Skip to main content

Molecular and Pathway Controls on Biogenic Volatile Organic Compound Emissions

  • Chapter
  • First Online:
Book cover Biology, Controls and Models of Tree Volatile Organic Compound Emissions

Part of the book series: Tree Physiology ((TREE,volume 5))

Abstract

Plants make a number of volatile organic compounds (BVOCs), many of which are emitted in a light- and temperature-dependent manner. The vast majority of these BVOCs are isoprenoids including isoprene, monoterpenes, and sesquiterpenes. The total BVOC flux into the atmosphere is on the order of a petagram (1015 g) and has multiple effects on atmospheric chemistry. Understanding the biochemical and molecular regulation of BVOC emissions allows us to build prediction models that better reflect the underlying physiological and biochemical processes. In this chapter we review the enzymes and pathways involved in the biosynthesis of various BVOCs that originate from plants, using isoprene as a model. The biochemical and molecular control of BVOC emission in response to short-term environment drivers such as temperature, light, CO2, and O2, and long-term factors such as circadian, seasonal, and developmental effects are discussed. An emerging theme in the regulation of isoprene emission is that the enzyme isoprene synthase controls the basal emission rate in the long term, while the responses of isoprene emission to short-term factors are regulated by levels of the substrate (dimethylallyl diphosphate), which is in turn determined by upstream enzymes. In addition, we propose a new hypothesis to explain the high-CO2 suppression of isoprene emission. At high CO2 concentrations, a high cytosolic inorganic phosphate (Pi) gradient needed to transport triose phosphates out of the chloroplasts could work against the transport of phosphoenol pyruvate into the chloroplasts. This altered partitioning of phosphoenol pyruvate would then reduce the supply of pyruvate into the MEP pathway. Much work is still needed to understand the CO2 response of BVOC emissions but we expect to see significant progress in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altincicek B, Duin EC, Reichenberg A, Hedderich R, Kollas A-K, Hintz M, Wagner S, Wiesner J, Beck E, Jomaa H (2002) LytB protein catalyzes the terminal step of the 2-C-methyl-D-erythritol-4-phosphate pathway of isoprenoid biosynthesis. FEBS Lett 532:437–440

    PubMed  CAS  Google Scholar 

  • Arigoni D, Sagner S, Latzel C, Eisenreich W, Bacher A, Zenk MH (1997) Terpenoid biosynthesis from 1-deoxy-D-xylulose in higher plants by intramolecular skeletal rearrangement. Proc Natl Acad Sci USA 94:10600–10605

    PubMed  CAS  Google Scholar 

  • Arneth A, Niinemets Ü, Pressley S, Bäck J, Hari P, Karl T, Noe S, Prentice IC, Serça D, Hickler T, Wolf A, Smith B (2007) Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO2-isoprene interaction. Atmos Chem Phys 7:31–53

    CAS  Google Scholar 

  • Arrivault S, Guenther M, Ivakov A, Feil R, Vosloh D, van Dongen JT, Sulpice R, Stitt M (2009) Use of reverse-phase liquid chromatography, linked to tandem mass spectrometry, to profile the Calvin cycle and other metabolic intermediates in Arabidopsis rosettes at different carbon dioxide concentrations. Plant J 59:824–839

    CAS  Google Scholar 

  • Ashworth K, Boissard C, Folberth G, Lathière J, Schurgers G (2013) Global modeling of volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Bailey AM, Mahapatra S, Brennan PJ, Crick DC (2002) Identification, cloning, purification, and enzymatic characterization of Mycobacterium tuberculosis 1-deoxy-D-xylulose 5-phosphate synthase. Glycobiology 12:813–820

    PubMed  CAS  Google Scholar 

  • Behnke K, Grote R, Brüggemann N, Zimmer I, Zhou G, Elobeid M, Janz D, Polle A, Schnitzler J-P (2011) Isoprene emission-free poplars – a chance to reduce the impact from poplar plantations on the atmosphere. New Phytol 194:70–82

    PubMed  Google Scholar 

  • Bernal C, Mendez E, Terencio J, Boronat A, Imperial S (2005) A spectrophotometric assay for the determination of 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase activity. Anal Biochem 340:245–251

    PubMed  CAS  Google Scholar 

  • Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA 95:4126–4133

    PubMed  CAS  Google Scholar 

  • Brammer LA, Meyers CF (2009) Revealing substrate promiscuity of 1-deoxy-D-xylulose 5-phosphate synthase. Org Lett 11:4748–4751

    PubMed  CAS  Google Scholar 

  • Calfapietra C, Wiberley AE, Falbel TG, Linskey AR, Scarascia Mugnozza G, Karnosky DF, Loreto F, Sharkey TD (2007) Isoprene synthase expression and protein levels are reduced under elevated O3 but not under elevated CO2 (FACE) in field-grown aspen trees. Plant Cell Environ 30:654–661

    PubMed  CAS  Google Scholar 

  • Chen F, Tholl D, Bohlmann J, Pichersky E (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66:212–229

    PubMed  CAS  Google Scholar 

  • Cinege G, Louis S, Hänsch R, Schnitzler J-P (2009) Regulation of isoprene synthase promoter by environmental and internal factors. Plant Mol Biol 69:593–604

