Skip to main content

Abstract

Plants are valuable sources for the discovery of new products of medicinal importance. Several distinct chemicals and compounds derived from plants are being used as important drugs all around the world. The evolving commercial importance of secondary metabolites in recent years resulted in a great interest in secondary metabolism, particularly in the possibility of altering the production of bioactive plant metabolites by means of plant tissue culture technology. Plant tissue culture techniques are found to have potential as a supplement to traditional agriculture in industrial production of bioactive compounds which is an alternative to produce the desirable medicinal compounds from plants. Phytoactive compounds have been isolated from a number of plants cultured in vitro mainly from callus cultures viz. Cardiospermum halicacabum, Cassia fistula, Pisum sativum, Centella asiatica. Some of those compounds are of great medicinal value and are used in recovery of fatal diseases like cancer such as Ajmalicine and Taxol. Discoveries of cell cultures capable of producing specific medicinal compounds have accelerated in the last few years viz. Datura metel, Catharanthus roseus, Chlorophytum borivilianum, Bacopa monieri. Some of the medicinal compounds localized in morphologically specialized tissues or organs of native plants have been produced in culture systems not only by inducing specific organized cultures, but also by undifferentiated cell cultures. Due to these advances, researches in the area of tissue culture technology for the production of plant chemicals have bloomed beyond expectations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afolayan, A. J., & Meyer, J. J. M. (1997). The antimicrobial activity of 3,5,7-trihydroxyflavone isolated from the shoots of Helichrysum aureonitens. Journal of Ethnopharmacology, 57, 177–181.

    CAS  Google Scholar 

  • Aharoni, A., Giri, A. P., Deuerlein, S., Griepink, F., de Kogel, W., Verstappen, F., Verhoeven, H. A., Jongsma, M. A., Schwab, W., & Bouwmeester, H. J. (2003). Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. The Plant Cell, 15, 2866–2884.

    CAS  Google Scholar 

  • Akira, Y., Yukihiro, S., & Itsuo, N. (1983). Formation of tetrahydroanthracene glucosides by callus tissue of Aloe saponaria. Phytochemistry, 22(6), 1483–1484.

    Google Scholar 

  • Amit, K. J., Dubey, P. K., & Rana, R. C. (2005). In vitro callus induction and biomass production of Catharanthus roseus. Plant Archives, 5, 55–60.

    Google Scholar 

  • Anonymous. (1948). The wealth of India: A dictionary of Indian raw materials and industrial products (Vol. I, pp. 135–136). New Delhi: Council of Scientific and Industrial Research (CSIR).

    Google Scholar 

  • Aquino, R., de Simone, F., Pizza, C., Cerri, R., & De Mello, J. F. (1988). Quinovic acid glycosides from Guettarda platypoda. Phytochemistry, 27, 2927–2930.

    CAS  Google Scholar 

  • Aquino, R., De-Simonec, F., & Pizza, C. (1989a). Plant metabolites: Structure and in vitro antiviral activity of quinovic acid glycosides from Uncarla tomentosa and Guettarda platypoda. Journal of Natural Products, 52, 679–685.

    CAS  Google Scholar 

  • Aquino, R., de Simone, F., Pizza, C., & De Mello, J. F. (1989b). Further quinovic acid glycosides from Guettarda platypoda. Phytochemistry, 28, 199–201.

    CAS  Google Scholar 

  • Atta-ur-Rahman, Alam, M., Ali, I., Habib-ur-Rehman, & Haq, I. (1998). Leurosinone: A new binary indole alkaloid from Catharanthus roseus. Journal of the Chemical Society, Perkin Transactions, 1, 2175–2178.

    Google Scholar 

  • Bajaj, M., & Williams, J. T. (1995). Healing forests- healing people (Report of workshop on medicinal plants, Calicut). New Delhi: IDRC.

