptor gene demethylation and DNA methyltransferase. DNA adduct formation in 5-aza-2′deoxycytidine-induced cytotoxicity in human breast cancer cells. J Biol Chem 272:32260–32266

    Article  PubMed  CAS  Google Scholar 

  30. Picard E, Seguin C, Monhoven N, Rochette-Egly C, Siat J et al (1999) Expression of retinoid receptor genes and proteins in non-small-cell lung cancer. J Natl Cancer Inst 91:1059–1066

    Article  PubMed  CAS  Google Scholar 

  31. Guleria RS, Choudhary R, Tanaka T, Baker KM, Pan J (2011) Retinoic acid receptor-mediated signaling protects cardiomyocytes from hyperglycemia induced apoptosis: role of the renin-angiotensin system. J Cell Physiol 226:1292–1307

    Article  PubMed  CAS  Google Scholar 

  32. Yang Q, Mori I, Shan L, Nakamura M, Nakamura Y et al (2001) Biallelic inactivation of retinoic acid receptor beta2 gene by epigenetic change in breast cancer. Am J Pathol 158:299–303

    Article  PubMed  CAS  Google Scholar 

  33. Bean GR, Scott V, Yee L, Ratliff-Daniel B, Troch MM et al (2005) Retinoic acid receptor-beta2 promoter methylation in random periareolar fine needle aspiration. Cancer Epidemiol Biomarkers Prev 14:790–798

    Article  PubMed  CAS  Google Scholar 

  34. Widschwendter M, Berger J, Hermann M, Muller HM, Amberger A et al (2000) Methylation and silencing of the retinoic acid receptor-beta2 gene in breast cancer. J Natl Cancer Inst 92:826–832

    Article  PubMed  CAS  Google Scholar 

  35. Liu Z, Zhang L, Ding F, Li J, Guo M et al (2005) 5-Aza-2′-deoxycytidine induces retinoic acid receptor-beta(2) demethylation and growth inhibition in esophageal squamous carcinoma cells. Cancer Lett 230:271–283

    Article  PubMed  CAS  Google Scholar 

  36. Yuan J, Luo RZ, Fujii S, Wang L, Hu W et al (2003) Aberrant methylation and silencing of ARHI, an imprinted tumor suppressor gene in which the function is lost in breast cancers. Cancer Res 63:4174–4180

    PubMed  CAS  Google Scholar 

  37. Fujii S, Luo RZ, Yuan J, Kadota M, Oshimura M et al (2003) Reactivation of the silenced and imprinted alleles of ARHI is associated with increased histone H3 acetylation and decreased histone H3 lysine 9 methylation. Hum Mol Genet 12:1791–1800

    Article  PubMed  CAS  Google Scholar 

  38. Feng W, Shen L, Wen S, Rosen DG, Jelinek J et al (2007) Correlation between CpG methylation profiles and hormone receptor status in breast cancers. Breast Cancer Res 9:R57

    Article  PubMed  CAS  Google Scholar 

  39. Powell SN, Kachnic LA (2003) Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation. Oncogene 22:5784–5791

    Article  PubMed  CAS  Google Scholar 

  40. Burga LN, Hu H, Juvekar A, Tung NM, Troyan SL et al (2011) Loss of BRCA1 leads to an increase in epidermal growth factor receptor expression in mammary epithelial cells, and epidermal growth factor receptor inhibition prevents estrogen receptor-negative cancers in BRCA1-mutant mice. Breast Cancer Res 13:R30

    Article  PubMed  CAS  Google Scholar 

  41. Locke I, Kote-Jarai Z, Bancroft E, Bullock S, Jugurnauth S et al (2006) Loss of heterozygosity at the BRCA1 and BRCA2 loci detected in ductal lavage fluid from BRCA gene mutation carriers and controls. Cancer Epidemiol Biomarkers Prev 15:1399–1402

    Article  PubMed  CAS  Google Scholar 

  42. Catteau A, Harris WH, Xu CF, Solomon E (1999) Methylation of the BRCA1 promoter region in sporadic breast and ovarian cancer: correlation with disease characteristics. Oncogene 18:1957–1965

    Article  PubMed  CAS  Google Scholar 

  43. Esteller M, Silva JM, Dominguez G, Bonilla F, Matias-Guiu X et al (2000) Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst 92:564–569

    Article  PubMed  CAS  Google Scholar 

  44. Wei M, Grushko TA, Dignam J, Hagos F, Nanda R et al (2005) BRCA1 promoter methylation in sporadic breast cancer is associated with reduced BRCA1 copy number and chromosome 17 aneusomy. Cancer Res 65:10692–10699

    Article  PubMed  CAS  Google Scholar 

  45. Lim SP, Wong NC, Suetani RJ, Ho K, Ng JL et al (2012) Specific-site methylation of tumour suppressor ANKRD11 in breast cancer. Eur J Cancer 48:3300–3309

    Article  PubMed  CAS  Google Scholar 

  46. Parc Y, Boisson C, Thomas G, Olschwang S (2003) Cancer risk in 348 French MSH2 or MLH1 gene carriers. J Med Genet 40:208–213

    Article  PubMed  CAS  Google Scholar 

  47. Mackay HJ, Cameron D, Rahilly M, Mackean MJ, Paul J et al (2000) Reduced MLH1 expression in breast tumors after primary chemotherapy predicts disease-free survival. J Clin Oncol 18:87–93

    PubMed  Google Scholar 

  48. Westenend PJ, Schutte R, Hoogmans MM, Wagner A, Dinjens WN (2005) Breast cancer in an MSH2 gene mutation carrier. Hum Pathol 36:1322–1326