    PubMed  CAS  Google Scholar 

  • Copolovici LO, Niinemets Ü (2005) Temperature dependencies of Henry’s law constants and octanol/water partition coefficients for key plant volatile monoterpenoids. Chemosphere 61:1390–1400

    PubMed  CAS  Google Scholar 

  • Delwiche CF, Sharkey TD (1993) Rapid appearance of 13C in biogenic isoprene when 13CO2 is fed to intact leaves. Plant Cell Environ 16:587–591

    CAS  Google Scholar 

  • Dogbo O, Camara B (1987) Purification of isopentenyl pyrophosphate isomerase and geranylgeranyl pyrophosphate synthase from Capsicum chromoplasts by affinity chromatography. Biochim Biophys Acta 920:140–148

    CAS  Google Scholar 

  • Engprasert S, Taura F, Shoyama Y (2005) Molecular cloning, expression and characterization of recombinant 1-deoxy-D-xylulose-5-phosphate reductoisomerase from Coleus forskohlii Briq. Plant Sci 169:287–294

    CAS  Google Scholar 

  • Eubanks LM, Poulter CD (2003) Rhodobacter capsulatus 1-deoxy-D-xylulose 5-phosphate synthase: steady-state kinetics and substrate binding. Biochemistry 42:1140–1149

    PubMed  CAS  Google Scholar 

  • Fall R, Monson RK (1992) Isoprene emission rate and intercellular isoprene concentration as influenced by stomatal distribution and conductance. Plant Physiol 100:987–992

    PubMed  CAS  Google Scholar 

  • Fall R, Wildermuth MC (1998) Isoprene synthase: from biochemical mechanism to emission algorithm. J Geophys Res Atmos 103:25599–25609

    CAS  Google Scholar 

  • Farquhar GD, Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    CAS  Google Scholar 

  • Fineschi S, Loreto F, Staudt M, Peñuelas J (2013) Diversification of volatile isoprenoid emissions from trees: evolutionary and ecological perspectives. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Fisher AJ, Baker BM, Greenberg JP, Fall R (2000) Enzymatic synthesis of methylbutenol from dimethylallyl diphosphate in needles of Pinus sabiniana. Arch Biochem Biophys 383:128–134

    PubMed  CAS  Google Scholar 

  • Fuentes JD, Wang D (1999) On the seasonality of isoprene emission from a mixed temperate forest. Ecol Appl 9:1118–1131

    Google Scholar 

  • Fuentes JD, Wang D, Gu L (1999) Seasonal variations in isoprene emissions from a boreal aspen forest. J Appl Meteorol 38:855–869

    Google Scholar 

  • Funk JL, Jones CG, Baker CJ, Fuller HM, Giardina CP, Lerdau MT (2003) Diurnal variation in the basal emission rate of isoprene. Ecol Appl 13:269–278

    Google Scholar 

  • Furumoto T, Yamaguchi T, Ohshima-Ichie Y, Nakamura M, Tsuchida-Iwata Y, Shimamura M, Ohnishi J, Hata S, Gowik U, Westhoff P, Brautigam A, Weber APM, Izui K (2011) A plastidial sodium-dependent pyruvate transporter. Nature 476:472–475

    PubMed  CAS  Google Scholar 

  • Geist JG, Lauw S, Illarionova V, Illarionov B, Fischer M, Gräwert T, Rohdich F, Eisenreich W, Kaiser J, Groll M, Scheurer C, Wittlin S, Alonso-Gómez JL, Schweizer WB, Bacher A, Diederich F (2010) Thiazolopyrimidine inhibitors of 2-methylerythritol 2,4-cyclodiphosphate synthase (IspF) from Mycobacterium tuberculosis and Plasmodium falciparum. ChemMedChem 5:1092–1101

    PubMed  CAS  Google Scholar 

  • Geron CD, Guenther A, Sharkey TD, Arnts RR (2000) Temporal variability in basal isoprene emission factor. Tree Physiol 20:799–805

    PubMed  Google Scholar 

  • Goldstein AH, Goulden ML, Munger JW, Wofsy SC, Geron CD (1998) Seasonal course of isoprene emissions from a midlatitude deciduous forest. J Geophys Res 103:31045–31056

    CAS  Google Scholar 

  • Gräwert T, Kaiser J, Zepeck F, Laupitz R, Hecht S, Amslinger S, Schramek N, Schleicher E, Weber S, Haslbeck M, Buchner J, Rieder C, Arigoni D, Bacher A, Eisenreich W, Rohdich F (2004) IspH protein of Escherichia coli: studies on iron-sulfur cluster implementation and catalysis. J Am Chem Soc 126:12847–12855

    PubMed  Google Scholar 

  • Gray DW, Goldstein AH, Lerdau MT (2005) The influence of light environment on photosynthesis and basal methylbutenol emission from Pinus ponderosa. Plant Cell Environ 28:1463–1474

    CAS  Google Scholar 

  • Gray DW, Goldstein AH, Lerdau MT (2006) Thermal history regulates methylbutenol basal emission rate in Pinus ponderosa. Plant Cell Environ 29:1298–1308

