Skip to main content

Global Modelling of Volatile Organic Compound Emissions

  • Chapter
  • First Online:
Biology, Controls and Models of Tree Volatile Organic Compound Emissions

Part of the book series: Tree Physiology ((TREE,volume 5))

Abstract

The majority of volatile organic compounds emitted from the terrestrial biosphere (BVOCs) are highly reactive hydrocarbons that have been shown to affect atmospheric composition across the full range of temporal scales from fractions of seconds to centuries and spatial scales from μm to global. Furthermore, biogenic emissions are thought to account for around 90 % of the total quantity of non-methane hydrocarbons released into the atmosphere each year. As a result, BVOCs have substantial air quality and climate impacts, and there is an urgent need to quantify and map their emissions as precisely as possible. In this chapter we outline the use of computer models to estimate annual global emissions of BVOCs and the on-going efforts to validate and constrain the output from such models. The current generation of BVOC emission models generally includes only the constitutive emissions of a handful of compounds: chiefly isoprene, monoterpenes and methanol, which are thought to account for about 80 % of the total flux from the biosphere. At present, it is estimated by global models that total annual emission of isoprene amounts to around 500 Tg of carbon, with the emissions dominated by tropical ecosystems and by tree species. The emissions of monoterpenes are similarly distributed, although high levels of monoterpene emissions are also seen from the boreal forests. There is currently no consensus on the annual estimate of monoterpene emission, with estimates ranging from 30 to 150 Tg of carbon. Apart from these main compounds, the biosphere emits many hundreds of different compounds, some of which are produced as a short-lived, transient response to stress rather than as constitutive emissions. We discuss the role that biogenic emissions of reactive trace gases play in the Earth system as a whole, and consider the potential feedbacks that exist between BVOC emissions, atmospheric composition, air quality and climate, and the terrestrial biosphere, and how these can be studied with Earth system models. We finally suggest ways of improving and further developing the global models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANN:

Artificial Neural Networks

ATP:

Adenosine triphosphate

BER:

Basal emission rate

BVOCs:

Biogenic volatile organic compounds

CCMs:

Chemistry-climate models

CCN:

Cloud condensation nuclei

CTMs:

Chemistry-transport models

DMADP:

Dimethylallyl diphosphate

ESMs:

Earth system models

GCMs:

General circulation models

NADPH:

Nicotinamide adenine dinucleotide phosphate

PPFD:

Photosynthetic quantum flux density

PFTs:

Plant functional types

SOA:

Secondary organic aerosols

VOCs:

Volatile organic compounds

References

  • Abbot DS, Palmer PI, Martin RV, Chance KV, Jacob DJ, Guenther A (2003) Seasonal and interannual variability of North American isoprene emissions as determined by formaldehyde column measurements from space. Geophys Res Lett 30:1886. doi:10.1029/2003GL017336

    Article  CAS  Google Scholar 

  • Allan JD, Alfarra MR, Bower KN, Coe H, Jayne JT, Worsnop DR, Aalto PP, Kulmala M, Hyötyläinen T, Cavalli F, Laaksonen A (2006) Size and composition measurements of background aerosol and new particle growth in a Finnish forest during QUEST 2 using an Aerodyne aerosol mass spectrometer. Atmos Chem Phys 6:315–327

    Article  CAS  Google Scholar 

  • Archibald AT, Jenkin ME, Shallcross DE (2010) An isoprene mechanism intercomparison. Atmos Environ 44:5356–5364

    Article  CAS  Google Scholar 

  • Arneth A, Niinemets Ü (2010) Induced BVOCs: how to bug our models? Trends Plant Sci 15:118–125

    Article  PubMed  CAS  Google Scholar 

  • Arneth A, Niinemets Ü, Pressley S, Back J, Hari P, Karl T, Noe S, Prentice IC, Serça D, Hickler T, Wolf A, Smith B (2007) Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO2-isoprene interaction. Atmos Chem Phys 7:31–53

    Article  CAS  Google Scholar 

  • Arneth A, Monson RK, Schurgers G, Niinemets Ü, Palmer PI (2008a) Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)? Atmos Chem Phys 8:4605–4620

    Article  CAS  Google Scholar 

  • Arneth A, Schurgers G, Hickler T, Miller PA (2008b) Effects of species composition, land surface cover, CO2 concentration and climate on isoprene emissions from European forests. Plant Biol 10:150–162. doi:10.1055/s-2007-965247

    Article  PubMed  CAS  Google Scholar 

  • Arneth A, Harrison SP, Zaehle S, Tsigaridis K, Menon S, Bartlein PJ, Feichter J, Korhola A, Kulmala M, O’Donnell D, Schurgers G, Sorvari S, Vesala T (2010) Terrestrial biogeochemical feedbacks in the climate system. Nat Geosci 3:525–532. doi:10.1038/NGEO905

    Article  CAS  Google Scholar 

  • Arneth A, Schurgers G, Lathière J, Duhl T, Beerling DJ, Hewitt CN, Martin M, Guenther A (2011) Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation. Atmos Chem Phys 11:8037–8052

    Article  CAS  Google Scholar 

  • Ashmore MR (2005) Assessing future global impacts of ozone on vegetation. Plant Cell Environ 28:949–964

    Article  CAS  Google Scholar 

  • Ashworth K, Wild O, Hewitt CN (2010) Sensitivity of isoprene emissions estimated using MEGAN to the time resolution of input climate data. Atmos Chem Phys 10:1193–1201

    Article  CAS  Google Scholar 

  • Atkinson R (2000) Atmospheric chemistry of VOCs and NOX. Atmos Environ 34:2063–2101

    Article  CAS  Google Scholar 

  • Atkinson R, Arey J (2003) Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmos Environ 37:S197–S219

    Article  CAS  Google Scholar 

  • Bäck J, Hari P, Hakola H, Juurola E, Kulmala M (2005) Dynamics of monoterpene emissions in Pinus sylvestris during early spring. Boreal Environ Res 10:409–424

    Google Scholar 

  • Bäck J, Aalto J, Henriksson M, Hakola H, He Q, Boy M (2012) Chemodiversity of a Scots pine stand and implications for terpene air concentrations. Biogeosciences 9:689–702

    Article  CAS  Google Scholar 

  • Barkley MP, Palmer PI, Kuhn U, Kesselmeier J, Chance K, Kurosu T, Martin R, Helmig D, Guenther A (2008) Net ecosystem fluxes of isoprene over tropical South America inferred from Global Ozone Monitoring Experiment (GOME) observations of HCHO columns. J Geophys Res Atmos 113:D20304. doi:10.1029/2008JD009863

    Article  CAS  Google Scholar 

  • Barkley MP, Palmer PI, De Smedt I, Karl T, Guenther A, Van Roozendael M (2009) Regulated large-scale annual shutdown of Amazonian isoprene emissions? Geophys Res Lett 36:L04803. doi:10.1029/2008GL036843

    Article  CAS  Google Scholar 

  • Bauer SE, Menon S, Koch D, Bond TC, Tsigaridis K (2010) A global modeling study on carbonaceous aerosol microphysical characteristics and radiative effects. Atmos Chem Phys 10:7439–7456