    Article  PubMed  CAS  Google Scholar 

  49. Chow LS, Lo KW, Kwong J, To KF, Tsang KS et al (2004) RASSF1A is a target tumor suppressor from 3p21.3 in nasopharyngeal carcinoma. Int J Cancer 109:839–847

    Article  PubMed  CAS  Google Scholar 

  50. van der Weyden L, Adams DJ (2007) The Ras-association domain family (RASSF) members and their role in human tumourigenesis. Biochim Biophys Acta 1776:58–85

    PubMed  Google Scholar 

  51. Burbee DG, Forgacs E, Zochbauer-Muller S, Shivakumar L, Fong K et al (2001) Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst 93:691–699

    Article  PubMed  CAS  Google Scholar 

  52. Euhus DM, Bu D, Milchgrub S, Xie XJ, Bian A et al (2008) DNA methylation in benign breast epithelium in relation to age and breast cancer risk. Cancer Epidemiol Biomarkers Prev 17:1051–1059

    Article  PubMed  CAS  Google Scholar 

  53. Peters I, Vaske B, Albrecht K, Kuczyk MA, Jonas U et al (2007) Adiposity and age are statistically related to enhanced RASSF1A tumor suppressor gene promoter methylation in normal autopsy kidney tissue. Cancer Epidemiol Biomarkers Prev 16:2526–2532

    Article  PubMed  CAS  Google Scholar 

  54. Lehmann U, Langer F, Feist H, Glockner S, Hasemeier B et al (2002) Quantitative assessment of promoter hypermethylation during breast cancer development. Am J Pathol 160:605–612

    Article  PubMed  CAS  Google Scholar 

  55. Pizzi S, Azzoni C, Bottarelli L, Campanini N, D’Adda T et al (2005) RASSF1A promoter methylation and 3p21.3 loss of heterozygosity are features of foregut, but not midgut and hindgut, malignant endocrine tumours. J Pathol 206:409–416

    Article  PubMed  CAS  Google Scholar 

  56. Jagadeesh S, Sinha S, Pal BC, Bhattacharya S, Banerjee PP (2007) Mahanine reverses an epigenetically silenced tumor suppressor gene RASSF1A in human prostate cancer cells. Biochem Biophys Res Commun 362:212–217

    Article  PubMed  CAS  Google Scholar 

  57. Liu SC, Bassi DE, Zhang SY, Holoran D, Conti CJ et al (2002) Overexpression of cyclin D2 is associated with increased in vivo invasiveness of human squamous carcinoma cells. Mol Carcinog 34:131–139

    Article  PubMed  CAS  Google Scholar 

  58. Evron E, Umbricht CB, Korz D, Raman V, Loeb DM et al (2001) Loss of cyclin D2 expression in the majority of breast cancers is associated with promoter hypermethylation. Cancer Res 61:2782–2787

    PubMed  CAS  Google Scholar 

  59. Brooks J, Cairns P, Zeleniuch-Jacquotte A (2009) Promoter methylation and the detection of breast cancer. Cancer Causes Control 20:1539–1550

    Article  PubMed  Google Scholar 

  60. Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366:704–707

    Article  PubMed  CAS  Google Scholar 

  61. Vermeulen K, Van Bockstaele DR, Berneman ZN (2003) The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 36(3):131–149

    Article  PubMed  CAS  Google Scholar 

  62. Taneja P, Frazier DP, Kendig RD, Maglic D, Sugiyama T et al (2009) MMTV mouse models and the diagnostic values of MMTV-like sequences in human breast cancer. Expert Rev Mol Diagn 9:423–440

    Article  PubMed  CAS  Google Scholar 

  63. Du Y, Carling T, Fang W, Piao Z, Sheu JC et al (2001) Hypermethylation in human cancers of the RIZ1 tumor suppressor gene, a member of a histone/protein methyltransferase superfamily. Cancer Res 61:8094–8099

    PubMed  CAS  Google Scholar 

  64. Huang S, Shao G, Liu L (1998) The PR domain of the Rb-binding zinc finger protein RIZ1 is a protein binding interface and is related to the SET domain functioning in chromatin-mediated gene expression. J Biol Chem 273:15933–15939

    Article  PubMed  CAS  Google Scholar 

  65. Liu ZY, Wang JY, Liu HH, Ma XM, Wang CL et al (2012) Retinoblastoma protein-interacting zinc-finger gene 1 (RIZ1) dysregulation in human malignant meningiomas. Oncogene. doi:10.1038/onc.2012.155

  66. Conway KE, McConnell BB, Bowring CE, Donald CD, Warren ST et al (2000) TMS1, a novel proapoptotic caspase recruitment domain protein, is a target of methylation-induced gene silencing in human breast cancers. Cancer Res 60:6236–6242

    PubMed  CAS  Google Scholar 

  67. Stimson KM, Vertino PM (2002) Methylation-mediated silencing of TMS1/ASC is accompanied by histone hypoacetylation and CpG island-localized changes in chromatin architecture. J Biol Chem 277:4951–4958

    Article  PubMed  CAS  Google Scholar 

  68. Ferguson AT, Evron E, Umbricht CB, Pandita TK, Chan TA et al (2000) High frequency of hypermethylation at the 14-3-3 sigma locus leads to gene silencing in breast cancer. Proc Natl Acad Sci U S A 97:6049–6054

    Article  PubMed  CAS  Google Scholar 

  69. Lal G, Padmanabha L, Provenzano M, Fitzgerald M, Weydert J et al (2008) Regulation of 14-3-3sigma expression in human thyroid carcinoma is epigenetically regulated by aberrant cytosine methylation. Cancer Lett 267:165–174