    PubMed  Google Scholar 

  • Gray DW, Breneman SR, Topper LA, Sharkey TD (2011) Biochemical characterization and homology modeling of methyl butenol synthase and implications for understanding hemiterpene synthase evolution in plants. J Biol Chem 286:20582–20590

    PubMed  CAS  Google Scholar 

  • Grinspoon J, Bowman WD, Fall R (1991) Delayed onset of isoprene emission in developing velvet bean (Mucuna sp.) leaves. Plant Physiol 97:170–174

    PubMed  CAS  Google Scholar 

  • Grote R, Monson RK, Niinemets Ü (2013) Leaf-level models of constitutive and stress-driven volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Guenther A (1997) Seasonal and spatial variations in natural volatile organic compound emissions. Ecol Appl 7:34–45

    Google Scholar 

  • Guenther A (2013) Upscaling biogenic volatile compound emissions from leaves to landscapes. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Guenther AB, Zimmerman PR, Harley PC (1993) Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analysis. J Geophys Res 98:12,609–612,617

    Google Scholar 

  • Hahn FM, Eubanks LM, Testa CA, Blagg BSJ, Baker JA, Poulter CD (2001) 1-deoxy-D-xylulose 5-phosphate synthase, the gene product of open reading frame (ORF) 2816 and ORF 2895 in Rhodobacter capsulatus. J Bacteriol 183:1–11

    PubMed  CAS  Google Scholar 

  • Hanson DT, Sharkey TD (2001a) Effect of growth conditions on isoprene emission and other thermotolerance-enhancing compounds. Plant Cell Environ 24:929–936

    CAS  Google Scholar 

  • Hanson DT, Sharkey TD (2001b) Rate of acclimation of the capacity for isoprene emission in response to light and temperature. Plant Cell Environ 24:937–946

    CAS  Google Scholar 

  • Harley PC (2013) The roles of stomatal conductance and compound volatility in controlling the emission of volatile organic compounds from leaves. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Harley PC, Litvak ME, Sharkey TD, Monson RK (1994) Isoprene emission from velvet bean leaves. Interactions among nitrogen availability, growth photon flux density, and leaf development. Plant Physiol 105:279–285

    PubMed  CAS  Google Scholar 

  • Harley P, Fridd-Stroud V, Greenberg J, Guenther A, Vasconcellos P (1998) Emission of 2-methyl-3-buten-2-ol by pines: a potentially large natural source of reactive carbon to the atmosphere. J Geophys Res 103:25479–25486

    CAS  Google Scholar 

  • Harrison SP, Morfopoulos C, Dani KGS, Prentice IC, Arneth A, Atwell BJ, Barkley MP, Leishman MR, Loreto F, Medlyn BE, Niinemets Ü, Possell M, Peñuelas J, Wright IJ (2013) Volatile isoprenoid emissions from plastid to planet. New Phytol 197:49–57

    PubMed  CAS  Google Scholar 

  • Holopainen JK, Nerg A-M, Blande JD (2013) Multitrophic signalling in polluted atmospheres. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Huang M, Abel C, Sohrabi R, Petri J, Haupt I, Cosimano J, Gershenzon J, Tholl D (2010) Variation of herbivore-induced volatile terpenes among Arabidopsis ecotypes depends on allelic differences and subcellular targeting of two terpene synthases, TPS02 and TPS03. Plant Physiol 153:1293–1310

    PubMed  CAS  Google Scholar 

  • Hyatt DC, Croteau R (2005) Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (−)-pinene synthase from Abies grandis. Arch Biochem Biophys 439:222–233

    PubMed  CAS  Google Scholar 

  • Jardine K, Yañez Serrano A, Arneth A, Abrell L, Jardine A, van Haren J, Artaxo P, Rizzo LV, Ishida FY, Karl T, Kesselmeier J, Saleska S, Huxman T (2011) Within-canopy sesquiterpene ozonolysis in Amazonia. J Geophys Res 116:D19301

    Google Scholar 

  • Jawaid S, Seidle H, Zhou W, Abdirahman H, Abadeer M, Hix JH, van Hoek ML, Couch RD (2009) Kinetic characterization and phosphoregulation of the Francisella tularensis 1-deoxy-D-xylulose 5-phosphate reductoisomerase (MEP synthase). PLoS One 4:e8288

    PubMed  Google Scholar 

  • Jones BL, Porter JW, John H. Law HCR (1985) Enzymatic synthesis of phytoene. In: Law JH, Rilling HC (eds) Methods in Enzymolology, vol 110, Academic Press, New York, pp 209–220

    Google Scholar 

  • Kampranis SC, Ioannidis D, Purvis A, Mahrez W, Ninga E, Katerelos NA, Anssour S, Dunwell JM, Degenhardt J, Makris AM, Goodenough PW, Johnson CB (2007) Rational conversion of substrate and product specificity in a Salvia monoterpene synthase: structural insights into the evolution of terpene synthase function. Plant Cell 19:1994–2005