    Article  CAS  Google Scholar 

  • Bellouin N, Rae J, Jones A, Johnson C, Haywood J, Boucher O (2011) Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate. J Geophys Res 116:D20206. doi:10.1029/2011JD016074

    Article  CAS  Google Scholar 

  • Bey I, Jacob DJ, Yantosca RM, Logan JA, Field BD, Fiore AM, Li QB, Liu HGY, Mickley LJ, Schultz MG (2001) Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation. J Geophys Res 106:23073–23095. doi:10.1029/2001JD000807

    Article  CAS  Google Scholar 

  • Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford, UK

    Google Scholar 

  • Boissard C, Cao X-L, Juan C-Y, Hewitt CN, Gallager M (2001) Seasonal variations in VOC emission rates from gorse (Ulex europaeus). Atmos Environ 35:917–927

    Article  CAS  Google Scholar 

  • Boissard C, Chervier F, Dutot A (2008) Assessment of high (diurnal) to low (seasonal) frequency variations of isoprene emission rates using a neural network approach. Atmos Chem Phys 8:2089–2101

    Article  CAS  Google Scholar 

  • Bonn B, Boy M, Kulmala M, Groth A, Trawny K, Borchert S, Jacobi S (2009) A new parameterization for ambient particle formation over coniferous forests and its potential implications for the future. Atmos Chem Phys 9:8079–8090

    Article  CAS  Google Scholar 

  • Brook EJ, Harder S, Severinghaus J, Steig EJ, Sucher CM (2000) On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Global Biogeochem Cycles 14:559–572. doi:10.1029/1999GB001182

    Article  CAS  Google Scholar 

  • Butler TM, Taraborrelli D, Fischer CBH, Harder H, Martinez M, Williams J, Lawrence MG, Lelieveld J (2008) Improved simulation of isoprene oxidation chemistry with the ECHAM5/MESSy chemistry-climate model: lessons from the GABRIEL airborne field campaign. Atmos Chem Phys 8:4529–4546

    Article  CAS  Google Scholar 

  • Calfapietra C, Pallozzi E, Lusini I, Velikova V (2013) Modification of BVOC emissions by changes in atmospheric [CO2] and air pollution. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Carlton AG, Baker KR (2011) Photochemical modelling of the Ozark isoprene volcano: MEGAN, BEIS, and their impacts on air quality predictions. Environ Sci Technol 45:4438–4445. doi:10.1021/es200050x

    Article  PubMed  CAS  Google Scholar 

  • Carslaw K, Boucher O, Spracklen DV, Mann GW, Rae JL, Woodward S, Kulmala M (2010) A review of natural aerosol interactions and feedbacks within the Earth system. Atmos Chem Phys 10:1701–1737

    Article  CAS  Google Scholar 

  • Chameides WL, Lindsay RW, Richardson J, Kiang CS (1988) The role of biogenic hydrocarbons in urban photochemical smog – Atlanta as a case-study. Science 241:1473–1475

    Article  PubMed  CAS  Google Scholar 

  • Chappellaz JA, Fung IY, Thompson AM (1993) The atmospheric CH4 increase since the last glacial maximum. 1. Source estimates. Tellus 45B:228–241

    CAS  Google Scholar 

  • Chappellaz JA, Blunier T, Kints S, Dallenbach A, Barnola J-M, Schwander J, Raynaud D, Stauffer B (1997) Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Holocene. J Geophys Res 102:15987–15997. doi:10.1029/97JD01017

    Article  CAS  Google Scholar 

  • Ciccioli P, Brancaleoni E, Frattoni M, Marta S, Brachetti A, Vitullo M, Tirone G, Valentini R (2003) Relaxed eddy accumulation, a new technique for measuring emission and deposition fluxes of volatile organic compounds by capillary gas chromatography and mass spectrometry. J Chromatogr A 985:283–296

    Article  PubMed  CAS  Google Scholar 

  • Collins WJ, Derwent RG, Johnson CE, Stevenson DS (2002) The oxidation of organic compounds in the troposphere and their global warming potentials. Clim Change 52:453–479. doi:10.1023/A:1014221225434

    Article  CAS  Google Scholar 

  • Delon C, Serça D, Boissard C, Dupont R, Dutot A, Laville P, De Rosnay P, Delmas R (2007) Soil NO emissions modelling using artificial neural network. Tellus 59B:502–513

    CAS  Google Scholar 

  • Denman K, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Dindorf T, Kuhn U, Ganzeveld L, Schebeske G, Ciccioli P, Holzke C, Köble R, Seufert G, Kesselmeier J (2006) Significant light and temperature dependent monoterpene emissions from European beech (Fagus sylvatica L.) and their potential impact on the European volatile organic compound budget. J Geophys Res Atmos 111:D16305. doi:10.1029/2005JD006751

    Article  CAS  Google Scholar 

  • Dlugokencky EJ, Novelli PC, Montzka SA, Masarie KA, Lang PM, Crotwell AM, Miller JB, Gatti LV (2009) Observational constraints on recent increases in the atmospheric CH4 burden. Geophys Res Lett 36:L18803. doi:10.1029/2009GL039780

    Article  CAS  Google Scholar 

  • Dreyfus G, Martinez J-M, Samuelides M, Thiria S (2002) Réseaux de neurones: Méthodologie et applications. Eyrolles, Paris

    Google Scholar 

  • Etheridge DM, Steele LP, Francey RJ, Langenfelds RL (1998) Atmospheric methane between 1000 A.D. and present: evidence of anthropogenic emissions and climatic variability. J Geophys Res 103:15979–15993. doi:10.1029/98JD00923

    Article  CAS  Google Scholar 

  • Farquhar G, von Caemmerer S, Berry J (1980) A biochemical model of photosynthetic CO2 assimilation in the leaves of C3 species. Planta 149:78–90

    Article  CAS  Google Scholar 

  • Fineschi S, Loreto F, Staudt M, Peñuelas J (2013) Diversification of volatile isoprenoid emissions from trees: evolutionary and ecological perspectives. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Folberth GA, Hauglustaine DA, Lathière J, Brocheton F (2006) Interactive chemistry in the Laboratoire de Meteorologie Dynamique general circulation model: model description and impact analysis of biogenic hydrocarbons on tropospheric chemistry. Atmos Chem Phys 6:2273–2319

    Article  CAS  Google Scholar 

  • Fowler D, Pilegaard K, Sutton MA, Ambus P, Raivonen M, Duyzer J, Simpson D, Fagerli H, Fuzzi S, Schjoerring JK, Granier C, Neftel A, Isaksen ISA, Laj P, Maione M, Monks PS, Burkhardt J, Daemmgen U, Neirynck J, Personne E, Wichink-Kruit R, Butterbach-Bahl K, Flechard C, Tuovinen JP, Coyle M, Gerosa G, Loubet B, Altimir N, Gruenhage L, Ammann C, Cieslik S, Paoletti E, Mikkelsen TN, Ro-Poulsen H, Cellier P, Cape JN, Horváth L, Loreto F, Niinemets Ü, Palmer PI, Rinne J, Misztal P, Nemitz E, Nilsson D, Pryor S, Gallagher MW, Vesala T, Skiba U, Brüggemann N, Zechmeister-Boltenstern S, Williams J, O’Dowd C, Facchini MC, de Leeuw G, Flossman A, Chaumerliac N, Erisman JW (2009) Atmospheric composition change: ecosystems – atmosphere interactions. Atmos Environ 43:5193–5267