    Article  PubMed  CAS  Google Scholar 

  70. Kimchi A (1999) DAP kinase and DAP-3: novel positive mediators of apoptosis. Ann Rheum Dis 58(Suppl 1):I14–I19

    Article  PubMed  CAS  Google Scholar 

  71. Katzenellenbogen RA, Baylin SB, Herman JG (1999) Hypermethylation of the DAP-kinase CpG island is a common alteration in B-cell malignancies. Blood 93:4347–4353

    PubMed  CAS  Google Scholar 

  72. Bai T, Tanaka T, Yukawa K, Umesaki N (2006) A novel mechanism for acquired cisplatin-resistance: suppressed translation of death-associated protein kinase mRNA is insensitive to 5-aza-2′-deoxycitidine and trichostatin in cisplatin-resistant cervical squamous cancer cells. Int J Oncol 28:497–508

    PubMed  CAS  Google Scholar 

  73. Noetzel E, Veeck J, Niederacher D, Galm O, Horn F et al (2008) Promoter methylation-associated loss of ID4 expression is a marker of tumour recurrence in human breast cancer. BMC Cancer 8:154

    Article  PubMed  CAS  Google Scholar 

  74. Norton JD (2000) ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. J Cell Sci 113(Pt 22):3897–3905

    PubMed  CAS  Google Scholar 

  75. Roberts EC, Deed RW, Inoue T, Norton JD, Sharrocks AD (2001) Id helix-loop-helix proteins antagonize pax transcription factor activity by inhibiting DNA binding. Mol Cell Biol 21:524–533

    Article  PubMed  CAS  Google Scholar 

  76. Wilson JW, Deed RW, Inoue T, Balzi M, Becciolini A et al (2001) Expression of Id helix-loop-helix proteins in colorectal adenocarcinoma correlates with p53 expression and mitotic index. Cancer Res 61:8803–8810

    PubMed  CAS  Google Scholar 

  77. Umetani N, Mori T, Koyanagi K, Shinozaki M, Kim J et al (2005) Aberrant hypermethylation of ID4 gene promoter region increases risk of lymph node metastasis in T1 breast cancer. Oncogene 24:4721–4727

    Article  PubMed  CAS  Google Scholar 

  78. Campione M, Acosta L, Martinez S, Icardo JM, Aranega A et al (2002) Pitx2 and cardiac development: a molecular link between left/right signaling and congenital heart disease. Cold Spring Harb Symp Quant Biol 67:89–95

    Article  PubMed  CAS  Google Scholar 

  79. Martens JW, Margossian AL, Schmitt M, Foekens J, Harbeck N (2009) DNA methylation as a biomarker in breast cancer. Future Oncol 5:1245–1256

    Article  PubMed  CAS  Google Scholar 

  80. Hartmann O, Spyratos F, Harbeck N, Dietrich D, Fassbender A et al (2009) DNA methylation markers predict outcome in node-positive, estrogen receptor-positive breast cancer with adjuvant anthracycline-based chemotherapy. Clin Cancer Res 15:315–323

    Article  PubMed  CAS  Google Scholar 

  81. MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26

    Article  PubMed  CAS  Google Scholar 

  82. Liu Z, Yang L, Cui DX, Liu BL, Zhang XB et al (2007) Methylation status and protein expression of adenomatous polyposis coli (APC) gene in breast cancer. Ai Zheng 26:586–590

    PubMed  CAS  Google Scholar 

  83. Lee A, Kim Y, Han K, Kang CS, Jeon HM et al (2004) Detection of tumor markers including carcinoembryonic antigen, APC, and cyclin D2 in fine-needle aspiration fluid of breast. Arch Pathol Lab Med 128:1251–1256

    CAS  Google Scholar 

  84. Esteller M, Corn PG, Urena JM, Gabrielson E, Baylin SB et al (1998) Inactivation of glutathione S-transferase P1 gene by promoter hypermethylation in human neoplasia. Cancer Res 58:4515–4518

    PubMed  CAS  Google Scholar 

  85. Cairns J, Wright C, Cattan AR, Hall AG, Cantwell BJ et al (1992) Immunohistochemical demonstration of glutathione S-transferases in primary human breast carcinomas. J Pathol 166:19–25

    Article  PubMed  CAS  Google Scholar 

  86. Gilbert L, Elwood LJ, Merino M, Masood S, Barnes R et al (1993) A pilot study of pi-class glutathione S-transferase expression in breast cancer: correlation with estrogen receptor expression and prognosis in node-negative breast cancer. J Clin Oncol 11:49–58

    PubMed  CAS  Google Scholar 

  87. Cavalieri EL, Stack DE, Devanesan PD, Todorovic R, Dwivedy I et al (1997) Molecular origin of cancer: catechol estrogen-3,4-quinones as endogenous tumor initiators. Proc Natl Acad Sci U S A 94:10937–10942

    Article  PubMed  CAS  Google Scholar 

  88. Weber BH, Vogt G, Pruett RC, Stohr H, Felbor U (1994) Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby’s fundus dystrophy. Nat Genet 8:352–356

    Article  PubMed  CAS  Google Scholar 

  89. Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21:103–107

    Article  PubMed  CAS  Google Scholar 

  90. Bachman KE, Herman JG, Corn PG, Merlo A, Costello JF et al (1999) Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggest a suppressor role in kidney, brain, and other human cancers. Cancer Res 59:798–802

    PubMed  CAS  Google Scholar 

  91. Pathiraja TN, Shetty PB, Jelinek J, He R, Hartmaier R et al (2011) Progesterone receptor isoform-specific promoter methylation: association of PRA promoter methylation with worse outcome in breast cancer patients. Clin Cancer Res 17:4177–4186

