Skip to main content

Bioreactors: A Rapid Approach for Secondary Metabolite Production

  • Chapter
  • First Online:

Abstract

Bioreactor technology is one of the most challenging avenues in the field of plant biotechnology. Realization of many practical applications for in vitro plant culture systems is dependent on the availability of efficient and well designed bioreactors. For an increasing number of plants bioreactors demonstrated a number of important advantages over conventional semi solid micropropagation including several fold increase in multiplication rates and reduction in space, energy and labor. Bioreactors provide an automated, cost-effective system for commercial in vitro plant propagation and low cost secondary metabolite production. They can also provide the technical means to perform controlled studies aimed at understanding specific biological, chemical, or physical effects. However several major bottlenecks which includes contamination, lack of protocols and production procedure, increased hyperhydricity and problems of foaming, shear stress and release of growth inhibiting compounds still restricts the commercial application of this technology. Many efforts are being made to design the bioreactors so as to eliminate all the limitations faced. Though still the existence of an efficient complete bioreactor design is unrealized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbasi, B. H., Liu, R., Saxena, P. K., & Liu, C. Z. (2009). Cichoric acid production from hairy root cultures of Echinacea purpurea grown in a modified airlift bioreactor. Journal of Chemical Technology and Biotechnology, 84, 1697–1701.

    CAS  Google Scholar 

  • Abdullah, M. S., Chakrabarty, D., Yu, K. W., Hahn, E. J., & Paek, K. Y. (2005). Application of bioreactor system for large scale production of Eleutherococcus sessiliflorus somatic embryos in an air-lift bioreactor and the production of eleutherosides. Journal of Biotechnology, 120, 228–236.

    Google Scholar 

  • Aldridge, S. (2005). New bio-manufacturing opportunities and challenges. Genetic Engineering News, 25, 1–16.

    Google Scholar 

  • Alvard, D., Cote, F., & Teisson, C. (1993). Comparison of method of liquid medium culture of banana propagation: Effects of temporary immersion of explants. Plant Cell Tissue and Organ Culture, 32, 55–60.

    Google Scholar 

  • Anonymous. (2008). XDR™ single-use bioreactors. http://www.xcellerex.com. 12 June 2008.

  • Bentebibel, S., Moyano, E., Palazón, J., Cusidó, R. M., Bonfill, M., Eibl, R., & Piňol, M. T. (2005). Effects of immobilization by entrapment in alginate and scale-up on paclitaxel and baccatin III production in cell suspension cultures of Taxus baccata. Biotechnology and Bioengineering, 89, 647–655.

    CAS  Google Scholar 

  • Bibila, T. A., & Robinson, D. K. (1995). In pursuit of the optimal fed-batch process for monoclonal antibody production. Biotechnology Progress, 11, 1–13.

    CAS  Google Scholar 

  • Bonfill, M., Bentebibel, S., Moyano, E., Palazón, J., Cusidó, R. M., Bonfill, M., Eibl, R., & Piňol, M. T. (2007). Paclitaxel and baccatin III production induced by methyljasmonate in free and immobilized cells of Taxus baccta. Biologia Plantarum, 51, 647–652.

    CAS  Google Scholar 

  • Buitelaar, R., Langenhoff, A. A. M., Heidstra, R., & Tramper, J. (1991). Growth and thiophene production by hairy root cultures of Tagetes patula in various two-liquid-phase bioreactors. Enzyme and Microbial Technology, 13, 487–494.

    CAS  Google Scholar 

  • Card, C., & Smith, T. (2006). SUB050601, application report draft. Biotechnology, 23, 1054–1058.

    Google Scholar 

  • Carson, K. L. (2005). Flexibility-the guiding principle for antibody manufacturing. Nature Biotechnology, 23, 1054–1058.

    CAS  Google Scholar 

  • Carvalho, E. B., & Curtis, W. R. (1998). Characterization of fluid-flow resistance in root cultures with a convective flow tubular bioreactor. Biotechnology and Bioengineering, 60, 375–384.