    Article  CAS  Google Scholar 

  • Fu TM, Jacob DJ, Palmer PI, Chance K, Wang YX, Barletta B, Blake DR, Stanton JC, Pilling MJ (2007) Space-based formaldehyde measurements as constraints on volatile organic compound emissions in east and south Asia and implications for ozone. J Geophys Res Atmos 112:D06312. doi:10.1029/2006JD007853

    Article  CAS  Google Scholar 

  • Fuentes JD, Lerdau M, Atkinson R, Baldocchi D, Bottenheim JW, Ciccioli P, Lamb B, Geron C, Gu L, Guenther A, Sharkey TD, Stockwell W (2000) Biogenic hydrocarbons in the atmospheric boundary layer: a review. Bull Am Meteorol Soc 81:1537–1575

    Article  Google Scholar 

  • Funk JL, Jones CG, Baker CJ, Fuller HM, Giardina CP, Lerdau MT (2003) Diurnal variation in the basal emission rate of isoprene. Ecol Appl 13:269–278

    Article  Google Scholar 

  • Fuzzi S, Andreae MO, Hueber BJ, Kulmala M, Bond TC, Boy M, Doherty SJ, Guenther A, Knakidou M, Kawamura K, Kerminen V-M, Lohmanm U, Russel LM, Pöschl U (2006) Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmos Chem Phys 6:2017–2038

    Article  CAS  Google Scholar 

  • Gay D (1987) A national inventory of biogenic hydrocarbon emissions based upon a simple forest canopy model. MS Thesis, Washington State University

    Google Scholar 

  • Geron CD, Guenther A, Sharkey T, Arnts RR (2000) Temporal variability in basal isoprene emission factor. Tree Physiol 20:799–805

    Article  PubMed  Google Scholar 

  • Geron C, Guenther A, Greenberg J, Karl T, Rasmussen R (2006) Biogenic volatile organic compound emissions from desert vegetation of the Southwestern US. Atmos Environ 40:1645–1660

    Article  CAS  Google Scholar 

  • Goldstein AH, Galbally IE (2007) Known and unexplored organic constituents in the earth’s atmosphere. Environ Sci Technol 41:1514–1521. doi:10.1021/es072476p

    Article  PubMed  CAS  Google Scholar 

  • Granier C, Petron G, Müller JF, Brasseur G (2000) The impact of natural and anthropogenic hydrocarbons on the tropospheric budget of carbon monoxide. Atmos Environ 34:5255–5270. doi:10.1016/S1352-2310(00)00299-5

    Article  CAS  Google Scholar 

  • Griffin RJ, Cocker DR, Flagan RC, Seinfeld JH (1999) Organic aerosol formation from the oxidation of biogenic hydrocarbons. J Geophys Res Atmos 104:3555–3567. doi:10.1029/1998JD100049

    Article  CAS  Google Scholar 

  • Grote R, Niinemets Ü (2008) Modeling volatile isoprenoid emissions – a story with split ends. Plant Biol 10:8–28

    Article  PubMed  CAS  Google Scholar 

  • Grote R, Keenan T, Lavoir A-V, Staudt M (2010) Process-based simulation of seasonality and drought stress in monoterpene emission models. Biogeosciences 7:257–274

    Article  CAS  Google Scholar 

  • Grote R, Monson RK, Niinemets Ü (2013) Leaf-level models of constitutive and stress-driven volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Gu L, Baldocchi DD, Wofsy SC, Munger JW, Michalsky JJ, Urbanski SP, Boden TA (2003) Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis. Science 299:2035–2038

    Article  PubMed  CAS  Google Scholar 

  • Guenther A (2013) Upscaling biogenic volatile compound emissions from leaves to landscapes. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Guenther AB, Monson RK, Fall R (1991) Isoprene and monoterpene emission rate variability – observations with Eucalyptus and emission rate algorithm development. J Geophys Res Atmos 96:10799–10808. doi:10.1029/91JD00960

    Article  Google Scholar 

  • Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global model of natural volatile organic compound emissions. J Geophys Res Atmos 100:8873–8892. doi:10.1029/94JD02950

    Article  CAS  Google Scholar 

  • Guenther A, Baugh W, Davis K, Hampton G, Harley P, Klinger L, Vierling L, Zimmerman P (1996) Isoprene fluxes measured by enclosure, relaxed eddy accumulation, surface layer gradient, mixed layer gradient, and mixed layer mass balance techniques. J Geophys Res 101:18555–18567. doi:10.1029/96JD00697

    Article  CAS  Google Scholar 

  • Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos Chem Phys 6:3181–3210

    Article  CAS  Google Scholar 

  • Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Duhl T, Emmons LK, Wang X (2012) The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN 2.1): an extended and updated framework for modeling biogenic emissions. Geosci Model Dev 5:1471–1492

    Article  Google Scholar 

  • Hallquist M, Wenger JC, Baltensperger U, Rudich Y, Simpson D, Claeys M, Dommen J, Donahue NM, George C, Goldstein AH, Hamilton JF, Herrmann H, Hoffmann T, Iinuma Y, Jang M, Jenkin ME, Jimenez JL, Kiendler-Scharr A, Maenhaut W, McFiggans G, Mentel TF, Monod A, Prevot ASH, Seinfeld JH, Surratt JD, Szmigielski R, Wildt J (2009) The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys 9:5155–5236

    Article  CAS  Google Scholar 

  • Harder SL, Shindell DT, Schmidt GA, Brook EJ (2007) A global climate model study of CH4 emissions during the Holocene and glacial-interglacial transitions constrained by ice core data. Global Biogeochem Cycles 21:GB1011. doi:10.1029/2005GB002680

    Article  CAS  Google Scholar 

  • Harley PC (2013) The roles of stomatal conductance and compound volatility in controlling the emission of volatile organic compounds from leaves. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Harrison SP, Morfopoulos C, Dani KGS, Prentice IC, Arneth A, Atwell BJ, Barkley MP, Leishman MR, Loreto F, Medlyn BE, Niinemets Ü, Possell M, Peñuelas J, Wright IJ (2013) Volatile isoprenoid emissions from plastid to planet. New Phytol 197:49–57. doi:10.1111/nph.12021

    Article  PubMed  CAS  Google Scholar 

  • Hauglustaine DA, Brasseur GP, Walters S, Rasch PJ, Muller JF, Emmons LK, Carroll CA (1998) MOZART, a global chemical transport model for ozone and related chemical tracers. 2. Model results and evaluation. J Geophys Res 103:28291–28335. doi:10.1029/98JD02398