    Article  PubMed  CAS  Google Scholar 

  92. Law ML, Kao FT, Wei Q, Hartz JA, Greene GL et al (1987) The progesterone receptor gene maps to human chromosome band 11q13, the site of the mammary oncogene int-2. Proc Natl Acad Sci U S A 84:2877–2881

    Article  PubMed  CAS  Google Scholar 

  93. Li L, Lee KM, Han W, Choi JY, Lee JY et al (2010) Estrogen and progesterone receptor status affect genome-wide DNA methylation profile in breast cancer. Hum Mol Genet 19:4273–4277

    Article  PubMed  CAS  Google Scholar 

  94. Ferguson AT, Lapidus RG, Davidson NE (1998) Demethylation of the progesterone receptor CpG island is not required for progesterone receptor gene expression. Oncogene 17:577–583

    Article  PubMed  CAS  Google Scholar 

  95. Wang GY, Lu CQ, Zhang RM, Hu XH, Luo ZW (2008) The E-cadherin gene polymorphism 160C- > A and cancer risk: a HuGE review and meta-analysis of 26 case-control studies. Am J Epidemiol 167:7–14

    Article  PubMed  Google Scholar 

  96. Caldeira JR, Prando EC, Quevedo FC, Neto FA, Rainho CA et al (2006) CDH1 promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer. BMC Cancer 6:48

    Article  PubMed  CAS  Google Scholar 

  97. Nass SJ, Herman JG, Gabrielson E, Iversen PW, Parl FF et al (2000) Aberrant methylation of the estrogen receptor and E-cadherin 5′ CpG islands increases with malignant progression in human breast cancer. Cancer Res 60:4346–4348

    PubMed  CAS  Google Scholar 

  98. Giannelli G, Antonaci S (2000) Biological and clinical relevance of Laminin-5 in cancer. Clin Exp Metastasis 18:439–443

    Article  PubMed  CAS  Google Scholar 

  99. Sathyanarayana UG, Padar A, Suzuki M, Maruyama R, Shigematsu H et al (2003) Aberrant promoter methylation of laminin-5-encoding genes in prostate cancers and its relationship to clinicopathological features. Clin Cancer Res 9:6395–6400

    PubMed  CAS  Google Scholar 

  100. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A et al (2006) Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281:6120–6123

    Article  PubMed  CAS  Google Scholar 

  101. Rubinek T, Shulman M, Israeli S, Bose S, Avraham A et al (2012) Epigenetic silencing of the tumor suppressor klotho in human breast cancer. Breast Cancer Res Treat 133:649–657

    Article  PubMed  CAS  Google Scholar 

  102. Nguyen Ba-Charvet KT, Brose K, Ma L, Wang KH, Marillat V et al (2001) Diversity and specificity of actions of Slit2 proteolytic fragments in axon guidance. J Neurosci 21:4281–4289

    PubMed  CAS  Google Scholar 

  103. Shivapurkar N, Virmani AK, Wistuba II, Milchgrub S, Mackay B et al (1999) Deletions of chromosome 4 at multiple sites are frequent in malignant mesothelioma and small cell lung carcinoma. Clin Cancer Res 5:17–23

    PubMed  CAS  Google Scholar 

  104. Dallol A, Da Silva NF, Viacava P, Minna JD, Bieche I et al (2002) SLIT2, a human homologue of the Drosophila Slit2 gene, has tumor suppressor activity and is frequently inactivated in lung and breast cancers. Cancer Res 62:5874–5880

    PubMed  CAS  Google Scholar 

  105. Vallejo J, Hardin CD (2005) Expression of caveolin-1 in lymphocytes induces caveolae formation and recruitment of phosphofructokinase to the plasma membrane. FASEB J 19:586–587

    PubMed  CAS  Google Scholar 

  106. Engelman JA, Zhang XL, Lisanti MP (1998) Genes encoding human caveolin-1 and -2 are co-localized to the D7S522 locus (7q31.1), a known fragile site (FRA7G) that is frequently deleted in human cancers. FEBS Lett 436:403–410

    Article  PubMed  CAS  Google Scholar 

  107. Syeed N, Hussain F, Husain SA, Siddiqi MA (2012) 5′-CpG island promoter hypermethylation of the CAV-1 gene in breast cancer patients of Kashmir. Asian Pac J Cancer Prev 13:371–375

    Article  PubMed  Google Scholar 

  108. Abdollahi A, Bao R, Hamilton TC (1999) LOT1 is a growth suppressor gene down-regulated by the epidermal growth factor receptor ligands and encodes a nuclear zinc-finger protein. Oncogene 18:6477–6487

    Article  PubMed  CAS  Google Scholar 

  109. Abdollahi A, Gruver BN, Patriotis C, Hamilton TC (2003) Identification of epidermal growth factor-responsive genes in normal rat ovarian surface epithelial cells. Biochem Biophys Res Commun 307:188–197

    Article  PubMed  CAS  Google Scholar 

  110. Abdollahi A, Pisarcik D, Roberts D, Weinstein J, Cairns P et al (2003) LOT1 (PLAGL1/ZAC1), the candidate tumor suppressor gene at chromosome 6q24-25, is epigenetically regulated in cancer. J Biol Chem 278:6041–6049

    Article  PubMed  CAS  Google Scholar 

  111. Hempel N, Wang H, LeCluyse EL, McManus ME, Negishi M (2004) The human sulfotransferase SULT1A1 gene is regulated in a synergistic manner by Sp1 and GA binding protein. Mol Pharmacol 66:1690–1701

