Skip to main content

In Vitro Conservation Protocols for Some Commercially Important Medicinal Plants

  • Chapter
  • First Online:
Recent Trends in Biotechnology and Therapeutic Applications of Medicinal Plants
  • 2296 Accesses

Abstract

Interest and support for the conservation and development of medicinal plants is increasing in all parts of the world. This is due, in part, to a growing recognition given to the role of medicinal plants in the provision of culturally relevant and affordable health care in creating sustainable livelihoods and in the vital conservation of biodiversity. This has also drawn the attention of the world community towards the need for creating mechanisms to ensure sustained development of the sector and to allow sharing of information between countries, organizations and agencies. The value of medicinal plants to human livelihoods is essentially infinite. The special significance of medicinal plants in conservation stems from the major cultural, livelihood or economic roles that they play in many people’s lives. Many of the threats to medicinal plant species are similar to those causing endangerment to plant diversity generally. The most serious proximate threats generally are habitat loss, habitat degradation and over-harvesting. In order to protect such endangered species from possible extinction, the exploitation of medicinal plants must be accompanied by conservation measures. Application of tissue culture of plant cells, tissues and organs is the most promising tool for medicinal plant conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BA:

6-benzylaminopurine

Kn:

Kinetin

2iP:

2-isopentanyl adenine

TDZ:

Thidiazuron

GA3 :

Gibberrelic acid

2,4-D:

2,4-dichlorophenoxyacetic acid

2,4,5-T:

2,4,5-trichlorophenoxyacetic acid

NAA:

α-naphthalene acetic acid

IAA:

Indole-3-acetic acid

IBA:

Indole-3-butyric acid

PG:

Phloroglucinol

AdS:

Adenine Sulphate

CW:

Coconut Water

CH:

Casein Hydrolysate

PGR:

Plant Growth Regulator

MS:

Murashige and Skoog’s medium

References

  • Agrawal, V., & Sardar, P. R. (2003). In vitro organogenesis and histomorphological investigations in senna (Cassia angustifolia) – A medicinally valuable shrub. Physiology and Molecular Biology of Plants, 9, 131–140.

    Google Scholar 

  • Agrawal, V., & Sardar, P. R. (2006). In vitro propagation of Cassia angustifolia through leaflet and cotyledon derived calli. Biologia Plantarum, 50, 118–122.

    CAS  Google Scholar 

  • Agrawal, V., & Sardar, P. R. (2007). In vitro regeneration through somatic embryogenesis and organogenesis using cotyledons of Cassia angustifolia Vahl. In Vitro Cellular and Developmental Biology – Plant, 43, 585–592.

    CAS  Google Scholar 

  • Ahmad, Z., Zaidi, N., & Shah, F. (1990). Micropropagation of Melia azedarach from mature tissue. Pakistan Journal of Botany, 22(2), 172–178.

    Google Scholar 

  • Ahmed, M. B., Salahin, M., Karim, R., Razvy, M. A., Hannan, M. M., Sultana, R., Hossain, M., & Islam, R. (2007). An efficient method for in vitro clonal propagation of a newly introduced sweetener plant (Stevia rebaudiana Bertoni.) in Bangladesh. American-Eurasian Journal of Scientific Research, 2(2), 121–125.

    Google Scholar 

  • Ajithkumar, D., & Seeni, S. (1998). Rapid clonal multiplication through in vitro axillary shoot proliferation of Aegle marmelos (L) Corr., a medicinal tree. Plant Cell Reports, 17(5), 422–426.

    CAS  Google Scholar 

  • Alizadeh, S., Mantell, S. H., & Viana, A. M. (1998). In vitro shoot culture and microtuber induction in the steroid yam Dioscorea composita Hemsl. Plant Cell, Tissue and Organ Culture, 53, 107–112.

    Google Scholar 

  • Al-Qura’n, S. (2005). Ethnobotanical survey of folk toxic plants in southern part of Jordan. Toxicon, 46, 119–126.