    Article  CAS  Google Scholar 

  • Hauglustaine DA, Lathière J, Szopa S, Folberth GA (2005) Future tropospheric ozone simulated with a chemistry-climate-biosphere model. Geophys Res Lett 32:L24807. doi:10.1029/2005GL024031

    Article  CAS  Google Scholar 

  • Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90:1095–1107. doi:10.1175/2009BAMS2607.1

    Article  Google Scholar 

  • Heald CL, Jacob DJ, Park RJ, Russell LM, Huebert BJ, Seinfeld JH, Liao H, Weber RJ (2005) A large organic aerosol source in the free troposphere missing from current models. Geophys Res Lett 32:L18809. doi:10.1029/2005GL023831

    Article  CAS  Google Scholar 

  • Heald C, Wilkinson MJ, Monson RK, Alo CA, Wand G, Guenther A (2009) Response of isoprene emission to ambient CO2 changes and implications for global budgets. Glob Change Biol 15:1127–1140. doi:10.1111/j.1365-2486.2008.01802.x

    Article  Google Scholar 

  • Hewitt CN, MacKenzie AR, Di Carlo P, Di Marco CF, Dorsey JR, Evans M, Fowler D, Gallagher MW, Hopkins JR, Jones CE, Langford B, Lee JD, Lewis AC, Lim SF, McQuaid J, Misztal P, Moller SJ, Monks PS, Nemitz E, Oram DE, Owen SM, Phillips GJ, Pugh TAM, Pyle JA, Reeves CE, Ryder J, Siong J, Skiba U, Stewart DJ (2009) Nitrogen management is essential to prevent tropical oil palm plantations from causing groundlevel ozone pollution. Proc Natl Acad Sci USA 106:18447–18451

    Article  PubMed  CAS  Google Scholar 

  • Hewitt CN, Lee JD, MacKenzie AR, Barkley MP, Carslaw N, Carver GD, Chappell NA, Coe H, Collier C, Commane R, Davies F, Davison B, Di Carlo P, Di Marco CF, Dorsey JR, Edwards PM, Evans MJ, Fowler D, Furneaux KL, Gallagher M, Guenther A, Heard DE, Helfter C, Hopkins J, Ingham T, Irwin M, Jones C, Karunaharan A, Langford B, Lewis AC, Lim SF, MacDonald SM, Mahajan AS, Malpass S, McFiggans G, Mills G, Misztal P, Moller S, Monks PS, Nemitz E, Nicolas-Perea V, Oetjen H, Oram DE, Palmer PI, Phillips GJ, Pike R, Plane JMC, Pugh T, Pyle JA, Reeves CE, Robinson NH, Stewart D, Stone D, Whalley LK, Yin X (2010) Overview: oxidant and particle photochemical processes above a South-East Asian tropical rainforest (the OP3 project): introduction, rationale, location characteristics and tools. Atmos Chem Phys 10:169–199

    Article  CAS  Google Scholar 

  • Hewitt CN, Ashworth K, Boynard A, Guenther A, Langford B, MacKenzie AR, Misztal PK, Nemitz E, Owen SM, Possell M, Pugh TAM, Ryan AC, Wild O (2011) Ground-level ozone influenced by circadian control of isoprene emissions. Nat Geosci 4:671–674

    Article  CAS  Google Scholar 

  • Hogrefe C, Isukapalli SS, Tang XG, Georgopoulos PG, He S, Zalewsky EE, Hao W, Ku JY, Key T, Sistla G (2011) Impact of biogenic emission uncertainties on the simulated response of ozone and fine particulate matter to anthropogenic emission reductions. J Air Waste Manage Assoc 61:92–108. doi:10.3155/1047-3289.61.1.92

    Article  CAS  Google Scholar 

  • Ito A, Sillman S, Penner JE (2009) Global chemical transport model study of ozone response to changes in chemical kinetics and biogenic volatile organic compounds emissions due to increasing temperatures: Sensitivities to isoprene nitrate chemistry and grid resolution. J Geophys Res Atmos 114:D09301. doi:10.1029/2008JD011254

    Article  CAS  Google Scholar 

  • Jiang Z, Jones DBA, Kopacz M, Liu J, Henze DK, Heald C (2011) Quantifying the impact of model errors on top-down estimates of carbon monoxide emissions using satellite observations. J Geophys Res Atmos 116:D15306. doi:10.1029/2010JD015282

    Article  CAS  Google Scholar 

  • Jimenez JL, Canagaratna MR, Donahue NM, Prevot ASH, Zhang Q, Kroll JH, DeCarlo PF, Allan JD, Coe H, Ng NL, Aiken AC, Docherty KS, Ulbrich IM, Grieshop AP, Robinson AL, Duplissy J, Smith JD, Wilson KR, Lanz VA, Hueglin C, Sun YL, Tian J, Laaksonen A, Raatikainen T, Rautiainen J, Vaattovaara P, Ehn M, Kulmala M, Tomlinson JM, Collins DR, Cubison MJ, Dunlea EJ, Huffman JA, Onasch TB, Alfarra MR, Williams PI, Bower K, Kondo Y, Schneider J, Drewnick F, Borrmann S, Weimer S, Demerjian K, Salcedo D, Cottrell L, Griffin R, Takami A, Miyoshi T, Hatakeyama S, Shimono A, Sun JY, Zhang YM, Dzepina K, Kimmel JR, Sueper D, Jayne JT, Herndon SC, Trimborn AM, Williams LR, Wood EC, Middlebrook AM, Kolb CE, Baltensperger U, Worsnop DR (2009) Evolution of organic aerosols in the atmosphere. Science 326:1525–1529

    Article  PubMed  CAS  Google Scholar 

  • Kanakidou M, Seinfeld JH, Pandis SN, Barnes I, Dentener FJ, Facchini MC, Van Dingenen R, Ervens B, Nenes A, Nielsen CJ, Swietlicki E, Putaud JP, Balkanski Y, Fuzzi S, Horth J, Moortgat GK, Winterhalter R, Myhre CEL, Tsigaridis K, Vignati E, Stephanou EG, Wilson J (2005) Organic aerosol and global climate modeling: a review. Atmos Chem Phys 5:1053–1123

    Article  CAS  Google Scholar 

  • Kaplan JO, Folberth G, Hauglustaine DA (2006) Role of methane and biogenic volatile organic compound sources in late glacial and Holocene fluctuations of atmospheric methane concentrations. Global Biogeochem Cycles 20:GB2016. doi:10.1029/2005GB002590

    Article  CAS  Google Scholar 

  • Keenan TF, Niinemets Ü (2012) Circadian control of global isoprene emissions. Nat Geosci 5:435

    Article  CAS  Google Scholar 

  • Keenan T, Niinemets Ü, Sabate S, Gracia C, Peñuelas J (2009) Process based inventory of isoprenoid emissions from European forests: model comparisons, current knowledge and uncertainties. Atmos Chem Phys 9:4053–4076