    CAS  Google Scholar 

  • Chatterjee, C., Correll, M. J., Weathers, P. J., Wyslouzil, B. E., & Walcerz, D. B. (1997). Simplified acoustic window mist bioreactor. Biotechnology Techniques, 11, 155–158.

    CAS  Google Scholar 

  • Chattopadhyay, S., Srivastava, A., Bhojwani, S. S., & Bisaria, V. S. (2002). Production of ­podophyllotoxin by plant cell cultures of Podophyllum hexandrum in bioreactor. Journal of Bioscience and Bioengineering, 93(2), 15–220.

    Google Scholar 

  • Choi, Y. E., Kim, Y. S., & Paek, K. Y. (2006). Types and design of bioreactors for hairy root culture. In S. Dutta Gupta & Y. Ibaraki (Eds.), Plant tissue culture engineering (Focus on biotechnology, Vol. 6, pp. 161–171). Dordrecht: Springer.

    Google Scholar 

  • Choi, S. M., Son, S. H., Yun, S. R., Kwon, O. W., Seon, J. H., & Paek, K. Y. (2000). Pilot scale culture of adventitious roots of ginseng in a bioreactor system. Plant Cell Tissue and Organ Culture, 62, 187–193.

    CAS  Google Scholar 

  • Choi, S. M., Lee, O., Kwon, S., Kwak, S. S., Yu, D., & Lee, H. S. (2003). High expression of a human lactoferrin in transgenic tobacco cell cultures. Biotechnology Letters, 25, 213–218.

    CAS  Google Scholar 

  • Collignon, F., Gelbras, V., Havelange, N., Drugmand, J. C., Debras, F., Mathieu, E., Halloin, V., & Castillo, J. (2007). CHO cell cultivation and antibody production in a new disposable bioreactor based on magnetic driven centrifugal pump. (http://www.artelis.be. Cited October 20).

  • Cuperus, S., Eibl, R., Huhn, T., & Amado, R. (2007). Plant cell culture based platform: Investigating biochemical processes in wine production. BioForum Europe, 6, 2–4.

    Google Scholar 

  • Cui, X.-H., Chakrabarty, D., Lee, E.-J., & Paek, K.-Y. (2010). Production of adventitious roots and secondary metabolites by Hypericum perforatum L. in a bioreactor. Bioresource Technology, 101(12), 4708–4716.

    CAS  Google Scholar 

  • Dalm, M. C. F. (2007). Acoustic perfusion processes for hybridoma cultures: viability, cell cycle and metabolic analysis. Academic dissertation at Wageningen Universiteit, pp. 123–141.

    Google Scholar 

  • Danckwerts, P. V. (1951). Significance of liquid-film coefficients in gas-absorption. Journal of Industrial and Engineering Chemistry, 43, 1460–1467.

    CAS  Google Scholar 

  • Davioud, E., Kan, C., Hamon, J., Tempé, J., & Husson, H.-P. (1989). Production of indole alkaloids by in vitro root cultures from Catharanthus trichophyllus. Phytochemistry, 28, 2675–2680.

    CAS  Google Scholar 

  • Deng, X., Qin, S., Zhang, Q., Jiang, P., Cui, Y., & Li, X. (2009). Microprojectile bombardment of Laminaria japonica gametophytes and rapid propagation of transgenic lines within a bubble-­column bioreactor. Plant Cell Tissue and Organ Culture, 97, 253–261.

    CAS  Google Scholar 

  • DePalma, A. (2006). Bright sky for single-use bioprocess products. GEN, 26, 50–57.

    Google Scholar 

  • DiIorio, A. A., Cheetham, R. D., & Weathers, P. J. (1992). Growth of transformed roots in a nutrient mist bioreactor: reactor performance and evaluation. Applied Microbiology and Biotechnology, 37, 457–462.

    CAS  Google Scholar 

  • Doran, P. M. (2000). Foreign proteins production in plant tissue cultures. Current Opinion in Biotechnology, 11, 199–204.