    Google Scholar 

  • Balandrin, M. F., Klocke, J. A., Wurtele, E. S., & Bollinger, W. H. (1985). Natural plant chemicals: Sources of industrial and medicinal materials. Science, 228, 1154–1160.

    CAS  Google Scholar 

  • Banerjee, S., Shang, T. Q., Wilson, A. M., Moore, A. L., Strand, S. E., Gordon, M. P., & Lafferty, D. S. (2002). Expression of functional mammalian P450 2E1 in hairy root cultures. Biotechnology and Bioengineering, 77, 462–466.

    CAS  Google Scholar 

  • Barnard, D. L., Huffman, J. H., Meyerson, L. R., & Sidwell, R. W. (1993). Mode of inhibition of respiratory syncytial virus by a plant flavonoid. Chemotherapy, 39, 212–217.

    CAS  Google Scholar 

  • Batista, O., Duarte, A., Nascimento, J., & Simones, M. F. (1994). Structure and antimicrobial activity of diterpenes from the roots of Plectranthus hereroensis. Journal of Natural Products, 57, 858–861.

    CAS  Google Scholar 

  • Baylor, N., Fu, T., Yah, Y., & Ruscetti, F. (1992). Inhibition of human T cell leukemia virus by the plant flavonoid baicalin (7-glucuronic acid, 5,6-dihydroxyflavone). Journal of Infectious Diseases, 165, 433–437.

    CAS  Google Scholar 

  • Bennett, R. N., Donald, A., Dawson, G., Hick, A., & Wallsgrove, R. (1993). Aldoxime-forming microsomal enzyme systems involved in the biosynthesis of clucosinolates in oilseed rape (Brassica napus) leaves. Plant Physiology, 102, 1307–1312.

    CAS  Google Scholar 

  • Bennett, R. N., Kiddle, G., Hick, A. J., Dawson, G. W., & Wallsgrove, R. M. (1995a). Glucosinolate biosynthesis (further characterization of the aldoxime-forming microsomal monooxygenases in oilseed rape leaves). Plant Physiology, 109, 299–305.

    CAS  Google Scholar 

  • Bennett, R. N., Ludwig-Muller, J., Kiddie, G., Hilgenberg, W., & Wallsgrove, R. (1995b). Developmental regulation of aldoxime formation in seedlings and mature plants of Chinese cabbage (Brassica campestris ssp. pekinensis) and oilseed rape (Brassica napus): Glucosinolate and IAA biosynthetic enzymes. Planta, 196, 239–244.

    CAS  Google Scholar 

  • Bennett, R. N., Kiddle, G., Hick, A. J., Dawson, G. W., & Wallsgrove, R. M. (1996). Distribution and activity of microsomal NADPH-dependent monooxygenases and amino acid decarboxylases in cruciferous and non-cruciferous plants, and their relationship to foliar glucosinolate content. Plant, Cell & Environment, 19, 801–812.

    CAS  Google Scholar 

  • Bomser, J., Madhavi, D. L., Singletary, K., & Smith, M. A. L. (1996). In vitro anticancer activity of fruit extracts from Vaccinium species. Planta Medica, 62, 212–216.

    CAS  Google Scholar 

  • Bonhomme, V., Laurain-Matter, D., & Fliniaux, M. A. (2000). Effects of rolC gene on hairy root: Induction, development and tropane alkaloid production by Atropa belladonna. Journal of Natural Products, 63, 1249–1252.

    CAS  Google Scholar 

  • Borris, R. P. (1996). Natural products research: Perspectives from a major pharmaceutical company. Journal of Ethnopharmacology, 51, 29–38.

    CAS  Google Scholar 

  • Budzianowski, J. (2000). Naphthoquinone glucosides of Drosera gigantea from in vitro cultures. Planta Medica, 66, 667–669.

    CAS  Google Scholar 

  • Cerri, R., Aquino, R., de Simone, F., & Pizza, C. (1988). New quinovic acid glycosides from Uncaria tomentosa. Journal of Natural Products, 51, 257–261.