    Article  CAS  Google Scholar 

  • Kiendler-Scharr A, Wildt J, Dal Maso M, Hohaus T, Kleist E, Mentel TF, Tillmann R, Uerlings R, Schurr U, Wahner A (2009) New particle formation in forests inhibited by isoprene emissions. Nature 461:381–384

    Article  PubMed  CAS  Google Scholar 

  • Kulmala M, Suni T, Lehtinen KEJ, Dal Maso M, Boy M, Reissell A, Rannik Ü, Aalto P, Keronen P, Hakola H, Bäck J, Hoffmann T, Vesala T, Hari P (2004) A new feedback mechanism linking forests, aerosols, and climate. Atmos Chem Phys 4:557–562

    Article  CAS  Google Scholar 

  • Kulmala M, Nieminen T, Chellapermal R, Makkonen R, Bäck J, Kerminen V-M (2013) Climate feedbacks linking the increasing atmospheric CO2 concentration, BVOC emissions, aerosols and clouds in forest ecosystems. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Laaksonen A, Kulmala M, O’Dowd CD, Joutsensaari J, Vaattovaara P, Mikkonen P, Lehtinen KEJ, Sogacheva L, Dal Maso M, Aalto P, Petäjä P, Sogachev A, Yoon YJ, Lihavainen H, Nilsson D, Facchini MC, Cavalli F, Fuzzi S, Hoffmann T, Arnold F, Hanke M, Sellegri K, Umann B, Junkermann W, Coe H, Allan JD, Alfarra MR, Worsnop DR, Riekkola ML, Hyötyläinen T, Viisanen Y (2008) The role of VOC oxidation products in continental new particle formation. Atmos Chem Phys 8:2657–2665

    Article  CAS  Google Scholar 

  • Langford B, Misztal PK, Nemitz E, Davison B, Helfter C, Pugh TAM, MacKenzie AR, Lim SF, Hewitt CN (2010) Fluxes and concentrations of volatile organic compounds from a South-East Asian tropical rainforest. Atmos Chem Phys 10:8391–8412

    Article  CAS  Google Scholar 

  • Lasseron L (2001) Modélisation des variations basse fréquence des émissions d’isoprène à l’aide d’un réseau de neurones artificiels. D.E.A. report, Paris 7 University

    Google Scholar 

  • Lathière J, Hauglustaine DA, De Noblet-Ducoudré N, Krinner G, Folberth GA (2005) Past and future changes in biogenic volatile organic compound emissions simulated with a global dynamic vegetation model. Geophys Res Lett 32:L20818. doi:10.1029/2005GL024164

    Article  CAS  Google Scholar 

  • Lathière J, Hewitt CN, Beerling DJ (2010) Sensitivity of isoprene emissions from the terrestrial biosphere to 20th century changes in atmospheric CO2 concentration, climate, and land use. Global Biogeochem Cycles 24:GB1004. doi:10.1029/209GB003548

    Article  CAS  Google Scholar 

  • Laurila T, Lindfors V (eds) (1999) Biogenic VOC emissions and photochemistry in the boreal regions of Europe, Air pollution research report No 70, Commission of the European Communities, Luxembourg

    Google Scholar 

  • Lee X, Goulden ML, Hollinger DY, Barr A, Black TA, Bohrer G, Bracho R, Drake B, Goldstein A, Gu L, Katul G, Kolb T, Law BE, Margolis H, Meyers T, Monson R, Munger W, Oren R, Paw KTU, Richardson AD, Schmid HP, Staebler R, Wofsy S, Zhao L (2011) Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479:384–387. doi:10.1038/nature10588

    Article  PubMed  CAS  Google Scholar 

  • Lelieveld J, Peters W, Dentener FJ, Krol MC (2002) Stability of tropospheric hydroxyl chemistry. J Geophys Res 107:4715. doi:10.1029/2002JD002272

    Article  CAS  Google Scholar 

  • Lelieveld J, Butler TM, Crowley JN, Dillon TJ, Fischer H, Ganzeveld L, Harder H, Lawrence MG, Martinez M, Taraborrelli D, Williams J (2008) Atmospheric oxidation capacity sustained by a tropical forest. Nature 452:737–740

    Article  PubMed  CAS  Google Scholar 

  • Lerdau M (2007) A positive feedback with negative consequences. Science 316:212–213

    Article  PubMed  CAS  Google Scholar 

  • Levy H II (1971) Normal atmosphere: large radical and formaldehyde concentrations predicted. Science 173:141–143. doi:10.1126/science.173.3992.141

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Sharkey TD (2013) Molecular and pathway controls on biogenic volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Ann Rev Plant Physiol Plant Mol Biol 50:47–65

    Article  CAS  Google Scholar 

  • Loreto F, Schnitzler J-P (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15:154–166

    Article  PubMed  CAS  Google Scholar 

  • Loreto F, Fischbach RJ, Schnitzler J-P, Ciccioli P, Brancaleoni E, Calfapietra C, Seufert G (2001) Monoterpene emission and monoterpene synthase activities in the Mediterranean evergreen oak Quercus ilex L. grown at elevated CO2. Glob Change Biol 7:709–717

    Article  Google Scholar 

  • Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola J-M, Raynaud D, Stocker TF, Chappellaz JE (2008) Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453:383–386. doi:10.1038/nature06950

    Article  PubMed  CAS  Google Scholar 

  • Mann GW, Carslaw KS, Spracklen DV, Ridley DA, Manktelow PT, Chipperfield MP, Pickering SJ, Johnson CE (2010) Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model. Geosci Model Dev 3:519–551

    Article  Google Scholar 

  • Mercado LM, Bellouin B, Sitch S, Boucher O, Huntingford C, Wild M, Cox P (2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature 458:1014–1017. doi:10.1038/nature07949

    Article  PubMed  CAS  Google Scholar 

  • Misztal PK, Nemitz E, Langford B, Di Marco CF, Phillips GJ, Hewitt CN, MacKenzie AR, Owen SM, Fowler D, Heal MR, Cape JN (2011) Direct ecosystem fluxes of volatile organic compounds from oil palms in South-East Asia. Atmos Chem Phys 11:8995–9017

    Article  CAS  Google Scholar 

  • Monnin E, Indermühle A, Dällenbach A, Flückiger J, Stauffer B, Stocker TF, Raynaud D, Barnola J-M (2001) Atmospheric CO2 concentrations over the last glacial termination. Science 291:112–114. doi:10.1126/science.291.5501.112

    Article  PubMed  CAS  Google Scholar 

  • Monson RK (2013) Metabolic and gene expression controls on the production of biogenic volatile organic compounds. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Monson RK, Jaeger CH, Adams WW, Driggers EM, Silver GM, Fall R (1992) Relationships among isoprene emission rate, photosynthesis, and isoprene synthase activity as influenced by temperature. Plant Physiol 98:1175–1180

    Article  PubMed  CAS  Google Scholar 

  • Monson RK, Harley PC, Litvak ME, Wildermuth M, Guenther AB, Zimmerman PR, Fall R (1994) Environmental and developmental controls over the seasonal pattern of isoprene emissions from aspen leaves. Oecologia 99:260–270