    CAS  Google Scholar 

  • Ducos, J. P., Chantanumat, P., Vuong, P., Lambot, C., & Pétiard, V. (2007a). Mass propagation of robusta clones: Disposable plastic bags for pre-germination of somatic embryos by temporary immersion. Acta Horticulturae ISHS, 764, 33–40.

    CAS  Google Scholar 

  • Ducos, J. P., Labbe, G., Lambot, C., & Pétiard, V. (2007b). Pilot scale process for the production of pre-germinated somatic embryos of selected robusta (Coffea canephora) clones. In Vitro Cellular and Developmental Biology-Plant, 43, 652–659.

    Google Scholar 

  • Eibl, R., & Eibl, D. (2002). Bioreactors for plant cell and tissue cultures. In K. M. Oksman-­Caldentey & W. H. Barz (Eds.), Plant biotechnology and transgenic plants (pp. 163–199). New York: Marcel Dekker.

    Google Scholar 

  • Eibl, R., & Eibl, D. (2006). Design and use of the wave bioreactor for plant cell culture. In S. Dutta & Y. Baraki (Eds.), Plant tissue culture engineering (pp. 203–227). Dordrecht: Springer.

    Google Scholar 

  • Eibl, R., & Eibl, D. (2007). Disposable bioreactors for cell culture-based bioprocessing. Achema Worldwide News, 2, 8–10.

    Google Scholar 

  • Eibl, R., & Eibl, D. (2008). Design of bioreactors suitable for plant cell and tissue cultures. Phytochemistry Reviews, 7, 593–598.

    CAS  Google Scholar 

  • Eibl, R., Werner, S., & Eibl, D. (2009). Disposable bioreactors for plant liquid cultures at Litre-scale. Engineering in Life Sciences, 9(3), 156–164.

    CAS  Google Scholar 

  • Eibl, R., & Eibl, D. (2009a). Application of disposable bag-bioreactors in tissue engineering and for the production of therapeutic agents. In G. Kasper, R. Pörtner, & M. V. Griensven (Eds.), Bioreactor systems for tissue engineering (pp. 183–207). Heidelberg: Springer.

    Google Scholar 

  • Eibl, R., & Eibl, D. (2009b). Disposable bioreactors in cell culture-based upstream processing. BioProcess International, 7(Supplement 1), 20–25.

    Google Scholar 

  • Eibl, R., Eibl, D., Pechmnn, G., Ducommun, C., Lisica, L., Lisica, S., Blum, P., et al. (2003). Produktion pharmazeutischer Wirkstoffe in disposable Systemen bis zum 100 L Massstab, Teil I, KTI-Projekt 5844.2 FHS, Final report, primary data of the experiments and summary of calculations, University of Applied Sciences, Switzerland unpublished.

    Google Scholar 

  • Etienne, H., Lartaud, M., Michaux-Ferriére, N., Carron, M. P., Berthouly, M., & Teisson, C. (1997). Improvement of somatic embryogenesis in Hevea brasilensis (Mull. Arg.) using the temporary immersion technique. In Vitro Cellular and Developmental Biology-Plant, 33, 81–87.

    Google Scholar 

  • Evans, J. (2006). Plant-derived drug. http://www.rsc.org/chemistryworld/New/2006/February/07020602.asp. Accessed 10 Apr 2007.

  • Farid, S. S. (2006). Established bioprocesses for producing antibodies as a basis for future planning. Advances in Biochemical Engineering/Biotechnology, 101, 1–42.

    CAS  Google Scholar 

  • Farid, S. S., Washbrook, J., & Titchener-Hooker, N. J. (2005). Decision-support tool for assessing bio-manufacturing strategies under uncertainty: Stainless steel versus disposable equipment for clinical trial material preparation. Biotechnology Progress, 21, 486–497.

    CAS  Google Scholar 

  • Flanagan, N. (2007). Disposable reach out to new markets. GEN, 27, 38–39.