    PubMed  CAS  Google Scholar 

  • Karl TK, Fall RF, Rosenstiel TR, Prazeller PP, Larsen BL, Seufert GS, Lindinger WL (2002) On-line analysis of the 13CO2 labeling of leaf isoprene suggests multiple subcellular origins of isoprene precursors. Planta 215:894–905

    PubMed  CAS  Google Scholar 

  • Katoh S, Hyatt D, Croteau R (2004) Altering product outcome in Abies grandis (−)-limonene synthase and (−)-limonene/(−)-α-pinene synthase by domain swapping and directed mutagenesis. Arch Biochem Biophys 425:65–76

    PubMed  CAS  Google Scholar 

  • Kiirats O, Cruz JA, Edwards GE, Kramer DM (2009) Feedback limitation of photosynthesis at high CO2 acts by modulating the activity of the chloroplast ATP synthase. Funct Plant Biol 36:893–901

    CAS  Google Scholar 

  • Kollas A-K, Duin EC, Eberl M, Altincicek B, Hintz M, Reichenberg A, Henschker D, Henne A, Steinbrecher I, Ostrovsky DN, Hedderich R, Beck E, Jomaa H, Wiesner J (2002) Functional characterization of GcpE, an essential enzyme of the non-mevalonate pathway of isoprenoid biosynthesis. FEBS Lett 532:432–436

    PubMed  CAS  Google Scholar 

  • Kreuzwieser J, Rennenberg H (2013) Flooding-driven emissions from trees. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Kulmala M, Nieminen T, Chellapermal R, Makkonen R, Bäck J, Kerminen V-M (2013) Climate feedbacks linking the increasing atmospheric CO2 concentration, BVOC emissions, aerosols and clouds in forest ecosystems. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Kuzma J, Fall R (1993) Leaf isoprene emission rate is dependent on leaf development and the level of isoprene synthase. Plant Physiol 101:435–440

    PubMed  CAS  Google Scholar 

  • Kuzuyama T, Takagi M, Takahashi S, Seto H (2000) Cloning and characterization of 1-deoxy-D-xylulose 5-phosphate synthase from Streptomyces sp. strain CL190, which uses both the mevalonate and nonmevalonate pathways for isopentenyl diphosphate biosynthesis. J Bacteriol 182:891–897

    PubMed  CAS  Google Scholar 

  • Lee J-K, Oh D-K, Kim S-Y (2007) Cloning and characterization of the dxs gene, encoding 1-deoxy-D-xylulose 5-phosphate synthase from Agrobacterium tumefaciens, and its overexpression in Agrobacterium tumefaciens. J Biotechnol 128:555–566

    PubMed  CAS  Google Scholar 

  • Lehning A, Zimmer I, Steinbrecher R, Brüggemann N, Schnitzler J-P (1999) Isoprene synthase activity and its relation to isoprene emission in Quercus robur L. leaves. Plant Cell Environ 22:495–504

    CAS  Google Scholar 

  • Lehning A, Zimmer W, Zimmer I, Schnitzler J-P (2001) Modeling of annual variations of oak (Quercus robur L.) isoprene synthase activity to predict isoprene emission rates. J Geophys Res 106D:3157–3166

    Google Scholar 

  • Li Z, Sharkey TD (2013) Profiling of the methylerythritol phosphate pathway reveals the source of post-illumination isoprene burst from leaves. Plant Cell Environ 36:429–437

    PubMed  CAS  Google Scholar 

  • Li Z, Ratliff EA, Sharkey TD (2011) Effect of temperature on post-illumination isoprene emission in oak and poplar. Plant Physiol 155:1037–1046

    PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Rohmer M, Schwender J (1997) Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiol Plant 101:643–652

    CAS  Google Scholar 

  • Loivamäki M, Louis S, Cinege G, Zimmer I, Fischbach RJ, Schnitzler J-P (2007) Circadian rhythms of isoprene biosynthesis in grey poplar leaves. Plant Physiol 143:540–551

    PubMed  Google Scholar 

  • Loreto F, Sharkey TD (1993) On the relationship between isoprene emission and photosynthetic metabolites under different environmental conditions. Planta 189:420–424

    CAS  Google Scholar 

  • Loreto F, Pinelli P, Brancaleoni E, Ciccioli P (2004) 13C labelling reveals chloroplastic and extra-chloroplastic pools of dimethylallyl pyroposphate and their contribution to isoprene formation. Plant Physiol 135:1903–1907

    PubMed  CAS  Google Scholar 

  • Lützow M, Beyer P (1988) The isopentenyl-diphosphate Δ-isomerase and its relation to the phytoene synthase complex in daffodil chromoplasts. Biochim Biophys Acta 959:118–126

    Google Scholar 

  • Mandel MA, Feldman KA, Herrera-Estrella L, Rocha-Sosa M, Leön P (1996) CLA1, a novel gene required for chloroplast development, is highly conserved in evolution. Plant J 9:649–658

    PubMed  CAS  Google Scholar 

  • Martin MJ, Stirling CM, Humphries SW, Long SP (2000) A process-based model to predict the effects of climatic change on leaf isoprene emission rates. Ecol Model 131:161–174

    CAS  Google Scholar 

  • Martin DM, Fäldt J, Bohlmann J (2004) Functional characterization of nine Norway spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiol 135:1908–1927