    Google Scholar 

  • Anonymous. (1966). Wealth of India: A dictionary of Indian raw materials and industrial products (Vol. VII, pp 79–89). New Delhi: CSIR Publication.

    Google Scholar 

  • Anonymous. (1988). The wealth of India: A dictionary of Indian raw materials and industrial products (Vol. II). New Delhi: Publication and Information Directorate, CSIR.

    Google Scholar 

  • Arora, R., & Bhojwani, S. S. (1989). In vitro propagation and low temperature storage of Saussurea lappa C.B. Clarke – An endangered, medicinal plant. Plant Cell Reports, 8, 44–47.

    Google Scholar 

  • Arora, K., Sharma, M., Srivastava, J., Ranade, S. A., & Sharma, A. K. (2010). Rapid in vitro cloning of a 40-year-old tree of Azadirachta indica A. Juss. (Neem) employing nodal stem segments. Agroforestry Systems, 78, 53–63.

    Google Scholar 

  • Bajaj, Y. P. S., Furmanowa, M., & Olszowska, O. (1988). Biotechnology of the micropropagation of medicinal and aromatic plants. In Y. P. S. Bajaj (Ed.), Medicinal and aromatic plants I (Biotechnology in agriculture & forestry, Vol. 4, p. 60). Berlin: Springer.

    Google Scholar 

  • Barik, D. P., Naik, S. K., Mudgal, A., & Chand, P. K. (2007). Rapid plant regeneration through in vitro axillary shoot proliferation of butterfly pea (Clitoria ternatea L.) – A twinning legume. In Vitro Cellular and Developmental Biology – Plant, 43, 144–148.

    Google Scholar 

  • Barve, D. M., & Mehta, A. R. (1993). Clonal propagation of mature elite trees of Commiphora wightii. Plant Cell Tissue and Organ Culture, 35(3), 237–244.

    Google Scholar 

  • Camper, N. D., Coker, P. S., Wedge, D. E., & Keese, R. J. (1997). In vitro culture of Ginkgo. In Vitro Cellular and Developmental Biology – Plant, 33(2), 125–127.

    Google Scholar 

  • Carpinela, M., Herrero, G., Alonso, R., & Palacios, S. (1999). Actividad antifungica de extractos del fruto del paraiso (Melia azederach L.). Fitoterapia, 70, 296–298.

    Google Scholar 

  • Chaturvedi, R., Razdan, M. K., & Bhojwani, S. S. (2004). In vitro clonal propagation of an adult tree of neem (Azadirachta indica A. Juss.) by forced axillary branching. Plant Science, 166, 501–506.

    CAS  Google Scholar 

  • Dalal, N. V., & Rai, V. R. (2004). In vitro propagation of Oroxylum indicum Vent. A medicinally important forest tree. Journal of Forest Research, 9(1), 61–65.

    CAS  Google Scholar 

  • Daniel, A., Kalidass, C., & Mohan, V. R. (2010). In vitro multiple shoot induction through axillary bud of Ocimum basilicum L. An important medicinal plant. International Journal of Biological Technology, 1(1), 24–28.

    CAS  Google Scholar 

  • Debnath, M. (2008). Clonal propagation and antimicrobial activity of an endemic medicinal plant Stevia rebaudiana. Journal of Medicinal Plants Research, 2(2), 45–51.

    Google Scholar 

  • del Mendez, M. C., Elı’as, F., Aragao, M., Gimeno, E. J., & Riet-Correa, F. (2002). Intoxication of cattle by the fruits of Melia azedarach. Veterinary and Human Toxicology, 44, 145–148.

    Google Scholar 

  • Dewan, A., Nanda, K., & Gupta, S. C. (1992). In vitro micropropagation of Acacia nilotica Subsp. Indica Brenen via cotyledonary nodes. Plant Cell Reports, 12, 18–21.