    CAS  Google Scholar 

  • Chabot, S., Bel-Rhlid, R., Chenevert, R., & Piche, Y. (1992). Hyphal growth promotion in vitro of the VA mycorrhizal fungus, Gigaspora margarita Becker and Hall, by the activity of structurally specific flavonoid compounds under CO2-enriched conditions. New Phytologist, 122, 461–467.

    CAS  Google Scholar 

  • Chiang Su New Medical College. (1977). Dictionary of Chinese crude drugs (pp. 586–590). Shanghai: Shanghai Scientific Technologic Publisher.

    Google Scholar 

  • Christen, P. (2000). Tropane alkaloids: Old drugs used in modern medicine. In A. Rahman (Ed.), Studies in natural product chemistry (Vol. 22, pp. 717–749). Amsterdam: Elsevier.

    Google Scholar 

  • Chu, I. H., & Bodnar, J. A. (1997). Determination of vincristine and vinblastine in Catharanthus roseus plants by high performance liquid chromatography/Electrospray ionization mass spectrometry. Journal of Liquid Chromatography and Related Technologies, 20, 1159–1174.

    CAS  Google Scholar 

  • Collin, H. A. (1987). Determinants of yield of secondary products in plant tissue cultures. Advances in Botanical Research, 13, 146–183.

    Google Scholar 

  • Contin, A., Heijden, R., Lefeber, A. W., & Verpoorte, R. (1998). The iridoid glucoside secologanin is derived from the novel triose phosphate/pyruvate pathway in Catharanthus roseus cell culture. FEBS Letters, 434, 413–416.

    CAS  Google Scholar 

  • Critchfield, J. W., Butera, S. T., & Folks, T. M. (1996). Inhibition of HIV activation in latently infected cells by flavonoid compounds. AIDS Research and Human Retroviruses, 12, 39–46.

    CAS  Google Scholar 

  • Croteau, R., Kutchan, T. M., & Lewis, N. G. (2000). Natural products (secondary metabolites). In B. Buchanan, W. Gruissem, & R. Jones (Eds.), Biochemistry and molecular biology of plants (pp. 1250–1318). Rockville: American Society of Plant Physiologists.

    Google Scholar 

  • Datta, A., & Srivastava, P. S. (1997). Variation in vinblastine production by Catharanthus rostus during in vivo and in vitro differentiation. Phytochemistry, 46, 135–137.

    CAS  Google Scholar 

  • Dawson, F. A. (1994). The amazing terpenes. Naval Stores Review (Issue March/April), 6–12.

    Google Scholar 

  • Daxenbichler, M. E., Spencer, G. F., Carlson, D. G., Rose, G. B., Brinker, A. M., & Powell, R. G. (1991). Glucosinolate composition of seeds from 297 species of wild plants. Phytochemistry, 30, 2623–2638.

    CAS  Google Scholar 

  • De la Fuente, G., Reina, M., Muñoz, O., San-Martín, A., & Girault, P. J. (1988). Tropane alkaloids from Schizanthus pinnatus. Heterocycles, 27, 1887–1897.

    Google Scholar 

  • Debnath, M., Malik, C. P., & Bisen, P. S. (2006). Micropropagation: A tool for the production of high quality plant-based medicines. Current Pharmaceutical Biotechnology, 7, 33–49.

    CAS  Google Scholar 

  • Degenhardt, J., & Gershenzon, J. (2003). Terpenoids. In T. Brian, D. J. Murphy, & B. G. Murray (Eds.), Encyclopedia of applied plant sciences (pp. 500–504). Amsterdam: Elsevier.

    Google Scholar 

  • Dixon, R. A., & Ferreira, D. (2002). Molecules of interest. Genistein Phytochemistry, 60, 205.

    CAS  Google Scholar 

  • Dixon, R. A., Dey, P. M., & Lamb, C. J. (1983). Phytoalexins: Enzymology and molecular biology. Advances in Enzymology and Related Areas of Molecular Biology, 55, 1–69.