    PubMed  CAS  Google Scholar 

  • Martin D, Aubourg S, Schouwey M, Daviet L, Schalk M, Toub O, Lund S, Bohlmann J (2010) Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biol 10:226

    PubMed  Google Scholar 

  • Mayrhofer S, Teuber M, Zimmer I, Louis S, Fischbach RJ, Schnitzler J-P (2005) Diurnal and seasonal variation of isoprene biosynthesis-related genes in grey poplar leaves. Plant Physiol 139:474–484

    PubMed  CAS  Google Scholar 

  • Miller B, Oschinski C, Zimmer W (2001) First isolation of an isoprene synthase gene from poplar and successful expression of the gene in Escherichia coli. Planta 213:483–487

    PubMed  CAS  Google Scholar 

  • Monson RK (2013) Metabolic and gene expression controls on the production of biogenic volatile organic compounds. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Monson RK, Fall R (1989) Isoprene emission from aspen leaves. The influence of environment and relation to photosynthesis and photorespiration. Plant Physiol 90:267–274

    PubMed  CAS  Google Scholar 

  • Monson RK, Jaeger CH, Adams WW III, Driggers EM, Silver GM, Fall R (1992) Relationships among isoprene emission rate, photosynthesis, and isoprene synthase activity as influenced by temperature. Plant Physiol 98:1175–1180

    PubMed  CAS  Google Scholar 

  • Monson RK, Harley PC, Litvak ME, Wildermuth M, Guenther AB, Zimmerman PR, Fall R (1994) Environmental and developmental controls over the seasonal pattern of isoprene emission from aspen leaves. Oecologia 99:260–270

    Google Scholar 

  • Monson RK, Grote R, Niinemets Ü, Schnitzler J-P (2012) Tansley review. Modeling the isoprene emission rate from leaves. New Phytol 195:541–559

    PubMed  CAS  Google Scholar 

  • Monson RK, Jones RT, Rosenstiel TN, Schnitzler J-P (2013) Why only some plants emit isoprene. Plant Cell Environ 36:503–516. doi:10.1111/pce.12015

    PubMed  CAS  Google Scholar 

  • Niinemets Ü, Tenhunen JD, Harley PC, Steinbrecher R (1999) A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus. Plant Cell Environ 22:1319–1335

    CAS  Google Scholar 

  • Niinemets Ü, Copolovici L, Hüve K (2010) High within-canopy variation in isoprene emission potentials in temperate trees: implications for predicting canopy-scale isoprene fluxes. J Geophys Res Biogeosci 115:G04029

    Google Scholar 

  • O’Maille PE, Malone A, Dellas N, Andes Hess B, Smentek L, Sheehan I, Greenhagen BT, Chappell J, Manning G, Noel JP (2008) Quantitative exploration of the catalytic landscape separating divergent plant sesquiterpene synthases. Nat Chem Biol 4:617–623

    PubMed  Google Scholar 

  • Ohta K (1986) Diurnal and seasonal variations in emission from live oak. Geochem J 19:269–274

    CAS  Google Scholar 

  • Pegoraro E, Potosnak MJ, Monson RK, Rey A, Barron-Gafford G, Osmond CB (2007) The effect of elevated CO2, soil and atmospheric water deficit and seasonal phenology on leaf and ecosystem isoprene emission. Funct Plant Biol 34:774–784

    CAS  Google Scholar 

  • Pétron G, Harley P, Greenberg J, Guenther A (2001) Seasonal temperature variations influence isoprene emission. Atmos Environ 28:1707–1710

    Google Scholar 

  • Phillips MA, León P, Boronat A, Rodríguez-Concepción M (2008) The plastidial MEP pathway: unified nomenclature and resources. Trends Plant Sci 13:619–623

    PubMed  CAS  Google Scholar 

  • Possell M, Hewitt CN (2011) Isoprene emissions from plants are mediated by atmospheric CO2 concentrations. Global Change Biol 17:1595–1610

    Google Scholar 

  • Possell M, Loreto F (2013) The role of volatile organic compounds in plant resistance to abiotic stresses: responses and mechanisms. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Possell M, Nicholas Hewitt C, Beerling DJ (2005) The effects of glacial atmospheric CO2 concentrations and climate on isoprene emissions by vascular plants. Glob Chang Biol 11:60–69

    Google Scholar 

  • Putra SR, Disch A, Bravo JM, Rohmer M (1998) Distribution of mevalonate and glyceraldehyde-3-phosphate/pyruvate routes for isoprenoid biosynthesis in some gram-negative bacteria and mycobacteria. FEMS Microbiol Lett 164:169–175

    PubMed  CAS  Google Scholar 

  • Rajabi Memari H, Pazouki L, Niinemets Ü (2013) The biochemistry and molecular biology of volatile messengers in trees. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Rasulov B, Copolovici L, Laisk A, Niinemets Ü (2009a) Postillumination isoprene emission: in vivo measurements of dimethylallyldiphosphate pool size and isoprene synthase kinetics in aspen leaves. Plant Physiol 149:1609–1618