    Article  PubMed  CAS  Google Scholar 

  112. Kwon MS, Kim SJ, Lee SY, Jeong JH, Lee ES et al (2006) Epigenetic silencing of the sulfotransferase 1A1 gene by hypermethylation in breast tissue. Oncol Rep 15:27–32

    PubMed  CAS  Google Scholar 

  113. Qiu J, Ai L, Ramachandran C, Yao B, Gopalakrishnan S et al (2008) Invasion suppressor cystatin E/M (CST6): high-level cell type-specific expression in normal brain and epigenetic silencing in gliomas. Lab Invest 88:910–925

    Article  PubMed  CAS  Google Scholar 

  114. Rivenbark AG, Jones WD, Coleman WB (2006) DNA methylation-dependent silencing of CST6 in human breast cancer cell lines. Lab Invest 86:1233–1242

    Article  PubMed  CAS  Google Scholar 

  115. Bednarek AK, Laflin KJ, Daniel RL, Liao Q, Hawkins KA et al (2000) WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23.3-24.1, a region frequently affected in breast cancer. Cancer Res 60:2140–2145

    PubMed  CAS  Google Scholar 

  116. Wang X, Chao L, Jin G, Ma G, Zang Y et al (2009) Association between CpG island methylation of the WWOX gene and its expression in breast cancers. Tumour Biol 30:8–14

    Article  PubMed  CAS  Google Scholar 

  117. Veeck J, Bektas N, Hartmann A, Kristiansen G, Heindrichs U et al (2008) Wnt signalling in human breast cancer: expression of the putative Wnt inhibitor Dickkopf-3 (DKK3) is frequently suppressed by promoter hypermethylation in mammary tumours. Breast Cancer Res 10:R82

    Article  PubMed  CAS  Google Scholar 

  118. Yu X, Si J, Zhang Y, Dewille JW (2010) CCAAT/Enhancer Binding Protein-delta (C/EBP-delta) regulates cell growth, migration and differentiation. Cancer Cell Int 10:48

    Article  PubMed  CAS  Google Scholar 

  119. O’Rourke JP, Newbound GC, Hutt JA, DeWille J (1999) CCAAT/enhancer-binding protein delta regulates mammary epithelial cell G0 growth arrest and apoptosis. J Biol Chem 274:16582–16589

    Article  PubMed  Google Scholar 

  120. Si J, Yu X, Zhang Y, DeWille JW (2010) Myc interacts with Max and Miz1 to repress C/EBPdelta promoter activity and gene expression. Mol Cancer 9:92

    Article  PubMed  CAS  Google Scholar 

  121. Tang D, Sivko GS, DeWille JW (2006) Promoter methylation reduces C/EBPdelta (CEBPD) gene expression in the SUM-52PE human breast cancer cell line and in primary breast tumors. Breast Cancer Res Treat 95:161–170

    Article  PubMed  CAS  Google Scholar 

  122. Xian J, Aitchison A, Bobrow L, Corbett G, Pannell R et al (2004) Targeted disruption of the 3p12 gene, Dutt1/Robo1, predisposes mice to lung adenocarcinomas and lymphomas with methylation of the gene promoter. Cancer Res 64:6432–6437

    Article  PubMed  CAS  Google Scholar 

  123. Dallol A, Forgacs E, Martinez A, Sekido Y, Walker R et al (2002) Tumour specific promoter region methylation of the human homologue of the Drosophila Roundabout gene DUTT1 (ROBO1) in human cancers. Oncogene 21:3020–3028

    Article  PubMed  CAS  Google Scholar 

  124. Cohen I, Poreba E, Kamieniarz K, Schneider R (2011) Histone modifiers in cancer: friends or foes? Genes Cancer 2:631–647

    Article  PubMed  CAS  Google Scholar 

  125. Dumitrescu RG (2012) DNA methylation and histone modifications in breast cancer. Methods Mol Biol 863:35–45

    Article  PubMed  Google Scholar 

  126. Miremadi A, Oestergaard MZ, Pharoah PD, Caldas C (2007) Cancer genetics of epigenetic genes. Hum Mol Genet 16 Spec No 1:R28–R49

    Article  PubMed  CAS  Google Scholar 

  127. Ellis L, Hammers H, Pili R (2009) Targeting tumor angiogenesis with histone deacetylase inhibitors. Cancer Lett 280:145–153

    Article  PubMed  CAS  Google Scholar 

  128. Mottet D, Castronovo V (2010) Histone deacetylases: anti-angiogenic targets in cancer therapy. Curr Cancer Drug Targets 10:898–913

    Article  PubMed  CAS  Google Scholar 

  129. Lawson M, Uciechowska U, Schemies J, Rumpf T, Jung M et al (2010) Inhibitors to understand molecular mechanisms of NAD(+)-dependent deacetylases (sirtuins). Biochim Biophys Acta 1799:726–739

    Article  PubMed  CAS  Google Scholar 

  130. Pruitt K, Zinn RL, Ohm JE, McGarvey KM, Kang SH et al (2006) Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet 2:e40

    Article  PubMed  CAS  Google Scholar 

  131. Witt O, Deubzer HE, Milde T, Oehme I (2009) HDAC family: what are the cancer relevant targets? Cancer Lett 277:8–21

    Article  PubMed  CAS  Google Scholar 

  132. Tran AD, Marmo TP, Salam AA, Che S, Finkelstein E et al (2007) HDAC6 deacetylation of tubulin modulates dynamics of cellular adhesions. J Cell Sci 120:1469–1479

    Article  PubMed  CAS  Google Scholar 

  133. Saji S, Kawakami M, Hayashi S, Yoshida N, Hirose M et al (2005) Significance of HDAC6 regulation via estrogen signaling for cell motility and prognosis in estrogen receptor-positive breast cancer. Oncogene 24:4531–4539