    Article  Google Scholar 

  • Monson RK, Trahan NT, Rosenstiel TN, Veres P, Moore D, Wilkinson M, Norby RJ, Volder A, Tjoelker MG, Briske DD, Karnosky DF, Fall R (2007) Isoprene emissions from terrestrial ecosystems in response to global change: minding the gap between models and observations. Philos Trans R Soc A 365:1677–1695. doi:10.1098/rsta.2007.2038

    Article  CAS  Google Scholar 

  • Monson RK, Grote R, Niinemets Ü, Schnitzler J-P (2012) Tansley review. Modeling the isoprene emission rate from leaves. New Phytol 195:541–559

    Article  PubMed  CAS  Google Scholar 

  • Müller J-F (1992) Geographical distribution and seasonal variation of surface emissions and deposition velocities of atmospheric trace gases. J Geophys Res Atmos 97:3787–3804

    Article  Google Scholar 

  • Müller J-F, Stavrakou T, Wallens S, De Smedt I, Van Roozendael M, Potosnak MJ, Rinne J, Munger B, Goldstein A, Guenther AB (2008) Global isoprene emissions estimated using MEGAN, ECMWF analyses and a detailed canopy environment model. Atmos Chem Phys 8:1329–1341

    Article  Google Scholar 

  • Müller M, Graus M, Ruuskanen TM, Schnitzhofer R, Bamberger I, Kaser L, Titzmann T, Hörtnagl L, Wohlfahrt G, Karl T, Hansel A (2010) First eddy covariance flux measurements by PTR-TOF. Atmos Meas Tech 3:387–395

    Article  Google Scholar 

  • Myhre G, Samset BH, Schulz M, Balkanski Y, Bauer S, Berntsen TK, Bian H, Bellouin N, Chin M, Diehl T, Easter RC, Feichter J, Ghan SJ, Hauglustaine D, Iversen T, Kinne S, Kirkevåg A, Lamarque J-F, Lin G, Liu X, Luo G, Ma X, Penner JE, Rasch PJ, Seland Ø, Skeie RB, Stier P, Takemura T, Tsigaridis K, Wang Z, Xu L, Yu H, Yu F, Yoon J-H, Zhang K, Zhang H, Zhou C (2013) Radiative forcing of the direct aerosol effect from AeroCom phase II simulations. Atmos Chem Phys 3:1853–1877. doi:10.5194/acpd-12-22355-2012

    Article  Google Scholar 

  • Niinemets Ü (2010) Mild versus severe stress and BVOCs: thresholds, priming and consequences. Trends Plant Sci 15:145–153

    Article  PubMed  CAS  Google Scholar 

  • Niinemets Ü, Reichstein M (2002) A model analysis of the effects of nonspecific monoterpenoid storage in leaf tissues on emission kinetics and composition in Mediterranean sclerophyllous Quercus species. Glob Biogeochem Cycle 16:1110. doi: 1110.1029/2002GB001927

    Article  CAS  Google Scholar 

  • Niinemets Ü, Reichstein M (2003) Controls on the emission of plant volatiles through stomata: sensitivity or insensitivity of the emission rates to stomatal closure explained. J Geophys Res Atmos 108:4208. doi: 4210.1029/2002JD002620

    Article  CAS  Google Scholar 

  • Niinemets Ü, Tenhunen JD, Harley PC, Steinbrecher R (1999) A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus. Plant Cell Environ 22:1319–1335. doi:10.1046/j.1365-3040.1999.00505.x

    Article  CAS  Google Scholar 

  • Niinemets Ü, Seufert G, Steinbrecher R, Tenhunen JD (2002) A model coupling foliar monoterpene emissions to leaf photosynthetic characteristics in Mediterranean evergreen Quercus species. New Phytol 153:257–276

    Article  CAS  Google Scholar 

  • Niinemets Ü, Arneth A, Kuhn U, Monson RK, Peñuelas J, Staudt M (2010a) The emission factor of volatile isoprenoids: stress, acclimation, and developmental response. Biogeosciences 7:2203–2223. doi:10.5194/bg-7-2203-2010

    Article  CAS  Google Scholar 

  • Niinemets Ü, Monson RK, Arneth A, Ciccioli P, Kesselmeier J, Kuhn U, Noe SM, Peñuelas J, Staudt M (2010b) The leaf-level emission factor of volatile isoprenoids: caveats, model algorithms, response shapes and scaling. Biogeosciences 7:1809–1832

    Article  CAS  Google Scholar 

  • Niinemets Ü, Kuhn U, Harley PC, Staudt M, Arneth A, Cescatti A, Ciccioli P, Copolovici L, Geron C, Guenther A, Kesselmeier J, Lerdau MT, Monson RK, Peñuelas J (2011) Estimations of isoprenoid emission capacity from enclosure studies: measurements, data processing, quality and standardized measurement protocols. Biogeosciences 8:2209–2246

    Article  CAS  Google Scholar 

  • Niinemets Ü, Ciccioli P, Noe SM, Reichstein M (2013) Scaling BVOC emissions from leaf to canopy and landscape: how different are predictions based on contrasting emission algorithms? In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Niyogi D, Chang H-I, Saxena VK, Holt T, Alapaty K, Booker F, Chen F, Davis KJ, Holben B, Matsui T, Meyers T, Oechel WC, Pielke RA Sr, Wells R, Wilson K, Xue Y (2004) Direct observations of the effects of aerosol loading on net ecosystem CO2 exchanges over different landscapes. Geophys Res Lett 31:L20506. doi:10.1029/2004GL020915

    Article  CAS  Google Scholar 

  • Noe SM, Hüve K, Niinemets Ü, Copolovici L (2012) Seasonal variation in vertical volatile compounds air concentrations within a remote hemiboreal mixed forest. Atmos Chem Phys 12:3909–3926

    Article  CAS  Google Scholar 

  • O’Connor FM, Boucher O, Gadney N, Jones CD, Folberth GA, Coppell R, Friedlingstein P, Collins WJ, Chappellaz J, Ridley J, Johnson CE (2010) Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: a review. Rev Geophys 48:RG4005. doi:10.1029/2010RG000326

    Article  Google Scholar 

  • Oliveira PHF, Artaxo P, Pires C, De Lucca S, Procopio A, Holben B, Schaffer J, Cardoso LF, Wofsy SC, Rocha HR (2007) The effects of biomass burning aerosols and clouds on the CO2 flux in Amazonia. Tellus 59B:338–349

    CAS  Google Scholar 

  • Pacifico F, Harrison SP, Jones CD, Arneth A, Sitch S, Weedon GP, Barkley MP, Palmer PI, Serça D, Potosnak M, Fu TM, Goldstein A, Bai J, Schurgers G (2011) Evaluation of a photosynthesis-based biogenic isoprene emission scheme in JULES and simulation of isoprene emissions under present-day climate conditions. Atmos Chem Phys 11:4371–4389. doi:10.5194/acp-11-4371-2011

    Article  CAS  Google Scholar 

  • Pacifico F, Folberth GA, Jones CD, Harrison SP, Collins WJ (2012) Sensitivity of biogenic isoprene emissions to the past, present and future environmental conditions and implications for atmospheric chemistry. J Geophys Res 117:D22302. doi:10.1029/2012JD018276