    CAS  Google Scholar 

  • Drapeau, D., Blanch, H. W., & Wilke, C. R. (1987). Ajmalicine, serpentine, and catharanthine accumulation in Catharanthus roseus bioreactor cultures. Planta Medica, 53, 373–376.

    CAS  Google Scholar 

  • Du, L., & Halkier, B. A. (1996). Isolation of a microsomal enzyme system involved in glucosinolate biosynthesis from seedling of Tropaeolum majus L. Plant Physiology, 111, 831–837.

    CAS  Google Scholar 

  • Du, L., Lykkesfeldt, J., Olsen, C. E., & Halkier, B. A. (1995). Involvement of cytochrome P450 in oxime production in glucosinolate biosynthesis as demonstrated by an in vitro microsomal enzyme system isolated from jasmonic acid-induced seedlings of Sinapis alba L. Proceedings of the National Academy of Sciences of the United States of America, 92, 12505–12509.

    CAS  Google Scholar 

  • Dubey, N. K., Kumar, R., & Tripathi, P. (2004). Global promotion of herbal medicine: Indian opportunity. Current Science, 80, 37–41.

    Google Scholar 

  • Dues, B., & Zenk, M. H. (1982). Exploitation of plant cells for the production of natural compounds. Biotechnology and Bioengineering, 24, 1965–1974.

    Google Scholar 

  • Eilert, U., Kurz, W. G. W., & Constabel, F. (1987). Ultrastructure of Catharanthus roseus cells cultured in vitro and exposed to conditions for alkaloid accumulation. Protoplasma, 140, 157–163.

    Google Scholar 

  • Erdelsky, K. (1978). In: T. Thorpe (Ed.), Fourth international congress plant tissue and cell culture. University of Calgary, Canada

    Google Scholar 

  • Fang, Y., Smith, M. A. L., & Pe-Âpin, M. F. (1998). Benzyladenine restores anthocyanin pigmentation in suspension cultures of wild Vaccinium pahalae. Plant Cell Tissue and Organ Culture, 54, 113–122.

    CAS  Google Scholar 

  • Fang, Y., Smith, M. A. L., & Pe-Âpin, M. F. (1999). The effects of exogenous methyljasmonate in elicited anthocyanin-producing cell cultures of ohelo (Vaccinium pahalae). In Vitro Cellular and Development Biology-Plant, 35, 106–113.

    CAS  Google Scholar 

  • Fenwick, G. R., Heaney, R. K., Mullin, W. J., & Vanatten, C. H. (1983). Glucosinolates and their breakdown products in food and food plants. CRC Critical Reviews in Food Science and Nutrition, 18, 123–201.

    CAS  Google Scholar 

  • Fessenden, R. J., & Fessenden, J. S. (1982). Organic chemistry (2nd ed.). Boston: Willard Grant Press.

    Google Scholar 

  • Flath, R. A., & Florrey, R. R. (1977). Volatile components of papaya (Carica papaya L., Solo variety). Journal of Agricultural and Food Chemistry, 25, 103–109.

    CAS  Google Scholar 

  • Flores, H., Hoy, M., & Pickard, J. (1987). Secondary metabolites from root cultures. Trends in Biotechnology, 5, 64–69.

    CAS  Google Scholar 

  • Fodor, G., & Dharanipragada, R. (1994). Tropane alkaloids. Natural Product Reports, 11, 443–450.

    CAS  Google Scholar 

  • Fukui, H., Yamazaki, K., & Tabata, M. (1984). Two phenolic acids from Lithospermum erythrorhizon cell suspension cultures. Phytochemistry, 23, 2398–2399.

    CAS  Google Scholar 

  • Furuya, T., Shono, K., & Ikulta, A. (1972). Isolation of berberine from callus tissue of Coptis japonica. Phytochemistry, 11, 175.