    Article  PubMed  CAS  Google Scholar 

  134. Ashraf N, Zino S, Macintyre A, Kingsmore D, Payne AP et al (2006) Altered sirtuin expression is associated with node-positive breast cancer. Br J Cancer 95:1056–1061

    Article  PubMed  CAS  Google Scholar 

  135. Sims RJ 3rd, Nishioka K, Reinberg D (2003) Histone lysine methylation: a signature for chromatin function. Trends Genet 19:629–639

    Article  PubMed  CAS  Google Scholar 

  136. Lee DY, Teyssier C, Strahl BD, Stallcup MR (2005) Role of protein methylation in regulation of transcription. Endocr Rev 26:147–170

    Article  PubMed  CAS  Google Scholar 

  137. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  PubMed  CAS  Google Scholar 

  138. Zhou Y, Kim J, Yuan X, Braun T (2011) Epigenetic modifications of stem cells: a paradigm for the control of cardiac progenitor cells. Circ Res 109:1067–1081

    Article  PubMed  CAS  Google Scholar 

  139. Onodera A, Yamashita M, Endo Y, Kuwahara M, Tofukuji S et al (2010) STAT6-mediated displacement of polycomb by trithorax complex establishes long-term maintenance of GATA3 expression in T helper type 2 cells. J Exp Med 207:2493–2506

    Article  PubMed  CAS  Google Scholar 

  140. Niewmierzycka A, Clarke S (1999) S-Adenosylmethionine-dependent methylation in Saccharomyces cerevisiae. Identification of a novel protein arginine methyltransferase. J Biol Chem 274:814–824

    Article  PubMed  CAS  Google Scholar 

  141. Bachand F (2007) Protein arginine methyltransferases: from unicellular eukaryotes to humans. Eukaryot Cell 6:889–898

    Article  PubMed  CAS  Google Scholar 

  142. Scorilas A, Black MH, Talieri M, Diamandis EP (2000) Genomic organization, physical mapping, and expression analysis of the human protein arginine methyltransferase 1 gene. Biochem Biophys Res Commun 278:349–359

    Article  PubMed  CAS  Google Scholar 

  143. El Messaoudi S, Fabbrizio E, Rodriguez C, Chuchana P, Fauquier L et al (2006) Coactivator-associated arginine methyltransferase 1 (CARM1) is a positive regulator of the Cyclin E1 gene. Proc Natl Acad Sci U S A 103:13351–13356

    Article  PubMed  CAS  Google Scholar 

  144. Iberg AN, Espejo A, Cheng D, Kim D, Michaud-Levesque J et al (2008) Arginine methylation of the histone H3 tail impedes effector binding. J Biol Chem 283:3006–3010

    Article  PubMed  CAS  Google Scholar 

  145. Klose RJ, Yamane K, Bae Y, Zhang D, Erdjument-Bromage H et al (2006) The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature 442:312–316

    Article  PubMed  CAS  Google Scholar 

  146. Lu PJ, Sundquist K, Baeckstrom D, Poulsom R, Hanby A et al (1999) A novel gene (PLU-1) containing highly conserved putative DNA/chromatin binding motifs is specifically up-regulated in breast cancer. J Biol Chem 274:15633–15645

    Article  PubMed  CAS  Google Scholar 

  147. Wolf SS, Patchev VK, Obendorf M (2007) A novel variant of the putative demethylase gene, s-JMJD1C, is a coactivator of the AR. Arch Biochem Biophys 460:56–66

    Article  PubMed  CAS  Google Scholar 

  148. Espino PS, Li L, He S, Yu J, Davie JR (2006) Chromatin modification of the trefoil factor 1 gene in human breast cancer cells by the Ras/mitogen-activated protein kinase pathway. Cancer Res 66:4610–4616

    Article  PubMed  CAS  Google Scholar 

  149. Daniel AR, Knutson TP, Lange CA (2009) Signaling inputs to progesterone receptor gene regulation and promoter selectivity. Mol Cell Endocrinol 308:47–52

    Article  PubMed  CAS  Google Scholar 

  150. Chen Y, Dai X, Haas AL, Wen R, Wang D (2006) Proteasome-dependent down-regulation of activated Stat5A in the nucleus. Blood 108:566–574

    Article  PubMed  CAS  Google Scholar 

  151. Shiio Y, Eisenman RN (2003) Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci U S A 100:13225–13230

    Article  PubMed  CAS  Google Scholar 

  152. Grimaud C, Negre N, Cavalli G (2006) From genetics to epigenetics: the tale of Polycomb group and trithorax group genes. Chromosome Res 14:363–375

    Article  PubMed  CAS  Google Scholar 

  153. Farcas AM, Blackledge NP, Sudbery I, Long HK, McGouran JF et al (2012) KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands. Elife 1:e00205

    Article  PubMed  Google Scholar 

  154. Satijn DP, Hamer KM, den Blaauwen J, Otte AP (2001) The polycomb group protein EED interacts with YY1, and both proteins induce neural tissue in Xenopus embryos. Mol Cell Biol 21:1360–1369

    Article  PubMed  CAS  Google Scholar 

  155. Francis NJ, Kingston RE (2001) Mechanisms of transcriptional memory. Nat Rev Mol Cell Biol 2:409–421

    Article  PubMed  CAS  Google Scholar 

  156. Raaphorst FM, Otte AP, van Kemenade FJ, Blokzijl T, Fieret E et al (2001) Distinct BMI-1 and EZH2 expression patterns in thymocytes and mature T cells suggest a role for Polycomb genes in human T cell differentiation. J Immunol 166:5925–5934