    PubMed  CAS  Google Scholar 

  • Rasulov B, Hüve K, Valbe M, Laisk A, Niinemets Ü (2009b) Evidence that light, carbon dioxide, and oxygen dependencies of leaf isoprene emission are driven by energy status in hybrid aspen. Plant Physiol 151:448–460

    PubMed  CAS  Google Scholar 

  • Rasulov B, Hüve K, Bichele I, Laisk A, Niinemets Ü (2010) Temperature response of isoprene emission in vivo reflects a combined effect of substrate limitations and isoprene synthase activity: a kinetic analysis. Plant Physiol 154:1558–1570

    PubMed  CAS  Google Scholar 

  • Rasulov B, Hüve K, Laisk A, Niinemets Ü (2011) Induction of a longer term component of isoprene release in darkened aspen leaves: origin and regulation under different environmental conditions. Plant Physiol 156:816–831

    PubMed  CAS  Google Scholar 

  • Rivasseau C, Seemann M, Boisson A-M, Streb P, Gout E, Douce R, Rohmer M, Bligny R (2009) Accumulation of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate in illuminated plant leaves at supraoptimal temperatures reveals a bottleneck of the prokaryotic methylerythritol 4-phosphate pathway of isoprenoid biosynthesis. Plant Cell Environ 32:82–92

    PubMed  CAS  Google Scholar 

  • Rohdich F, Wungsintaweekul J, Eisenreich W, Richter G, Schuhr CA, Hecht S, Zenk MH, Bacher A (2000) Biosynthesis of terpenoids: 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase of Arabidopsis thaliana. Proc Natl Acad Sci 97:6451–6456

    PubMed  CAS  Google Scholar 

  • Rohdich F, Hecht S, Gärtner K, Adam P, Krieger C, Amslinger S, Arigoni D, Bacher A, Eisenreich W (2002) Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein. Proc Natl Acad Sci USA 99:1158–1163

    PubMed  CAS  Google Scholar 

  • Rohdich F, Lauw S, Kaiser J, Feicht R, Köhler P, Bacher A, Eisenreich W (2006) Isoprenoid biosynthesis in plants – 2-C-methyl-D-erythritol-4-phosphate synthase (IspC protein) of Arabidopsis thaliana. FEBS J 273:4446–4458

    PubMed  CAS  Google Scholar 

  • Rohmer M, Seemann M, Horbach S, Bringer-Meyer S, Sahm H (1996) Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. J Am Chem Soc 118:2564–2566

    CAS  Google Scholar 

  • Rosenkranz M, Schnitzler J-P (2013) Genetic engineering of BVOC emissions from trees. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Rosenstiel TN, Fisher AJ, Fall R, Monson RK (2002) Differential accumulation of dimethylallyl diphosphate in leaves and needles of isoprene- and methylbutenol-emitting and nonemitting species. Plant Physiol 129:1276–1284

    PubMed  CAS  Google Scholar 

  • Rosenstiel TN, Potosnak MJ, Griffin KL, Fall R, Monson RK (2003) Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature 421:256–259

    PubMed  CAS  Google Scholar 

  • Sage RF, Sharkey TD (1987) The effect of temperature on the occurrence of O2 and CO2 insensitive photosynthesis in field grown plants. Plant Physiol 84:658–664

    PubMed  CAS  Google Scholar 

  • Sanadze GA, Kalandaze AN (1966) Light and temperature curves of the evolution of C5H8. Fiziol Rast 13:458–461

    CAS  Google Scholar 

  • Sasaki K, Ohara K, Yazaki K (2005) Gene expression and characterization of isoprene synthase from Populus alba. FEBS Lett 579:2514–2518

    PubMed  CAS  Google Scholar 

  • Sasaki K, Saito T, Lamsa M, Oksman-Caldentey KM, Suzuki M, Ohyama K, Muranaka T, Ohara K, Yazaki K (2007) Plants utilize isoprene emission as a thermotolerance mechanism. Plant Cell Physiol 48:1254–1262

    PubMed  CAS  Google Scholar 

  • Schilmiller AL, Last RL, Pichersky E (2008) Harnessing plant trichome biochemistry for the production of useful compounds. Plant J 54:702–711

    PubMed  CAS  Google Scholar 

  • Schilmiller AL, Schauvinhold I, Larson M, Xu R, Charbonneau AL, Schmidt A, Wilkerson C, Last RL, Pichersky E (2009) Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proc Natl Acad Sci USA 106:10865–10870

    PubMed  CAS  Google Scholar 

  • Schilmiller AL, Miner DP, Larson M, McDowell E, Gang DR, Wilkerson C, Last RL (2010) Studies of a biochemical factory: tomato trichome deep expressed sequence tag sequencing and proteomics. Plant Physiol 153:1212–1223

    PubMed  CAS  Google Scholar 

  • Schnitzler J-P, Lehning A, Steinbrecher R (1997) Seasonal pattern of isoprene synthase activity in Quercus robur leaves and its significance for modelling isoprene emission rates. Bot Acta 110:240–243

    CAS  Google Scholar 

  • Schnitzler J-P, Zimmer I, Bachl A, Arend M, Fromm J, Fischbach RJ (2005) Biochemical properties of isoprene synthase in poplar (Populus × canescens). Planta 222:777–786