    Google Scholar 

  • Flores, H. E., & Curtis, W. R. (1992). Approaches to understanding and manipulating the biosynthetic potential of plant roots. Annals of the New York Academy of Sciences, 665, 188–209.

    CAS  Google Scholar 

  • Fox, S. (2005). Disposable bioprocessing: The impact of disposable bioreactors on the CMO industry. Contract Pharmaceutical, 7(5), 62–74.

    Google Scholar 

  • Fulzele, D. P. (2000). Bioreactor technology for large scale cultivation of plant cell suspension cultures and production of bioactive compounds. BARC Newsletter, http://www.barc.ernet.in/webpages/letter/2000/200010-04.pdf

  • Gao, J., Hooker, B. S., & Anderson, D. B. (2004). Expression of functional human coagulation factor XIII A-domain in plant cell suspensions and whole plants. Protein Expression and Purification, 37, 89–96.

    CAS  Google Scholar 

  • Hao, Z., Ouyang, F., Geng, Y., Deng, X., Hu, Z., & Chen, Z. (1998). Propagation of potato tubers in a nutrient mist bioreactor. Biotechnology Techniques, 12, 641–644.

    CAS  Google Scholar 

  • Hellwig, S., Drossard, J., Twyman, R. M., & Fischer, R. (2004). Plant cell cultures for the production of recombinant proteins. Nature Biotechnology, 22, 1415–1422.

    CAS  Google Scholar 

  • Hilton, M. G., & Rhodes, M. J. C. (1990). Growth and hyoscyamine production of hairy root cultures of Datura stramonium in a modified stirred tank reactor. Applied Microbiology and Biotechnology, 33, 132–138.

    CAS  Google Scholar 

  • Holobiuc, I., & Blindu, R. (2006). In vitro culture of the protected rare species Gentiana lutea L. for conservative purpose. Contributii Botanice, 42, 125–134.

    Google Scholar 

  • Huang, S.-Y., Hung, C.-H., & Chou, S.-N. (2004). Innovative strategies for operation of mist trickling reactors for enhanced hairy root proliferation and secondary metabolite productivity. Enzyme and Microbial Technology, 35(1), 22–32.

    CAS  Google Scholar 

  • International Union of Pure and Applied Chemistry (IUPAC). (1997). Compendium of chemical terminology (2nd ed.). Oxford: Blackwell Scientific.

    Google Scholar 

  • Jolicoeur, M., Williams, R. D., Chavarie, C., Fortin, J. A., & Archambault, J. (1999). Production of Glomus intraradices propagules, an arbuscular mycorrhizal fungus, in an airlift bioreactor. Biotechnology and Bioengineering, 63(2), 224–232.

    CAS  Google Scholar 

  • Kiearn, P. M., O’Donnell, H. J., Malone, D. M., & MacLoughilin, P. F. (1995). Biotechnology and Bioengineering, 45, 415.

    Google Scholar 

  • Kim, S. J. (2001). Effect of environmental conditions on growth and quality of chrysanthemum plantlets in bioreactor culture. MS thesis, Chungbuk National University, Korea

    Google Scholar 

  • Kim, Y. H., & Yoo, Y. J. (1993). Development of a bioreactor for high density culture of hairy roots. Biotechnology Techniques, 7, 859–862.

    CAS  Google Scholar 

  • Kim, Y., Wyslouzil, B. E., & Weathers, P. J. (2002). Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cellular and Developmental Biology-Plant, 38, 1–10.

    CAS  Google Scholar 

  • Kloke, A., Rubenwolfa, S., Bücking, C., Gescher, J., Kerzenmacher, S., Zengerle, R., & Stetten, F. (2010). A versatile miniature bioreactor and its application to bioelectrochemistry studies. Biosensors and Bioelectronics, 25, 2559–2565.

    Google Scholar 

  • Kondo, O., Honda, H., Taya, M., & Kobayashi, T. (1989). Comparison of growth properties of carrot hairy root in various bioreactors. Applied Microbiology and Biotechnology, 32, 291–294.