    Google Scholar 

  • Dhawan, S., Shasany, A. K., Naqvi, A. A., Kumar, S., & Khanuja, S. P. S. (2003). Menthol tolerant clones of Mentha arvensis: Approach for in vitro selection of menthol rich genotypes. Plant Cell Tissue & Organ Culture, 75, 87–94.

    CAS  Google Scholar 

  • Dode, L. B., Bobrowski, V. L., Braga, E. J. B., Seixas, F. K., & Schuch, M. W. (2003). In vitro propagation of Ocimum basilicum L. (Lamiaceae). Acta Scientiarum Biological Sciences, 25(2), 435–437.

    Google Scholar 

  • Gazzaneo, L. R., Paiva de Lucena, R. F., & Paulino de Albuquerque, U. (2005). Knowledge and use of medicinal plants by local specialists in a region of Atlantic forest in the state of Pernambuco (Northeastern Brazil). Journal of Ethnobiology and Ethnomedicine, 1, 9.

    Google Scholar 

  • Geetha, S. P., Raghu, A. V., Martin, G., George, S., & Balachandran, I. (2009). In vitro propagation of two tuberous medicinal plants: Holostemma ada-kodien and Ipomoea mauritiana. Methods in Molecular Biology, 547, 81–92.

    CAS  Google Scholar 

  • Giri, J., Suganthi, B., & Meera, G. (1987). Effect of tulsi (Ocimum sanctum) on diabetes mellitus. Indian Journal of Nutrition and Dietetics, 24, 337–341.

    Google Scholar 

  • Gopi, C., & Ponmurugan, P. (2006). Somatic embryogenesis and plant regeneration from leaf callus of Ocimum basilicum L. Journal of Biotechnology, 126, 260–264.

    CAS  Google Scholar 

  • Gulati, A., Bharel, S., Abdin, M. Z., Jain, S. K., & Srivastava, P. S. (1996). In vitro micropropagation and flowering in Artemisia annua. Journal of Plant Biochemistry and Biotechnology, 5, 31.

    Google Scholar 

  • Hanazaki, N., Tamashiro, J. Y., Leitao-Filho, H., & Gegossi, A. (2000). Diversity of plant uses in two Caicaras communities from the Atlantic forest coast, Brazil. Biodiversity and Conservation, 9, 597–615.

    Google Scholar 

  • Hill, A. F. (1952). Economic botany. Textbook of useful plants and plant products (2nd ed.). New York: McGraw-Hill Book Company Inc.

    Google Scholar 

  • Husain, M. K., & Anis, M. (2009). Rapid in vitro multiplication of Melia azedarach L. (a multipurpose woody tree). Acta Physiologae Plantarum, 31, 765–772.

    CAS  Google Scholar 

  • Ibrahim, I. A., Nasr, M. I., Mohammed, B. R., & El-Zefzafi, M. M. (2008). Plant growth regulators affecting in vitro cultivation of Stevia rebaudiana. Sugar Technology, 10(3), 254–259.

    CAS  Google Scholar 

  • Ishima, N., & Katayama, O. (1976). Sensory evaluation of stevioside as a sweetener. Report of National Food Research Institute, 31, 80–85.

    CAS  Google Scholar 

  • Isman, B. I., Koul, O., Luczynski, A., & Kaminski, J. (1990). Insecticidal and antifeedant bioactivities of neem oils and their relationship to azadirachtin content. Journal of Agricultural and Food Chemistry, 38, 1406–1411.

    CAS  Google Scholar 

  • Jain, N. N., Ohal, C. C., Shroff, S. K., Bhutada, R. H., Somani, R. S., Kasture, V. S., & Kasture, S. B. (2003). Clitoria ternatea and the CNS. Pharmacology Biochemistry and Behaviour, 75, 529–536.

    CAS  Google Scholar 

  • Johnson, T. S., Narayan, S. B., & Narayan, D. B. A. (1997). Rapid in vitro propagation of Saussurea lappa, an endangered medicinal plant, through multiple shoot cultures. In Vitro Cellular and Developmental Biology – Plant, 33(2), 128–130.