    PubMed  CAS  Google Scholar 

  • Schurgers G, Hickler T, Miller PA, Arneth A (2009) European emissions of isoprene and monoterpenes from the last glacial maximum to present. Biogeosciences 6:2779–2797

    CAS  Google Scholar 

  • Seemann M, Bui BTS, Wolff M, Tritsch D, Campos N, Boronat A, Marquet A, Rohmer M (2002) Isoprenoid biosynthesis through the methylerythritol phosphate pathway: the (E)-4-hydroxy-3 methylbut-2-enyl diphosphate synthase (GcpE) is a [4Fe-4S] protein. Angew Chem Int Ed 41:4337–4339

    CAS  Google Scholar 

  • Seemann M, Wegner P, Schünemann V, Bui BTS, Wolff M, Marquet A, Trautwein AX, Rohmer M (2005) Isoprenoid biosynthesis in chloroplasts via the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE) from Arabidopsis thaliana is a [4Fe-4S] protein. J Biol Inorg Chem 10:131–137

    PubMed  CAS  Google Scholar 

  • Seemann M, Tse Sum Bui B, Wolff M, Miginiac-Maslow M, Rohmer M (2006) Isoprenoid biosynthesis in plant chloroplasts via the MEP pathway: direct thylakoid/ferredoxin-dependent photoreduction of GcpE/IspG. FEBS Lett 580:1547–1552

    PubMed  CAS  Google Scholar 

  • Sgraja T, Alphey MS, Ghilagaber S, Marquez R, Robertson MN, Hemmings JL, Lauw S, Rohdich F, Bacher A, Eisenreich W, Illarionova V, Hunter WN (2008) Characterization of Aquifex aeolicus 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase – ligand recognition in a template for antimicrobial drug discovery. FEBS J 275:2779–2794

    PubMed  CAS  Google Scholar 

  • Sharkey TD (1985) Photosynthesis in intact leaves of C3 plants: physics, physiology and rate limitations. Bot Rev 51:53–105

    Google Scholar 

  • Sharkey TD (1991) Stomatal control of trace gas emissions. In: Sharkey TD, Holland EA, Mooney HA (eds) Trace gas emissions by plants. Academic, San Diego, pp 335–339

    Google Scholar 

  • Sharkey TD (2005) Effects of moderate heat stress on photosynthesis: Importance of thylakoid reactions, Rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ 28:269–277

    CAS  Google Scholar 

  • Sharkey TD, Loreto F (1993) Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves. Oecologia 95:328–333

    Google Scholar 

  • Sharkey TD, Seemann JR, Pearcy RW (1986) Contribution of metabolites of photosynthesis to postillumination CO2 assimilation in response to lightflecks. Plant Physiol 82:1063–1068

    PubMed  CAS  Google Scholar 

  • Sharkey TD, Vanderveer PJ (1989) Stromal phosphate concentration is low during feedback limited photosynthesis. Plant Physiol 91:679–684

    PubMed  CAS  Google Scholar 

  • Sharkey TD, Singsaas EL, Vanderveer PJ, Geron CD (1996) Field measurements of isoprene emission from trees in response to temperature and light. Tree Physiol 16:649–654

    PubMed  CAS  Google Scholar 

  • Sharkey TD, Singsaas EL, Lerdau MT, Geron C (1999) Weather effects on isoprene emission capacity and applications in emissions algorithms. Ecol Appl 9:1132–1137

    Google Scholar 

  • Sharkey TD, Yeh S, Wiberley AE, Falbel TG, Gong D, Fernandez DE (2005) Evolution of the isoprene biosynthetic pathway in kudzu. Plant Physiol 137:700–712

    PubMed  CAS  Google Scholar 

  • Sharkey TD, Wiberley AE, Donohue AR (2008) Isoprene emission from plants: why and how. Ann Bot 101:5–18

    PubMed  CAS  Google Scholar 

  • Sharkey TD, Gray DW, Pell HK, Breneman SR, Topper L (2013) Isoprene synthase genes form a monophyletic clade of acyclic terpene synthases in the Tps-b terpene synthase family. Evolution 67:1026–1040. doi:10.1111/evo.12013

    Google Scholar 

  • Silver GM, Fall R (1995) Characterization of aspen isoprene synthase, an enzyme responsible for leaf isoprene emission to the atmosphere. J Biol Chem 270:13010–13016

    PubMed  CAS  Google Scholar 

  • Singsaas EL, Sharkey TD (1998) The regulation of isoprene emission responses to rapid leaf temperature fluctuations. Plant Cell Environ 21:1181–1188

    CAS  Google Scholar 

  • Singsaas EL, Sharkey TD (2000) The effects of high temperature on isoprene synthesis in oak leaves. Plant Cell Environ 23:751–757

    CAS  Google Scholar 

  • Spurgeon SL, Sathyamoorthy N, Porter JW (1984) Isopentenyl pyrophosphate isomerase and prenyltransferase from tomato fruit plastids. Arch Biochem Biophys 230:446–454