    Article  Google Scholar 

  • Palmer PI, Jacob DJ, Fiore AM, Martin RV, Chance K, Kurosu TP (2003) Mapping isoprene emissions over North America using formaldehyde column observations from space. J Geophys Res Atmos 108:4180. doi:10.1029/2002JD002153

    Article  CAS  Google Scholar 

  • Palmer PI, Abbot DS, Fu TM, Jacob DJ, Chance K, Kurosu TP, Guenther A, Wiedinmyer C, Stanton JC, Pilling MJ, Pressley SN, Lamb B, Sumner AL (2006) Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column. J Geophys Res Atmos 111:D12315. doi:10.1029/2005JD006689

    Article  CAS  Google Scholar 

  • Papale D, Valentini R (2003) A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Glob Change Biol 9:525–535

    Article  Google Scholar 

  • Pattey E, Desjardins RL, Westberg H, Lamb B, Zhu T (1999) Measurement of isoprene emissions over a black spruce stand using a tower-based relaxed eddy-accumulation system. J Appl Meteorol 38:870–877

    Article  Google Scholar 

  • Paulot F, Crounse JD, Kjaergaard HG, Kurten A, St Clair JM, Seinfeld JH, Wennberg PO (2009) Unexpected epoxide formation in the gas-phase photooxidation of isoprene. Science 325:730–733

    Article  PubMed  CAS  Google Scholar 

  • Peeters J, Nguyen TL, Vereecken L (2009) HOx radical regeneration in the oxidation of isoprene. Phys Chem Chem Phys 11:5935–5939

    Article  PubMed  CAS  Google Scholar 

  • Pegoraro E, Rey A, Greenberg J, Harley P, Grace J, Malhi Y, Guenther A (2004) Effect of drought on isoprene emission rates from leaves of Quercus virginiana Mill. Atmos Environ 38:6149–6156. doi:10.1016/j.atmosenv.2004.07.028

    Article  CAS  Google Scholar 

  • Petron G, Harley PC, Greenberg J, Guenther AB (2001) Seasonal temperature variations influence isoprene emission. Geophys Res Lett 28:1707–1710

    Article  CAS  Google Scholar 

  • Pierce TE, Waldruff PS (1991) PC-BEIS – a personal computer version of the biogenic emissions inventory system. J Air Waste Manage Assoc 41:937–941

    Article  CAS  Google Scholar 

  • Pierce TE, Kinnee E, Geron C (1998) Development of a 1-km resolved vegetation cover database for regional air quality modeling. In: Proceedings of the American Meteorological Society’s 23rd conference on agricultural and forestry meteorology, Nov 1998, Albuquerque NM

    Google Scholar 

  • Pike RC, Young PJ (2009) How plants can influence tropospheric chemistry: the role of isoprene emission from the biosphere. Weather 64:332–336

    Article  Google Scholar 

  • Prather M, Ehhalt D, Dentener FJ, Derwent R, Dlugokencky EJ, Holland E, Isaksen I, Katima J, Kirchhoff V, Matson P, Midgley PMW (2001) Atmospheric chemistry and greenhouse gases. In: Houghton JT et al (eds) Climate change 2001. The scientific basis. Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York

    Google Scholar 

  • Pugh TAM, MacKenzie AR, Hewitt CN, Langford B, Edwards PM, Furneaux KL, Heard DE, Hopkins JR, Jones CE, Karunaharan A, Lee J, Mills G, Misztal P, Moller S, Monks PS, Whalley LK (2010) Simulating atmospheric composition over a South-East Asian tropical rainforest: performance of a chemistry box model. Atmos Chem Phys 10:279–298

    Article  CAS  Google Scholar 

  • Rasulov B, Hüve K, Välbe M, Laisk A, Niinemets Ü (2009) Evidence that light, carbon dioxide and oxygen dependencies of leaf isoprene emission are driven by energy status in hybrid aspen. Plant Physiol 151:448–460

    Article  PubMed  CAS  Google Scholar 

  • Rasulov B, Hüve K, Laisk A, Niinemets Ü (2011) Induction of a longer-term component of isoprene release in darkened aspen leaves: origin and regulation under different environmental conditions. Plant Physiol 156:816–831

    Article  PubMed  CAS  Google Scholar 

  • Sanderson MG, Jones CD, Collins WJ, Johnson CE, Derwent RG (2003) Effect of climate change on isoprene emissions and surface ozone levels. Geophys Res Lett 30:1936. doi:10.1029/2003GL017642

    Article  CAS  Google Scholar 

  • Schurgers G, Arneth A, Holzinger R, Goldstein A (2009) Process-based modeling of biogenic monoterpene emissions combining production and release from storage. Atmos Chem Phys 9:3409–3423

    Article  CAS  Google Scholar 

  • Schurgers G, Arneth A, Hickler T (2011) Effect of climate-driven changes in species composition on regional emission capacities of biogenic compounds. J Geophys Res Atmos 116:D22304. doi:10.1029/2011JD016278

    Article  CAS  Google Scholar 

  • Seufert G, Bartzis J, Bombol T, Ciccioli P, Cieslik S, Dlugi R, Foster P, Hewitt CN, Kesselmeier J, Kotzias D, Lenz R, Manes F, Perez Pastor P, Steinbrecher R, Torres L, Valentini R, Versino B (1997) An overview of the Castelporziano experiments. Atmos Environ 31:5–17

    Article  CAS  Google Scholar 

  • Sharkey TD, Loreto F, Delwiche CF (1991) High carbon dioxide and sun/shade effects on isoprene emission from oak and aspen tree leaves. Plant Cell Environ 14:333–338

    Article  CAS  Google Scholar 

  • Sharkey TD, Wiberley AE, Donahue AR (2008) Isoprene emissions from plants: why and how. Ann Bot 101:5–18

    Article  PubMed  CAS  Google Scholar 

  • Shim C, Wang YH, Choi Y, Palmer PI, Abbot DS, Chance K (2005) Constraining global isoprene emissions with global ozone monitoring experiment (GOME) formaldehyde column measurements. J Geophys Res Atmos 110:D24301. doi:10.1029/2004JD005629

    Article  CAS  Google Scholar 

  • Simon E, Kuhn U, Rottenberger S, Meixmer FX, Kesselmeier J (2005a) Coupling isoprene and monoterpene emissions from Amazonian tree species with physiological and environmental parameters using a neural network approach. Plant Cell Environ 28:287–301

    Article  CAS  Google Scholar 

  • Simon V, Dumergues L, Bouchou P, Torres L, Lopez A (2005b) Isoprene emission rates and fluxes measured above a Mediterranean oak (Quercus pubescens) forest. Atmos Res 74:49–63

    Article  CAS  Google Scholar 

  • Sitch S, Cox PM, Collins WJ, Huntingford C (2007) Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448:791–794. doi:10.1038/nature06059