    Google Scholar 

  • Katayma, O., Sumida, T., Hayashi, H., Mitsuhashi, H. (1976). The practical application of Stevia and R&D data (English translation) (p. 747) Osaka: ISU Company.

    Google Scholar 

  • Khosla, M. K. (1995). Sacred tulsi (Ocimum sanctum L.). Traditional Medicine and Pharmacology, 15, 53–61.

    CAS  Google Scholar 

  • Kim, Y. C., Ming, C. Q., Gunatilaka, A. A., & Kingston, D. G. (1996). Bioactive steroidal alkaloids from Solanum umbelliferum. Journal of Natural Products, 59(3), 283–285.

    CAS  Google Scholar 

  • Kim, M., Kim, S. K., Park, B. N., Lee, K. H., Min, G. H., Seoh, J. Y., Park, C. G., Hwang, E. S., Cha, C. Y., & Kook, Y. H. (1999). Antiviral effects of 28-deacetylsendanin on herpes simplex virus-1 replication. Phytochemistry, 43, 103–112.

    CAS  Google Scholar 

  • Kirticar, K. R., & Basu, B. D. (1989). In E. Blatter, J. F. Cains, & K. S. Bhaskar (Eds.), Indian medicinal plants. Allahabad: Lalit Mohan Basu Publishers.

    Google Scholar 

  • Komalavalli, N., & Rao, M. V. (2000). In vitro micropropagation of Gymnema sylvestre – A multipurpose medicinal plant. Plant Cell Tissue and Organ Culture, 61, 97–105.

    Google Scholar 

  • Kulkarni, A. A., Thangane, S. R., & Krishnamurthy, K. V. (2000). Direct shoot regeneration from node, internode, hypocotyls and embryo explants of Withania somnifera. Plant Cell Tissue and Organ Culture., 62(3), 203–209.

    Google Scholar 

  • Lee, S. M., Klocke, J. A., Barnby, M. A., Yamasaki, R. B., & Balandrin, M. F. (1991). Insecticidal constituents of Azadirachta indica and Melia azedarach (Meliaceae). In P. A. Hedin (Ed.), Naturally occurring pest bioregulators (ACS symposium series, Vol. 449, pp. 293–304). Washington, DC: American Chemical Society.

    Google Scholar 

  • Lincy, A. K., Remashree, A. B., & Bhaskaran, S. (2009). Indirect and direct somatic embryogenesis from aerial stem explants of ginger (Zingiber officinale Rosc.). Acta Botanica Croatica, 68(1), 93–103.

    CAS  Google Scholar 

  • Martin, G., Geetha, S. P., Sudhakaran, R. S., Raghu, A. V., Balachandran, I., & Ravindran, P. N. (2006). An efficient micropropagation system for Celastus paniculatus Willd. A vulnerable medicinal plant. Journal of Forest Research, 11(6), 461–465.

    Google Scholar 

  • Mathew, R., & Sankar, D. P. (2011). Comparision of somatic embryo formation in Ocimum basilicum L., Ocimum sanctum L., & Ocimum gratissimum L. International Journal of Pharma and Bio Sciences, 2(1), 356–367.

    CAS  Google Scholar 

  • Moerman, D. (1998). Native American ethnobotany (pp. 53–59). Portland: Timber Press.

    Google Scholar 

  • Mohapatra, H. P., & Rath, S. P. (2005). In vitro studies of Bacopa monnieri: An important medicinal plant with referenece toits biochemical variations. Indian Journal of Experimental Biology, 43(4), 373–376.

    CAS  Google Scholar 

  • Morris, J. B. (1999). Legume genetic resources with novel ‘value added’ industrial and pharmaceutical use. In J. Janick (Ed.), Perspectives on new crops and new uses (pp. 196–201). Alexandria: ASHS Press.

    Google Scholar 

  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

    CAS  Google Scholar 

  • Murthy, B. N. S., & Saxena, P. K. (1998). Somatic embryogenesis and plant regeneration of neem (Azadirachta indica A. Juss.). Plant Cell Reports, 17, 469–475.