    CAS  Google Scholar 

  • Gambaro, V., Labbé, C., & Castillo, M. (1982). Tropane alkaloids from Schizanthus hookeri. Boletin De La Sociedad Chilena de Química, 2, 296–298.

    Google Scholar 

  • Gambaro, V., Labbé, C., & Castillo, M. (1983). Angeloyl, tigloyl and senecioyloxy tropane alkaloids from Schizanthus hookeri. Phytochemistry, 22, 1838–1839.

    CAS  Google Scholar 

  • Giri, A., Dhingra, V., Giri, C. C., Singh, A., Ward, O. P., & Narasu, M. L. (2001). Biotransformation using plant cells, organ cultures and enzyme systems: Current trends and future prospects. Biotechnology Advances, 19, 175–199.

    CAS  Google Scholar 

  • Gmelin, R., & Kjaer, A. (1970). Glucosinolates in the caricaceae. Phytochemistry, 9, 591–593.

    CAS  Google Scholar 

  • Goto, T., Takahashi, N., Hirai, S., & Kawada, T. (2010). Various terpenoids derived from herbal and dietary plants function as PPAR modulators and regulate carbohydrate and lipid metabolism. PPAR Research. doi:10.1155/2010/483958.

    Google Scholar 

  • Grabias, B., Kurowska, A., & Swiatek, L. (1995). Investigation of chemical composition of Scrophularia nodosa L. seeds. Herba Pol, 41, 59–63.

    Google Scholar 

  • Griffin, W. J., & Lin, G. D. (2000). Chemotaxonomy and geographical distribution of tropane alkaloids. Phytochemistry, 53, 623–637.

    CAS  Google Scholar 

  • Guillon, S., Tremouillaux-Guiller, J., Pati, P. K., Rideau, M., & Gantet, P. (2006). Hairy root research: Recent scenario and exciting prospects. Current Opinion in Plant Biology, 9, 341–346.

    CAS  Google Scholar 

  • Harborne, J. B. (1991). Recent advances in the ecological chemistry of plant terpenoids. In J. B. Harborne & F. A. Tomas-Barberan (Eds.), Ecological chemistry and biochemistry of plant terpenoids (pp. 399–426). Oxford: Clarendon.

    Google Scholar 

  • Harborne, J. B. (1998). Phytochemical methods – A guide to modern techniques of plant analysis (3rd ed.). London: Chapman and Hall.

    Google Scholar 

  • Hartmann, R., San-Martín, A., Muñoz, O., & Breitmaier, E. (1990). Grahamine, an unusual tropane alkaloid from Schizanthus grahamii. Angewandte Chemie International Edition, 29, 385–386.

    Google Scholar 

  • Hashimoto, T., & Yamada, Y. (1992). In B. K. Singh, H. E. Flores, & J. C. Shannon (Eds.), Tropane alkaloid biosynthesis: Regulation and application (pp. 262–274). Rockville: American Society of Plant Physiology Press.

    Google Scholar 

  • Hashimoto, T., Hayashi, A., Amano, Y., Kohno, J., Iwanari, H., Usuda, S., & Yamada, Y. (1991). Hyoscyamine 6b-hydroxylase, an enzyme involved in tropane alkaloid biosynthesis, is localized at the pericycle of the root. Journal of Biological Chemistry, 266, 4648–4653.

    CAS  Google Scholar 

  • Hostettaman, K., & Walfender, J. (1997). The search for biologically active secondary metabolites. Pesticide Science, 51, 471–482.

    Google Scholar 

  • Hu, Z. B., & Du, M. (2006). Hairy roots and its application in plant genetic engineering. Journal of Integrative Plant Biology, 48, 121–127.

    CAS  Google Scholar 

  • Hunter, M. D., & Hull, L. A. (1993). Variation in concentrations of phloridzin and phloretin in apple foliage. Phytochemistry, 34, 1251–1254.