    CAS  Google Scholar 

  • Kurata, K., Ibaraki, Y., & Goto, E. (1991). Propagation of potato tubers in a nutrient mist bioreactor. American Society of Agricultural Engineers, 34, 621–624.

    Google Scholar 

  • Kwok, K. H., & Doran, P. M. (1995). Kinetic and stoichiometric analysis of hairy roots in a segmented bubble column reactor. Biotechnology Progress, 11, 429–435.

    CAS  Google Scholar 

  • Le Flem-Bonhomme, V., Laurain-Mattar, D., & Fliniaux, M. A. (2004). Hairy root induction of Papaver somniferum var. album, a difficult-to-transform plant, by A. rhizogenes LBA 9402. Planta, 218, 890–893.

    Google Scholar 

  • Lee, D., & Natesan, E. (2006). Evaluating genetic containment strategies for transgenic plants. Trends in Biotechnology, 24, 109–114.

    Google Scholar 

  • Liu, C. Z., Wang, Y. C., Guo, C., Ouyang, F., Ye, H. C., & Li, G. F. (1998). Production of artemisinin by shoot cultures of Artemisia annua L. in a modified inner-loop mist bioreactor. Plant Science, 135, 211–217.

    CAS  Google Scholar 

  • Liu, C. Z., Wang, Y. C., Zhao, B., Guo, C., Ouyang, F., Ye, H. C., et al. (1999). Development of a nutrient mist bioreactor for growth of hairy roots. In Vitro Cellular and Developmental Biology-Plant, 35, 271–274.

    Google Scholar 

  • Marshall, B. (2006). MolecularFarming.com. http://www.molecularfarming.com/PMPs-and-PMIPs.html. Accessed 10 Apr 2007.

  • McKelvey, S. A., Gehrig, J. A., Hollar, K. A., & Curtis, W. R. (1993). Growth of plant root cultures in liquid- and gas-dispersed reactor environments. Biotechnology Progress, 9, 317–322.

    CAS  Google Scholar 

  • Mehrotra, S., Kukreja, A. K., Khanuja, S. P. S., & Mishra, B. N. (2008). Genetic transformation studies and scale up of hairy root culture of Glycyrrhiza glabra in bioreactor. Electronic Journal of Biotechnology, 11, 1–7.

    Google Scholar 

  • Meijer, J. J., Ten Hoopen, H. J. G., Van Gameren, Y. M., Luyben, K. C. A. M., & Libbenga, K. R. (1994). Effect of hydrodynamic stress on the growth of plant cells in batch and continuous culture. Enzyme and Microbial Technology, 16, 467.

    CAS  Google Scholar 

  • Mishra, B. N., & Ranjan, R. (2008). Growth of hairy-root cultures in various bioreactors for the production of secondary metabolites. Biotechnology and Applied Biochemistry, 49, 1–10.

    CAS  Google Scholar 

  • Morrow, K. J. (2007). Improving protein production strategies. GEN, 28, 37–39.

    Google Scholar 

  • Mulbagal, V., & Tsay, H. S. (2004). Plant cell cultures-an alternative and efficient source for the production of biologically important secondary metabolites. International Journal of Applied Science and Engineering, 2, 29–48.

    Google Scholar 

  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

    CAS  Google Scholar 

  • Nuutila, A. M., Toivonen, L., & Kauppinen, V. (1994). Bioreactor studies on hairy root cultures of Catharanthus roseus: comparison of three bioreactor types. Biotechnology Techniques, 8, 61–66.

    CAS  Google Scholar 

  • Oka, K. M., Hongo, Y., Taya, M., & Tone, S. (1992). Culture of red beet hairy roots in a column-type reactor. Journal of Chemical Engineering of Japan, 25, 490–495.

    Google Scholar 

  • Paek, K. Y., Hahn, E. J., & Son, S. H. (2001). Application of bioreactors of large scale micropropagation systems of plants. In Vitro Cellular and Developmental Biology-Plant, 37, 149–157.