    PubMed  CAS  Google Scholar 

  157. Nakauchi H, Oguro H, Negishi M, Iwama A (2005) Polycomb gene product Bmi-1 regulates stem cell self-renewal. Ernst Schering Res Found Workshop 85–100

    Google Scholar 

  158. Jacobs JJ, Scheijen B, Voncken JW, Kieboom K, Berns A et al (1999) Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev 13:2678–2690

    Article  PubMed  CAS  Google Scholar 

  159. Silva J, Garcia JM, Pena C, Garcia V, Dominguez G et al (2006) Implication of polycomb members Bmi-1, Mel-18, and Hpc-2 in the regulation of p16INK4a, p14ARF, h-TERT, and c-Myc expression in primary breast carcinomas. Clin Cancer Res 12:6929–6936

    Article  PubMed  Google Scholar 

  160. Cai X, Cullen BR (2007) The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA 13:313–316

    Article  PubMed  CAS  Google Scholar 

  161. Chen F, Yu Z, Baoyu G (2013) MiR-199b-5p targets HER2 in breast cancer cells. J Cell Biochem. doi:10.1002/jcb.24487

  162. van Rooij E (2011) The art of microRNA research. Circ Res 108:219–234

    Article  PubMed  CAS  Google Scholar 

  163. Tehler D, Hoyland-Kroghsbo NM, Lund AH (2011) The miR-10 microRNA precursor family. RNA Biol 8:728–734

    Article  PubMed  CAS  Google Scholar 

  164. Huang GL, Zhang XH, Guo GL, Huang KT, Yang KY et al (2008) Expression of microRNA-21 in invasive ductal carcinoma of the breast and its association with phosphatase and tensin homolog deleted from chromosome expression and clinicopathologic features. Zhonghua Yi Xue Za Zhi 88:2833–2837

    PubMed  CAS  Google Scholar 

  165. Li H, Bian C, Liao L, Li J, Zhao RC (2011) miR-17-5p promotes human breast cancer cell migration and invasion through suppression of HBP1. Breast Cancer Res Treat 126:565–575

    Article  PubMed  CAS  Google Scholar 

  166. Wang X, Cao L, Wang Y, Liu N, You Y (2012) Regulation of let-7 and its target oncogenes (Review). Oncol Lett 3:955–960

    PubMed  CAS  Google Scholar 

  167. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A et al (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593–601

    Article  PubMed  CAS  Google Scholar 

  168. Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN et al (2010) Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell 39:761–772

    Article  PubMed  CAS  Google Scholar 

  169. Wu H, Zhu S, Mo YY (2009) Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res 19:439–448

    Article  PubMed  CAS  Google Scholar 

  170. Iorio MV, Casalini P, Piovan C, Di Leva G, Merlo A et al (2009) microRNA-205 regulates HER3 in human breast cancer. Cancer Res 69:2195–2200

    Article  PubMed  CAS  Google Scholar 

  171. Spizzo R, Nicoloso MS, Lupini L, Lu Y, Fogarty J et al (2010) miR-145 participates with TP53 in a death-promoting regulatory loop and targets estrogen receptor-alpha in human breast cancer cells. Cell Death Differ 17:246–254

    Article  PubMed  CAS  Google Scholar 

  172. Singh R, Mo YY (2013) Role of microRNAs in breast cancer. Cancer Biol Ther 14

    Google Scholar 

  173. Maison C, Bailly D, Peters AH, Quivy JP, Roche D et al (2002) Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet 30:329–334

    Article  PubMed  Google Scholar 

  174. Fukagawa T, Nogami M, Yoshikawa M, Ikeno M, Okazaki T et al (2004) Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat Cell Biol 6:784–791

    Article  PubMed  CAS  Google Scholar 

  175. Di Leva G, Gasparini P, Piovan C, Ngankeu A, Garofalo M et al (2010) MicroRNA cluster 221-222 and estrogen receptor alpha interactions in breast cancer. J Natl Cancer Inst 102:706–721

    Article  PubMed  CAS  Google Scholar 

  176. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N et al (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A 104:15805–15810

    Article  PubMed  CAS  Google Scholar 

  177. Friedman JM, Liang G, Liu CC, Wolff EM, Tsai YC et al (2009) The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res 69:2623–2629

    Article  PubMed  CAS  Google Scholar 

  178. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P et al (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138:592–603

    Article  PubMed  CAS  Google Scholar 

  179. Han M, Wang Y, Liu M, Bi X, Bao J et al (2012) MiR-21 regulates epithelial-mesenchymal transition phenotype and hypoxia-inducible factor-1alpha expression in third-sphere forming breast cancer stem cell-like cells. Cancer Sci 103:1058–1064

    Article  PubMed  CAS  Google Scholar 

  180. Pavicic W, Perkio E, Kaur S, Peltomaki P (2011) Altered methylation at microRNA-associated CpG islands in hereditary and sporadic carcinomas: a methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA)-based approach. Mol Med 17:726–735

    Article  PubMed  CAS  Google Scholar 

  181. Hoffman AE, Zheng T, Yi C, Leaderer D, Weidhaas J et al (2009) microRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. Cancer Res 69:5970–5977

    Article  PubMed  CAS  Google Scholar 

  182. Aliya N, Rahman S, Khan ZK, Jain P (2012) Cotranscriptional chromatin remodeling by small RNA species: an HTLV-1 perspective. Leuk Res Treat 2012:984754

    Google Scholar 

  183. Wong KY, So CC, Loong F, Chung LP, Lam WW et al (2011) Epigenetic inactivation of the miR-124-1 in haematological malignancies. PLoS One 6:e19027