    CAS  Google Scholar 

  • Muthukumar, B., Arockiasamy, D. I., & Natarajan, E. (2004). Direct organogenesis in Datura metel L. from in vitro and in vivo nodal explants. Indian Journal of Biotechnology, 3(3), 449–451.

    CAS  Google Scholar 

  • Nangia, S., & Singh, R. (1996). Micropropagation of Acacia tortilis Hayne (Umbrella thorn) through cotyledonary nod culture. Indian Journal of Plant Physiology, 1, 77–79.

    Google Scholar 

  • Natesh, S. (1999). Conservation of medicinal and aromatic plants in India – An overview. In M. S. Kamaruddin, S. Natesh, A. Osman, & A. K. Azizol (Eds.), Medicinal and aromatic plants: Strategies and technologies for conservation (pp. 1–11). Kuala Lumpur: Forest Research Institute.

    Google Scholar 

  • Noman, A. S. M., Islam, M. S., Siddique, N. A., & Hossain, K. (2008). High frequency induction of multiple shoots from nodal explants of Vitex negundo L. using silver nitrate. International Journal of Agricultural Biology, 10, 633–637.

    CAS  Google Scholar 

  • Ovecka, M., Bobak, M., & Samaj, J. (2000). A comparative structural analysis of direct and indirect shoot regeneration of Papaver somniferum L. in vitro. Journal of Plant Physiology, 157, 281–289.

    CAS  Google Scholar 

  • Pandhure, N., Bansode, R., & Kothekar, V. (2010). In vitro multiplication of important medicinal plant Solanum nigrum L. Recent Research in Science and Technology, 2(7), 33–35.

    CAS  Google Scholar 

  • Parveen, S., & Shahzad, A. (2010). TDZ-induced high frequency shoot regeneration in Cassia sophera Linn. via cotyledonary node explants. Physiology and Molecular Biology of Plants, 16(2), 201–206.

    Google Scholar 

  • Parveen, S., & Shahzad, A. (2011). A micropropagation protocol for Cassia angustifolia Vahl. from root explants. Acta Physiologae Plantarum, 33, 789–796.

    Google Scholar 

  • Parveen, S., Shahzad, A., & Saema, S. (2010). In vitro plant regeneration system for Cassia siamea Lam., a leguminous tree of economic importance. Agroforestry Systems, 80, 109–116.

    Google Scholar 

  • Pati, R., Chandra, R., Chauhan, U. K., Mishra, M., & Srivastava, N. (2008). In vitro clonal propagation of bael (Aegle marmelos Corr.) CV. CISHB1 through enhanced axillary branching. Physiology and Molecular Biology of Plants, 14(4), 337–346.

    CAS  Google Scholar 

  • Pattnaik, S., & Chand, P. K. (1996). In vitro propagation of the medicinal herbs Ocimum americanum L. syn. Ocimum canum Syms. (hoary basil) and Ocimum sanctum (holy basil). Plant Cell Reports, 15, 846–850.

    CAS  Google Scholar 

  • Pei, S. J. (2001). Ethnobotanical approaches of traditional medicine studies: Some experiences from Asia. Pharmaceutical Biology, 39, 74–79.

    Google Scholar 

  • Phippen, W. B., & Simon, J. E. (1998). Anthocyanins in basil. Journal of Agricultural and Food Chemistry, 46, 1734–1738.

    CAS  Google Scholar 

  • Prathanturarug, S., Soonthornchareonnon, N., Chuakul, W., Phaidee, Y., & Saralamp, P. (2005). Rapid micropropagation of Curcuma longa using bud explants pre-cultured in thiadizuron supplemented liquid medium. Plant Cell Tissue & Organ Culture, 80, 347–351.

    CAS  Google Scholar 

  • Principe, P. (1991). Monetising the pharmacological benefits of plants. Washington, DC: US Environmental Protection Agency.