    CAS  Google Scholar 

  • Paek, K. Y., Chakrabarty, D., & Hahn, E. J. (2005). Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell Tissue and Organ Culture, 81, 287–300.

    Google Scholar 

  • Phisalaphong, M., & Linden, J. C. (1999). Kinetic studies of paclitaxel production by Taxus canadensis cultures in batch and semicontinuous with total cell recycle. Biotechnology Progress, 15, 1072–1077.

    CAS  Google Scholar 

  • Prasad, V. S. S. (2007). Development of liquid culture and machine vision systems for efficient micropropagation of Gladiolus hybridus Hort. PhD thesis, Indian Institute of Technology, Kharagpur, India.

    Google Scholar 

  • Ramakrishnan, D., Salim, J., & Curtis, W. R. (1994). Inoculation and tissue distribution in pilot-scale plant root culture bioreactors. Biotechnology Techniques, 8, 639-644.

    Google Scholar 

  • Ritala, A., Wahlström, E. H., Holkeri, H., Hafren, A., Akel Ainen, K. M., Baez, J., Akinen, K. M., & Nuutila, A. M. (2008). Production of a recombinant industrial protein using barley cell cultures. Protein Expression and Purification, 59, 274–281.

    CAS  Google Scholar 

  • Saifullah, S. M., Gul, S., & Khan, M. (2008). The dinoflagellate genus Ornithocercus stein from north Arabian Sea shelf of Pakistan. Pakistan Journal of Botany, 40(2), 849–857.

    Google Scholar 

  • Sajc, L., Grubisic, D., & Novakovic, G. V. (2000). Bioreactors for plant engineering: an out for further research. Biochemical Engineering Journal, 4, 89–99.

    Google Scholar 

  • Schürch, C., Blum, P., & Zülli, F. (2008). Potential of plant cells in culture for cosmetic application. Phytochemistry Reviews, 7, 599–605.

    Google Scholar 

  • Seki, M., Ohzora, C., Takeda, M., & Furusaki, S. (1997). Taxol (Paclitaxel) production using free and immobilized cells of Taxus cuspidata. Biotechnology and Bioengineering, 53(1), 214–219.

    CAS  Google Scholar 

  • Shanks, J. V., & Morgan, J. (1999). Plant hairy root culture. Current Opinion in Biotechnology, 10, 151–155.

    CAS  Google Scholar 

  • Shin, K. S., Murthy, H. N., Ko, J. Y., & Paek, K. Y. (2002). Growth and betacyanin production by hairy roots of Beta vulgarisin airlift bioreactors. Biotechnology Letters, 24, 2067–2069.

    CAS  Google Scholar 

  • Singh, V. (1999). Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnology, 30, 149–158.

    CAS  Google Scholar 

  • Singh, G., & Curtis, W. R. (1994). Reactor design for plant root culture. In P. D. Shargool & T. T. Ngo (Eds.), Biotechnological applications plant cultures: CRC series of current topics in plant molecular biology (pp. 185–206). Boca Raton: CRC Press.

    Google Scholar 

  • Soderberg, A. C. (2002). Fermentation design (2nd ed., pp. 67–121). Norwich: Knovel.

    Google Scholar 

  • Su, W. W. (2006). Bioreactor engineering for recombinant protein production using plant cell suspension culture. In S. Dutta & Y. Baraki (Eds.), Plant tissue culture engineering (pp. 135–159). Dordrecht: Springer.

    Google Scholar 

  • Suresh, B., Bais, H. P., Raghavarao, K. S. M. S., Ravishankar, G. A., & Ghildyal, N. P. (2005). Comparative evaluation of bioreactor design using Tagetes patula L. hairy roots as a model system. Process Biochemistry, 40, 1509–1515.

    CAS  Google Scholar 

  • Takayama, S., & Akita, M. (2006). Bioengineering aspects of bioreactor application in plant propagation. In S. Dutta & Y. Baraki (Eds.), Plant tissue culture engineering (pp. 83–100). Dordrecht: Springer.