    CAS  Google Scholar 

  • Ishima, N., & Katayama, O. (1976). Sensory evaluation of stevioside as a sweetener. Reports of National Food Research Institute, 31, 80–85.

    CAS  Google Scholar 

  • Ishimaru, K., Nishikawa, K., Omoto, T., Asar, I., Yoshihira, K., & Shimomura, K. (1995). Two flavone 2′-glucosides from Scutellaria baicalensis. Phytochemistry, 40, 279–281.

    CAS  Google Scholar 

  • Jaber-Vazdekisi, N. E., Gutierrez-Nicolas, F., Ravelo, A. G., & Zarate, R. (2006). Studies on tropane alkaloid extraction by volatile organic solvents: Dichloromethane vs. Chloroform. Phytochemical Analysis, 17, 107–113.

    Google Scholar 

  • Kaul, T. N., Middletown, E., Jr., & Ogra, P. L. (1985). Antiviral effect of flavonoids on human viruses. Journal of Medical Virology, 15, 71–79.

    CAS  Google Scholar 

  • Keeling, C. I., & Bohlmann, J. (2006). Genes, enzymes, and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytologist, 170, 657–675.

    CAS  Google Scholar 

  • Khanam, N., Khoo, C., Close, R., & Khan, A. G. (2001). Tropane alkaloid production by shoot culture of Duboisia myoporoides R. Br. Phytochemistry, 56, 59–65.

    CAS  Google Scholar 

  • Khanna, P., & Khannna, R. (1976). Production of major alkaloids from in vitro tissue culture of Papaver somniferum Linn. Indian Journal of Experimental Biology, 14, 628–629.

    CAS  Google Scholar 

  • Kolodziej, H., Pertz, H. H., & Humke, A. (2002). Main constituents of a commercial Drosera fluid extract and their antagonist activity at muscarinic M-3 receptors in guinea-pig ileum. Pharmazie, 57, 201–203.

    CAS  Google Scholar 

  • Kuhnau, J. (1976). The flavonoids. A class of semi-essential food components: Their role in human nutrition. World Review of Nutrition and Dietetics, 24, 117–191.

    CAS  Google Scholar 

  • Kukulczanka, K., & Budzianowski, J. (2002). Dionea muscipula Ellis (Venus Flytrap): In vitro culture and in vitro production of secondary metabolites. In T. Nagata & Y. Ebizuka (Eds.), Biotechnology in agriculture and forestry (Medicinal and aromatic plants XII, Vol. 51). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Kursinszki, L., Hank, H., László, I., & Sóke, E. (2005). Simultaneous analysis of hyoscyamine, scopolamine, 6β-hydroxyhyoscyamine and apoatropine in solanaceous hairy roots by reversed-phase high performance liquid chromatography. Journal of Chromatography, 1091, 32–39.

    CAS  Google Scholar 

  • Kurz, W. G., Chatson, K. B., Constabel, F., et al. (1981). Alakloid production in Catharanthus roseus cell cultures. Planta Medica, 42, 22–31.

    CAS  Google Scholar 

  • Lange, B. M., Rios-Estepa, R., & Turner, G. W. (2012). Production of terpenes and terpenoids in glandular trichome bearing plants.US Patent Publication No. US2012/0052535 A1.

    Google Scholar 

  • León, F., Habib, E., Adkins, J. E., Furr, E. B., McCurdy, C. R., & Cutler, S. J. (2009). Phytochemical characterization of the leaves of Mitragyna speciosa grown in U.S.A. Natural Product Communications, 4, 907–910.

    Google Scholar 

  • Li, B., Fu, T., Yan, Y., Baylor, N., Ruscetti, F., & Kung, H. (1993). Inhibition of HIV infection by baicalin-a flavonoid compound purified from Chinese herbal medicine. Cellular and Molecular Biology Research, 39(2), 119– 124.