    Google Scholar 

  • Raghu, A. V., Geetha, S. P., Martin, G., Balachandran, I., & Ravindran, P. N. (2006). In vitro clonal propagation through mature nodes of Tinospora cordifolia (Willd.) Hook. F. & Thoms.: An important ayurvedic medicinal plant. In Vitro Cellular & Developmental Biology – Plant, 42, 584–588.

    CAS  Google Scholar 

  • Robinson, B. L. (1930). Contributions from the Grey Herbarium of Harvard University. Cambridge: The Grey Herbarium of Harvard University.

    Google Scholar 

  • Rout, G. R. (2005). Micropropagation of Clitoria ternatea (Linn.) Fabaceae – An important medicinal plant. In Vitro Cellular and Developmental Biology – Plant, 41, 516–519.

    Google Scholar 

  • Sahoo, Y., Pattnaik, S. K., & Chand, P. K. (1997). In vitro clonal propagation of an aromatic medicinal herb Ocimum basilicum (L.) (Sweet Basil) by axillary shoot proliferation. In Vitro Cellular and Developmental Biology, 33, 293–296.

    Google Scholar 

  • Sakaguchi, M., & Kan, T. (1982). Japanese researches on Stevia rebaudiana (Bert.) Bertoni and stevioside. Ci Culture, 34, 235–248.

    CAS  Google Scholar 

  • Salvi, N., George, L., & Eapen, S. (2002). Micropropagation and field evaluation of micropropagated plants of turmeric. Plant Cell Tissue & Organ Culture, 68, 143–151.

    Google Scholar 

  • Saymaiya, R. K., & Shukla, K. C. (1998). Biodiversity conservation through agroforestry system. Advances in Plant Sciences, 11(2), 111–115.

    Google Scholar 

  • Schmidt, G. H., Ahmed, A. A. I., & Breuer, M. (1997). Effect of Melia azedarach extract on larval development and reproduction parameters of Spodoptera littoralis (Boisd.) and Agrotis ipsilon (Hufn.) (Lep., Noctuidae) Anz. Scha¨dlingskd. Pflanzenschutz Umweltschutz, 70, 4–12.

    Google Scholar 

  • Schöner, S., & Reinhard, E. (1986). Long-term cultivation of Digitalis lanata clones propagated in vitro: Cardenolide content of the regenerated plants 1. Planta Medica, 6, 478–481.

    Google Scholar 

  • Shahzad, A., & Siddiqui, S. A. (2000). In vitro organogenesis in Ocimum sanctum L. – A multipurpose herb. Phytomorphology, 50(1), 27–35.

    Google Scholar 

  • Shahzad, A., Ahmad, N., & Anis, M. (2006). An improved method of organogenesis from cotyledon callus of Acacia sinuata (Lour.) Merr. using Thidiazuron. Journal of Biotechnology, 8(1), 15–19.

    Google Scholar 

  • Shahzad, A., Faisal, M., & Anis, M. (2007). Micropropagation through excised root culture of Clitoria ternatea and comparison between in vitro regenerated plants and seedlings. The Annals of Applied Biology, 150, 341–349.

    CAS  Google Scholar 

  • Shahzad, A., Parveen, S., & Fatema, M. (2011). Development of regeneration system via nodal segment culture in Veronica anagallis-aquatica L. – An amphibious medicinal plant. Journal of Plant Interactions, 6(1), 61–68.

    CAS  Google Scholar 

  • Sharma, A. K., Sharma, M., & Chaturvedi, H. C. (2002). Conservation of phytodiversity of Azadirachta indica A. Juss. through in vitro strategies. In S. K. Nandi, L. M. S. Palni, & A. Kumar (Eds.), Role of plant tissue culture in biodiversity conservation and economic development (pp. 51–520). Nainital: Gyanodaya Prakashan.

    Google Scholar 

  • Sharry, S., & Abedini, W. (2001). Selección de callos organogénicos tolerantes a baja temperatura y regeneración de plantas de Melia azedarach L. Revista Fitotecnia Mexicana, 24(1), 95–102.