    Google Scholar 

  • Taya, M., Yoyoma, A., Kondo, O., Kobayashi, T., & Matsui, C. (1989). Growth characteristics of plant hairy roots and their cultures in bioreactors. Journal of Chemical Engineering of Japan, 22, 84–89.

    Google Scholar 

  • Terrier, B., Courtois, D., Hénault, N., Cuvier, A., Bastin, M., Aknin, A., Dubreuil, J., & Pétiard, V. (2007). Two new disposable bioreactors for plant cell culture: The Wave and Undertow bioreactor and the Slug bubble bioreactor. Biotechnology and Bioengineering, 96, 914–923.

    CAS  Google Scholar 

  • Thermo Fisher Scientific. (2007). AN003 REV, Application note.

    Google Scholar 

  • Tikhomiroff, C., Allais, S., Klvana, M., Hisiger, S., & Jolicoeur, M. (2002). Continuous selective extraction of secondary metabolites from Catharanthus roseus. Hairy roots with silicon oil in a two-liquid-phase bioreactor. Biotechnology Progress, 18, 1003–1009.

    CAS  Google Scholar 

  • Towler, M. J., Kim, Y., Wyslouzil, B. E., Correll, M. J., & Weathers, P. J. (2006). Design, development, and applications of mist bioreactors for micropropagation and hairy root culture. Plant Tissue Culture Engineering, 6, 119–134.

    Google Scholar 

  • Uozumi, N., Makino, S., & Kobayashi, T. (1995). 20-Hydroxyecdysone production in Ajuga hairy root controlling intracellular phosphate based on kinetic model. Journal of Fermentation and Bioengineering, 80, 362–368.

    CAS  Google Scholar 

  • Van Gulik, W. M., Ten Hoopen, H. J. G., & Heijnen, J. J. (1992). Kinetics and stoichiometry of growth of plant cell cultures of Catharanthus roseus and Nicotiana tabacum in batch and continuous fermentors. Biotechnology and Bioengineering, 40, 863–874.

    Google Scholar 

  • Weathers, P. J., & Giles, K. L. (1988). Regeneration of plants using nutrient mists. In Vitro Cellular and Development Biology, 24, 727–732.

    Google Scholar 

  • Weathers, P. J., Cheetham, R. D., & Giles, K. L. (1988). Dramatic increases in shoot number and length for Musa, Cordyline, and Nephrolepis using nutrient mists. Acta Horticulturae, 230, 39–44.

    Google Scholar 

  • Weathers, P. J., Wyslouzil, B. E., Wobbe, K. K., Kim, Y. J., & Yigit, E. (1999). The biological response of hairy roots to O2 levels in bioreactors. In Vitro Cellular and Developmental Biology-Plant, 35, 286–289.

    CAS  Google Scholar 

  • Weber, W., Weber, E., Geisse, S., & Memmert, K. (2002). Optimization of protein expression and establishment of the Wave Bioreactor for Baculovirus/insect cell culture. Cytotechnology, 38, 77–85.

    CAS  Google Scholar 

  • Westgate, P. J., Curtis, W. R., Emery, A. H., Hasegawa, P. M., & Heinstein, P. F. (1991). Approximation of continuous growth of Cephalotaxus harringtonia plant cell cultures using fed-batch operation. Biotechnology and Bioengineering, 38, 241–246.

    CAS  Google Scholar 

  • Whitney, P. J. (1992). Novel bioreactors for the growth of roots transformed by Agrobacterium rhizogenes. Enzyme and Microbial Technology, 14(1), 13–17.

    CAS  Google Scholar 

  • Williams, G. R. C., & Doran, P. M. (2000). Hairy root culture in a liquid-dispersed bioreactor: characterization of spatial heterogeneity. Biotechnology Progress, 16, 391–401.

    CAS  Google Scholar 

  • Wilson, P. D. G. (1997). The pilot-scale cultivation of transformed roots. In P. M. Doran (Ed.), Hairy roots: culture and applications (pp. 179–190). Amsterdam: Harwood Academic.