    PubMed  CAS  Google Scholar 

  • Stitt M, Grosse H (1988) Interactions between sucrose synthesis and CO2 fixation. IV. Temperature-dependent adjustment of the relation between sucrose synthesis and CO2 fixation. J Plant Physiol 133:392–400

    CAS  Google Scholar 

  • Sun Z, Copolovici L, Niinemets Ü (2012) Can the capacity for isoprene emissions acclimate to environmental modifications during autumn senescence in temperate deciduous tree species Populus tremula? J Plant Res 125:263–274

    PubMed  CAS  Google Scholar 

  • Takahashi S, Kuzuyama T, Watanabe H, Seto H (1998) A 1-deoxy-D-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-D-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis. Proc Natl Acad Sci USA 95:9879–9884

    PubMed  CAS  Google Scholar 

  • Takenoya M, Ohtaki A, Noguchi K, Endo K, Sasaki Y, Ohsawa K, Yajima S, Yohda M (2010) Crystal structure of 1-deoxy-D-xylulose 5-phosphate reductoisomerase from the hyperthermophile Thermotoga maritima for insights into the coordination of conformational changes and an inhibitor binding. J Struct Biol 170:532–539

    PubMed  CAS  Google Scholar 

  • Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9:297–304

    PubMed  CAS  Google Scholar 

  • Trapp S, Croteau R (2001) Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 158:811–832

    PubMed  CAS  Google Scholar 

  • Trowbridge AM, Stoy PC (2013) BVOC-mediated plant-herbivore interactions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009a) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5:283–291

    PubMed  CAS  Google Scholar 

  • Vickers CE, Possell M, Cojocariu CI, Velikova VB, Laothawornkitkul J, Ryan A, Mullineaux PM, Hewitt CN (2009b) Isoprene synthesis protects transgenic tobacco plants from oxidative stress. Plant Cell Environ 32:520–531

    PubMed  CAS  Google Scholar 

  • Weise SE, Li Z, Sutter AE, Corrion A, Banerjee A, Sharkey TD (2013) Measuring dimethylallyl diphosphate available for isoprene synthesis. Anal Biochem 435:27–34

    PubMed  CAS  Google Scholar 

  • Wiberley AE, Linskey AR, Falbel TG, Sharkey TD (2005) Development of the capacity for isoprene emission in kudzu. Plant Cell Environ 28:898–905

    CAS  Google Scholar 

  • Wiberley AE, Donohue AR, Meier ME, Sharkey TD (2008) Regulation of isoprene emission in Populus trichocarpa leaves subjected to changing growth temperature. Plant Cell Environ 31:258–267

    PubMed  CAS  Google Scholar 

  • Wiberley AE, Donohue AR, Westphal MM, Sharkey TD (2009) Regulation of isoprene emission from poplar leaves throughout a day. Plant Cell Environ 32:939–947

    PubMed  CAS  Google Scholar 

  • Wildermuth MC, Fall R (1996) Light-dependent isoprene emission. Characterization of a thylakoid-bound isoprene synthase in Salix discolor chloroplasts. Plant Physiol 112:171–182

    PubMed  CAS  Google Scholar 

  • Wilkinson MJ, Owen SM, Possell M, Hartwell J, Gould P, Hall A, Vickers C, Nicholas Hewitt C (2006) Circadian control of isoprene emissions from oil palm (Elaeis guineensis). Plant J 47:960–968

    PubMed  CAS  Google Scholar 

  • Yoshikuni Y, Ferrin TE, Keasling JD (2006) Designed divergent evolution of enzyme function. Nature 440:1078–1082

    PubMed  CAS  Google Scholar 

  • Young PJ, Arneth A, Schurgers G, Zeng G, Pyle JA (2009) The CO2 inhibition of terrestrial isoprene emission significantly affects future ozone projections. Atmos Chem Phys 9:2793–2803

    CAS  Google Scholar 

  • Zepeck F, Gräwert T, Kaiser J, Schramek N, Eisenreich W, Bacher A, Rohdich F (2005) Biosynthesis of isoprenoids. Purification and properties of IspG protein from Escherichia coli. J Org Chem 70:9168–9174

    PubMed  CAS  Google Scholar 

  • Zhang XS, Mu YJ, Song WZ, Zhuang YH (2000) Seasonal variations of isoprene emissions from deciduous trees. Atmos Environ 34:3027–3032

    Google Scholar 

  • Zimmer W, Brüggemann N, Emeis S, Giersch C, Lehning A, Steinbrecher R, Schnitzler J-P (2000) Process-based modelling of isoprene emission by oak leaves. Plant Cell Environ 23:585–595

    CAS  Google Scholar 

  • Zimmer W, Steinbrecher R, Körner C, Schnitzler J-P (2003) The process-based SIM-BIM model: towards more realistic prediction of isoprene emissions from adult Quercus petraea forest trees. Atmos Environ 37:1665–1671

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Sharkey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Li, Z., Sharkey, T.D. (2013). Molecular and Pathway Controls on Biogenic Volatile Organic Compound Emissions. In: Niinemets, Ü., Monson, R. (eds) Biology, Controls and Models of Tree Volatile Organic Compound Emissions. Tree Physiology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6606-8_5

Download citation

Publish with us

Policies and ethics