    Google Scholar 

  • Siddique, I., & Anis, M. (2007). In vitro shoot multiplication and plantlet regeneration from nodal explants of Cassia angustifolia (Vahl.): A medicinal plant. Acta Physiologiae Plantarum, 29, 233–238.

    CAS  Google Scholar 

  • Singh, N. K., & Sehgal, C. B. (1999). Micropropagation of ‘holy basil’ (Ocimum sanctum Linn.) from young inflorescences of mature plants. Plant Growth Regulation, 29, 161–166.

    CAS  Google Scholar 

  • Singh, B., & Sood, S. (2009). Significance of explant preparation and sizing in Aloe vera L. A highly efficient method for in vitro multiple shoot induction. Scientia Horticulturae, 122, 146–15.1.

    Google Scholar 

  • Sivaram, L., & Mukundan, U. (2003). In vitro culture studies on Stevia rebaudiana. In Vitro Cellular and Developmental Biology, 39, 520–552.

    Google Scholar 

  • Soejarto, D. D., Kinghorn, A. D., & Fransworth, N. R. (1982). Potential sweetening agents of plant origin. Journal of Natural Products, 45, 590–599.

    CAS  Google Scholar 

  • Soniya, E. V., & Das, M. R. (2002). In vitro micropropagation of Piper longum – An important medicinal plant. Plant Cell Tissue & Organ Culture, 70, 325–327.

    CAS  Google Scholar 

  • Sood, H., & Chauhan, H. S. (2009). Development of a low cost micropropagation technology for an endangered medicinal herb (Picorhiza kurroa) of North-Western Himalayas. Journal of Plant Sciences, 4(2), 21–31.

    CAS  Google Scholar 

  • Sridhar, T. M., & Naidu, C. V. (2011). High frequency plant regeneration, in vitro flowering of Solanum nigrum (L.) – An important antiulcer medicinal plant. Journal of Phytology, 3(2), 85–93.

    CAS  Google Scholar 

  • Su, W. W., Hwang, W. I., Kim, S. Y., & Sagawa, Y. (1997). Induction of somatic embryogenesis in Azadirachta indica. Plant Cell, Tissue and Organ Culture, 50, 91–95.

    Google Scholar 

  • Sundari, M. S., Benniamin, A., & Manickam, V. S. (2010). Micropropagation and in vitro flowering in Solanum nigrum Linn. a medicinal plant. International Journal of Biological Technology, 1(1), 29–32.

    CAS  Google Scholar 

  • Tamura, Y., Nakamura, S., Fukui, H., & Tabata, M. (1984). Clonal propagation of Stevia rebaudiana Bertoni by stem-tip culture. Plant Cell Reports, 3, 183–185.

    Google Scholar 

  • Tanaka, O. (1982). Steviol-glycosides: New natural sweeteners. Trends in Analytical Chemistry, 1, 246–248.

    CAS  Google Scholar 

  • Thakur, R., Rao, P. S., & Bapat, V. A. (1998). In vitro plant regeneration in Melia azedarach L. Plant Cell Reports, 18, 127–131.

    CAS  Google Scholar 

  • Thengane, S. R., Kulkarni, D. K., & Krishnamurthy, K. V. (1998). Micropropagation of licorice (Glycirrhiza glabra L.) through shoot tip and nodal cultures. In Vitro Cellular and Developmental Biology – Plant, 34(4), 331–334.

    CAS  Google Scholar 

  • Thomas, T. D., & Maseena, E. A. (2006). Callus induction and plant regeneration in Cardiospermum halicacabum Linn. an important medicinal plant. Scientia Horticulturae, 108, 332–336.

    CAS  Google Scholar 

  • Tiwari, V., Tiwari, K. N., & Singh, B. D. (2001). Comparative studies of cytokinins on in vitro propagation of Bacopa monniera. Plant Cell Tissue and Organ Culture, 66(1), 9–16.