    Google Scholar 

  • Wink, M., Alfermann, A. W., Franke, R., Wetterauer, B., Distl, M., Windhoevel, J., Krohn, O., et al. (2005). Sustainable production of phytochemicals by plant in vitro cultures: Anticancer agents. Plant Gene Research, 3, 90–100.

    CAS  Google Scholar 

  • Woo, S. H., & Park, J. M. (1993). Multiple shoot culture Dianthus caryophyllus using mist culture system. Biotechnology Techniques, 7, 697–702.

    Google Scholar 

  • Woo, S. H., Park, J. M., & Yang, J. (1996). Root culture using a mist culture system and estimation of scale-up feasibility. Journal of Chemical Technology and Biotechnology, 66, 355–362.

    Google Scholar 

  • Wu, C.-H., Murthy, H. N., Hahn, E.-J., & Paek, K.-Y. (2007). Improved production of caffeic acid derivatives in suspension cultures of Echinacea purpurea by medium replenishment strategy. Archives of Pharmacal Research, 30(8), 945–949.

    CAS  Google Scholar 

  • Wurm, F. (2005). Manufacture of recombinant biopharmaceutical proteins by cultivated mammalian cells in bioreactors. In J. Knäblein (Ed.), Modern biopharmaceuticals: Design, development and optimization (pp. 723–759). Weinheim: Wiley-VCH.

    Google Scholar 

  • Yu, S., & Doran, P. M. (1994). Oxygen requirements and mass transfer in hairy root culture. Biotechnology and Bioengineering, 44, 880–887.

    CAS  Google Scholar 

  • Yu, S., Mahagamasekera, M. G. P., Williams, G. R. C., Kanokwaree, K., & Doran, P. M. (1997). Oxygen effects in hairy root culture. In P. M. Doran (Ed.), Hairy roots: culture and applications (pp. 139–150). Amsterdam: Harwood Academic.

    Google Scholar 

  • Yu, K. W., Gao, W. Y., Hahn, E. J., & Paek, K. Y. (2001). Effects of macro elements and nitrogen source on adventitious root growth and ginsenoside production in ginseng (Panax ginseng C.A. Meyer). Journal of Plant Biology, 44, 179–184.

    CAS  Google Scholar 

  • Zhong, J. J. (2001). Biochemical engineering of the production of plant-specific secondary metabolites by cell suspension cultures. Advances in Biochemical Engineering/Biotechnology, 72, 1–26.

    CAS  Google Scholar 

  • Ziv, M. (1999). Organogenic plant regeneration in bioreactors. In A. Altmann, M. Ziv, & S. Izhar (Eds.), Plant biotechnology and in vitro biology in the 21st century (pp. 673–676). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Ziv, M. (2000). Bioreactor technology for plant micropropagation. Horticultural Review, 24, 1–30.

    CAS  Google Scholar 

  • Ziv, M. (2005). Simple bioreactors for mass propagation of plants. Plant Cell Tissue and Organ Culture, 81, 277–285.

    Google Scholar 

  • Ziv, M., Ronen, G., & Raviv, M. (1998). Proliferation of meristematic clusters in disposable pre-­sterilized plastic bio-containers for the large-scale micropropagation of plants. In Vitro Cellular and Developmental Biology-Plant, 34, 152–158.

    Google Scholar 

Download references

Acknowledgements

Dr. Anwar Shahzad gratefully acknowledges the financial support provided by UGC and UP-CST in the form of research projects (vide no. 39-369/2010 SR and vide no. CST/D3836 respectively). Dr. Shiwali Sharma is also thankful to UGC, for the award of Basic Scientific Research Fellowship in Science (1st April 2010) for providing research assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar Shahzad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sharma, S., Shahzad, A. (2013). Bioreactors: A Rapid Approach for Secondary Metabolite Production. In: Shahid, M., Shahzad, A., Malik, A., Sahai, A. (eds) Recent Trends in Biotechnology and Therapeutic Applications of Medicinal Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6603-7_2

Download citation

Publish with us

Policies and ethics