    Article  PubMed  CAS  Google Scholar 

  • Spirig C, Neftel A, Ammann C, Dommen J, Grabmer W, Thielmann A, Schaub A, Beauchamp J, Wisthaler A, Hansel A (2005) Eddy covariance flux measurements of biogenic VOCs during ECHO 2003 using proton transfer reaction mass spectrometry. Atmos Chem Phys 5:465–481. doi:10.5194/acp-5-465-2005

    Article  CAS  Google Scholar 

  • Spracklen DV, Carslaw KS, Kulmala M, Kerminen VM, Sihto SL, Riipinen I, Merikanto J, Mann GW, Chipperfield MP, Wiedensohler A, Birmili W, Lihavainen H (2008) Contribution of particle formation to global cloud condensation nuclei concentrations. Geophys Res Lett 35:L06808. doi:10.1029/2007GL033038

    Article  Google Scholar 

  • Staudt M, Seufert G (1995) Light-dependent emission of monoterpenes by holm oak (Quercus ilex L.). Naturwissenschaften 82:89–92

    Article  CAS  Google Scholar 

  • Staudt M, Joffre R, Rambal S, Kesselmeier J (2001) Effect of elevated CO2 on monoterpene emission of young Quercus ilex trees and its relation to structural and ecophysiological parameters. Tree Physiol 21:437–445

    Article  PubMed  CAS  Google Scholar 

  • Stavrakou T, Müller J-F, De Smedt I, Van Roozendael M, Kanakidou M, Vrekoussis M, Wittrock F, Richter A, Burrows JP (2009) The continental source of glyoxal estimated by the synergistic use of spaceborne measurements and inverse modeling. Atmos Chem Phys 9:8431–8446

    Article  CAS  Google Scholar 

  • Stavrakou T, Guenther A, Razavi A, Clarisse L, Clerbaux C, Coheur P, Hurtmans D, Karagulian F, De Maziere M, Vigouroux C, Amelynck C, Schoon N, Lafineur Q, Heinesch B, Aubinet M, Rinsland C, Müller J-F (2011) First space-based derivation of the global atmospheric methanol emission fluxes. Atmos Chem Phys 11:4873–4898

    Article  CAS  Google Scholar 

  • Sun Z, Niinemets Ü, Hüve K, Noe SM, Rasulov B, Copolovici L, Vislap V (2012) Enhanced isoprene emission capacity and altered light responsiveness in aspen grown under elevated atmospheric CO2 concentration. Glob Change Biol 18:3423–3440

    Article  Google Scholar 

  • Taipale R, Kajos MK, Patokoski J, Rantala P, Ruuskanen TM, Rinne J (2011) Role of de novo biosynthesis in ecosystem scale monoterpene emissions from a boreal Scots pine forest. Biogeosciences 8:2247–2255. doi:10.5194/bg-8-2247-2011

    Article  CAS  Google Scholar 

  • Tsigaridis K, Kanakidou M (2003) Global modeling of secondary organic aerosol in the troposphere: a sensitivity analysis. Atmos Chem Phys 3:1849–1869

    Article  CAS  Google Scholar 

  • Tsigaridis K, Krol M, Dentener FJ, Balkanski Y, Lathière J, Metzger S, Hauglustaine DA, Kanakidou M (2006) Change in global aerosol composition since preindustrial times. Atmos Chem Phys 6:5143–5162

    Article  CAS  Google Scholar 

  • Valdes PJ, Beerling DJ, Johnson CE (2005) The ice age methane budget. Geophys Res Lett 32:L02704. doi:10.1029/2004GL021004

    Article  Google Scholar 

  • Veefkind JP, Boersma KF, Wang J, Kurosu TP, Krotkov N, Chance K, Levelt PF (2011) Global satellite analysis of the relation between aerosols and short-lived trace gases. Atmos Chem Phys 11:1255–1267

    Article  CAS  Google Scholar 

  • Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5:283–291

    Article  PubMed  CAS  Google Scholar 

  • Vignati E, Wilson J, Stier P (2004) M7: an efficient size-resolved aerosol microphysics module for large-scale aerosol transport models. J Geophys Res 109:D22202. doi:10.1029/2003JD004485

    Article  CAS  Google Scholar 

  • von Kuhlmann R, Lawrence M, Pöschl U, Crutzen P (2004) Sensitivities in global scale modeling of isoprene. Atmos Chem Phys 4:1–17

    Article  Google Scholar 

  • Voulgarakis A, Naik V, Lamarque J-F, Shindell DT, Young PJ, Prather MJ, Wild O, Field RD, Bergmann D, Cameron-Smith P, Cionni I, Collins WJ, Dalsøren SB, Doherty RM, Eyring V, Faluvegi G, Folberth GA, Horowitz LW, Josse B, MacKenzie IA, Nagashima T, Plummer DA, Righi M, Rumbold ST, Stevenson DS, Strode SA, Sudo K, Szopa S, Zeng G (2013) Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. Atmos Chem Phys 13:2563–2587. doi:10.5194/acpd-12-22945-2012

    Article  Google Scholar 

  • Warneke C, de Gouw JA, Del Negro L, Brioude J, McKeen S, Stark H, Kuster WC, Goldan PD, Trainer M, Fehsenfeld FC (2010) Biogenic emission measurement and inventories determination of biogenic emissions in the eastern United States and Texas and comparison with biogenic emission inventories. J Geophys Res Atmos 115:D00F18. doi:10.1029/2009JD012445

    Article  CAS  Google Scholar 

  • Westberg H, Lamb B, Hafer R, Hills A, Shepson P, Vogel C (2001) Measurement of isoprene fluxes at the PROPHET site. J Geophys Res 106:24347–24358. doi:10.1029/2000JD900735

    Article  CAS  Google Scholar 

  • Wilkinson MJ, Monson RK, Trahan N, Lee S, Brown E, Jackson RB, Polley HW, Fay PA, Fall R (2009) Leaf isoprene emission rate as a function of atmospheric CO2 concentration. Glob Change Biol 15:1189–1200

    Article  Google Scholar 

  • Zhang Q, Jimenez JL, Canagaratna MR, Allan JD, Coe H, Ulbrich I, Alfarra MR, Takami A, Middlebrook AM, Sun YL, Dzepina K, Dunlea E, Docherty K, DeCarlo PF, Salcedo D, Onasch T, Jayne JT, Miyoshi T, Shimono A, Hatakeyama S, Takegawa N, Kondo Y, Schneider J, Drewnick F, Borrmann S, Weimer S, Demerjian K, Williams P, Bower K, Bahreini R, Cottrell L, Griffin RJ, Rautiainen J, Sun JY, Zhang YM, Worsnop DR (2007) Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophys Res Lett 34:L13801. doi:10.1029/2007GL029979

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliette Lathière .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ashworth, K., Boissard, C., Folberth, G., Lathière, J., Schurgers, G. (2013). Global Modelling of Volatile Organic Compound Emissions. In: Niinemets, Ü., Monson, R. (eds) Biology, Controls and Models of Tree Volatile Organic Compound Emissions. Tree Physiology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6606-8_16

Download citation

Publish with us

Policies and ethics