    CAS  Google Scholar 

  • Tolyat, M., Abdoli, M., Moshgin, M. G., Khalighi-Sigaroodi, F., & Omidi, M. (2009). Propagation of Ginkgo biloba L. through tissue culture of various plant parts. Journal of Medicinal Plants, 8(29), 156–163, 172.

    Google Scholar 

  • Uranbey, S. (2005). Thidiazuron induced adventitious shoot regeneration in Hyoscyamus niger. Biologia Plantarum, 49(3), 427–430.

    CAS  Google Scholar 

  • Vadodaria, H. K., Samantaray, S., & Maiti, S. (2007). Micropropagation of Glycirrhiza glabra Linn. An important medicinal plant. Journal of Cell and Tissue Research, 7(1), 921–926.

    CAS  Google Scholar 

  • Vaidyaratnam, P. S. (1994). Indian medicinal plants a compendium of 500 species (Vol. 1, pp. 33–35). Madras: Orient Longman Limited.

    Google Scholar 

  • Vengadesan, G., Ganapathi, A., Anand, R. P., & Anbazhagan, V. R. (2000). In vitro organogenesis and plant formation in Acacia sinuata. Plant Cell Tissue and Organ Culture, 61, 23–28.

    CAS  Google Scholar 

  • Vengadesan, G., Ganapathi, A., Prem Anand, R., & Anbazhagan, V. R. (2002). In vitro propagation of Acacia sinuata (Lour.) Merr. via cotyledonary nodes. Agroforestry Systems, 55, 9–15.

    Google Scholar 

  • Vengadesan, G., Ganapathi, A., Prem Anand, R., & Selvaraj, N. (2003a). In vitro propagation of Acacia sinuata (Lour.) Merr. from nodal segments of a 10-year old tree. In Vitro Cellular and Developmental Biology – Plant, 39, 409–414.

    Google Scholar 

  • Vengadesan, G., Ganapathi, A., Amutha, S., & Selvaraj, N. (2003b). High frequency plant regeneration from cotyledon derived callus Acacia sinuata (Lour.) Merr. In Vitro Cellular and Developmental Biology – Plant, 39, 28–33.

    Google Scholar 

  • Vila, S., Gonzalez, A., Rey, H., & Miroginskoi, L. (2003a). Somatic embryogenesis and plant regeneration from immature zygotic embryos of Melia azedarach (Meliaceae). In Vitro Cellular and Developmental Biology – Plant, 39, 283–287.

    CAS  Google Scholar 

  • Vila, S. K., Gonzalez, A. M., Rey, H. Y., & Miroginskoi, L. A. (2003b/2004). In vitro plant regeneration of Melia azedarach L.: Shoot organogenesis from leaf explants. Biologia Plantarum, 47(1), 13–19.

    Google Scholar 

  • Vila, S., Gonzalez, A., Rey, H., & Mroginski, L. (2005). Plant regeneration, origin, and development of shoot buds from root segments of Melia azedarach L. (Meliaceae) seedlings. In Vitro Cellular & Developmental Biology – Plant, 41, 746–751.

    CAS  Google Scholar 

  • Vines, G. (2004). Herbal harvests with a future: Towards a sustainable source for medicinal plants. Salisbury: Plant life International. www.plantlife.org.uk

    Google Scholar 

  • Wang, J. W., Wang, Q. K., & Chiu, S. (1994). Insecticidal compounds in Meliaceae. Acta Entomologica Sinica, 37(1), 20–24.

    CAS  Google Scholar 

  • Yasseen, Y. M. (1994). Shoot proliferation and plant formation from neem with thidiazuron. Horticultural Science, 29, 515.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar Shahzad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shahzad, A., Parveen, S. (2013). In Vitro Conservation Protocols for Some Commercially Important Medicinal Plants. In: Shahid, M., Shahzad, A., Malik, A., Sahai, A. (eds) Recent Trends in Biotechnology and Therapeutic Applications of Medicinal Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6603-7_15

Download citation

Publish with us

Policies and ethics