    Article  PubMed  CAS  Google Scholar 

  184. Hu Z, Chen J, Tian T, Zhou X, Gu H et al (2008) Genetic variants of miRNA sequences and non-small cell lung cancer survival. J Clin Invest 118:2600–2608

    Article  PubMed  CAS  Google Scholar 

  185. Png KJ, Yoshida M, Zhang XH, Shu W, Lee H et al (2011) MicroRNA-335 inhibits tumor reinitiation and is silenced through genetic and epigenetic mechanisms in human breast cancer. Genes Dev 25:226–231

    Article  PubMed  CAS  Google Scholar 

  186. Lustberg MB, Ramaswamy B (2011) Epigenetic therapy in breast cancer. Curr Breast Cancer Rep 3:34–43

    Article  PubMed  CAS  Google Scholar 

  187. Friel AM, Zhang L, Curley MD, Therrien VA, Sergent PA et al (2010) Epigenetic regulation of CD133 and tumorigenicity of CD133 positive and negative endometrial cancer cells. Reprod Biol Endocrinol 8:147

    Article  PubMed  CAS  Google Scholar 

  188. Connolly R, Stearns V (2012) Epigenetics as a therapeutic target in breast cancer. J Mammary Gland Biol Neoplasia 17:191–204

    Article  PubMed  Google Scholar 

  189. Brueckner B, Garcia Boy R, Siedlecki P, Musch T, Kliem HC et al (2005) Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res 65:6305–6311

    Article  PubMed  CAS  Google Scholar 

  190. Davis AJ, Gelmon KA, Siu LL, Moore MJ, Britten CD et al (2003) Phase I and pharmacologic study of the human DNA methyltransferase antisense oligodeoxynucleotide MG98 given as a 21-day continuous infusion every 4 weeks. Invest New Drugs 21:85–97

    Article  PubMed  CAS  Google Scholar 

  191. Atadja P, Gao L, Kwon P, Trogani N, Walker H et al (2004) Selective growth inhibition of tumor cells by a novel histone deacetylase inhibitor, NVP-LAQ824. Cancer Res 64:689–695

    Article  PubMed  CAS  Google Scholar 

  192. Li Q, Bartlett DL, Gorry MC, O’Malley ME, Guo ZS (2009) Three epigenetic drugs up-regulate homeobox gene Rhox5 in cancer cells through overlapping and distinct molecular mechanisms. Mol Pharmacol 76:1072–1081

    Article  PubMed  CAS  Google Scholar 

  193. Fang MZ, Wang Y, Ai N, Hou Z, Sun Y et al (2003) Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 63:7563–7570

    PubMed  CAS  Google Scholar 

  194. Moyers SB, Kumar NB (2004) Green tea polyphenols and cancer chemoprevention: multiple mechanisms and endpoints for phase II trials. Nutr Rev 62:204–211

    Article  PubMed  Google Scholar 

  195. Cho HJ, Kim SY, Kim KH, Kang WK, Kim JI et al (2009) The combination effect of sodium butyrate and 5-Aza-2′-deoxycytidine on radiosensitivity in RKO colorectal cancer and MCF-7 breast cancer cell lines. World J Surg Oncol 7:49

    Article  PubMed  Google Scholar 

  196. Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A et al (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20:6969–6978

    Article  PubMed  CAS  Google Scholar 

  197. Kim SH, Kang HJ, Na H, Lee MO (2010) Trichostatin A enhances acetylation as well as protein stability of ERalpha through induction of p300 protein. Breast Cancer Res 12:R22

    Article  PubMed  CAS  Google Scholar 

  198. Xu WS, Perez G, Ngo L, Gui CY, Marks PA (2005) Induction of polyploidy by histone deacetylase inhibitor: a pathway for antitumor effects. Cancer Res 65:7832–7839

    Article  PubMed  CAS  Google Scholar 

  199. Kijima M, Yoshida M, Sugita K, Horinouchi S, Beppu T (1993) Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J Biol Chem 268:22429–22435

    PubMed  CAS  Google Scholar 

  200. Monneret C (2005) Histone deacetylase inhibitors. Eur J Med Chem 40:1–13

    Article  PubMed  CAS  Google Scholar 

  201. Liu Y, Liggitt D, Fong S, Debs RJ (2006) Systemic co-administration of depsipeptide selectively targets transfection enhancement to specific tissues and cell types. Gene Ther 13:1724–1730

    Article  PubMed  CAS  Google Scholar 

  202. Furumai R, Komatsu Y, Nishino N, Khochbin S, Yoshida M et al (2001) Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc Natl Acad Sci U S A 98:87–92

    Article  PubMed  CAS  Google Scholar 

  203. Park H, Im JY, Kim J, Choi WS, Kim HS (2008) Effects of apicidin, a histone deacetylase inhibitor, on the regulation of apoptosis in H-ras-transformed breast epithelial cells. Int J Mol Med 21:325–333

    PubMed  CAS  Google Scholar 

  204. Saito A, Yamashita T, Mariko Y, Nosaka Y, Tsuchiya K et al (1999) A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad Sci U S A 96:4592–4597

    Article  PubMed  CAS  Google Scholar 

  205. Riva L, Blaney SM, Dauser R, Nuchtern JG, Durfee J et al (2000) Pharmacokinetics and cerebrospinal fluid penetration of CI-994 (N-acetyldinaline) in the nonhuman primate. Clin Cancer Res 6:994–997

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrikant Anant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Anant, S., Dhar, A., Ramalingam, S. (2013). Epigenetic Signatures of Breast Cancer Genes. In: Sarkar, F. (eds) Epigenetics and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6612-9_10

Download citation

Publish with us

Policies and ethics