    CAS  Google Scholar 

  • Linden, J. C. (2006). Secondary products from plant tissue culture. In: Encyclopedia of Life Supporting System (UNESCO-EOLSS). Biotechnology, 4, 1–9

    Google Scholar 

  • Lounasmaa, M., & Tamminen, T. (1993). The tropane alkaloids. In A. Brossi (Ed.), The alkaloids (Vol. 44, pp. 1–114). New York: Academic.

    Google Scholar 

  • Mabry, T. J., Markham, K. R., & Thomas, M. B. (1970). Isolation, purification, preliminary identification and UV spectroscopy of flavonoids. In The systematic identification of flavonoids. New York: Springer.

    Google Scholar 

  • MacGarvey, D. J., & Croteau, R. (1995). Terpenoid metabolism. The Plant Cell, 7, 1015–1026.

    Google Scholar 

  • MacLeod, A. J., & Pieris, N. M. (1983). Volatile components of papaya (Carica papaya L.) with particular reference to glucosinolate products. Journal of Agricultural and Food Chemistry, 31, 1005–1008.

    CAS  Google Scholar 

  • Madhavi, D. L., Bomser, J., Smith, M. A. L., & Singletary, K. (1998). Isolation of bioactive constituents from Vaccinium myrtillus (bilberry) fruits and cell cultures. Plant Science, 131, 95–103.

    CAS  Google Scholar 

  • Marczak, L., Kawiak, A., Lojkowska, E., & Stobiecki, M. (2005). Secondary metabolites in in vitro cultured plants of the genus Drosera. Phytochemical Analysis, 16, 143–149.

    CAS  Google Scholar 

  • Marfo, E. K., Oke, O. L., & Afolabi, O. A. (1986a). Chemical composition of papaya (Carica papaya) seeds. Food Chemistry, 22, 259–266.

    CAS  Google Scholar 

  • Marfo, E. K., Oke, O. L., & Afolabi, O. A. (1986b). Some studies on the proteins of Carica papaya seeds. Food Chemistry, 22, 267–277.

    CAS  Google Scholar 

  • Merillon, J. M., Rideau, M., & Chenieux, J. C. (1984). Influence of sucrose on levels of ajmalicine, serpentine and tryptamine in Carharanthus roseus cells in vitro. Planta Medica, 50, 497–501.

    CAS  Google Scholar 

  • Meyer, J. J. M., Afolayan, A. J., Taylor, M. B., & Erasmus, D. (1997). Antiviral activity of galangin from the aerial parts of Helichrysum aureonitens. Journal of Ethnopharmacology, 56, 165–169.

    CAS  Google Scholar 

  • Milen, I. G., Pavlov, A. I., & Bley, T. (2007). Hairy root type plant in vitro systems as sources of bioactive substances. Applied Microbilogy and Biotechnology, 74, 1175–1185.

    Google Scholar 

  • Misra, P., & Kumar, S. (2000). Emergence of periwinkle Catharanthus roseus as a model system for molecular biology of alkaloid: Phytochemistry, pharmacology, plant biology and in vivo and in vitro cultivation. Journal of Medicinal and Aromatic Plant Sciences, 22, 306–337.

    Google Scholar 

  • Mo, H., & Elson, C. E. (1999). Apoptosis and cell-cycle arrest in human and murine tumor cells are initiated by isoprenoids. Journal of Nutrition, 129, 804–813.

    CAS  Google Scholar 

  • Muñoz, O. (1992). Solanaceae. In O. Muñoz (Ed.), Química de la Flora de Chile (pp. 189–212). Santiago: DTI, Universidad de Chile.

    Google Scholar 

  • Muñoz, O., & Cortés, S. (1998). Tropane alkaloids from Schizanthus porrigens (Solanaceae). Pharmaceutical Biology, 36, 1–5.

    Google Scholar 

  • Muñoz, O., Hartmann, R., & Breitmaier, E. (1991). Schizanthine X, a new alkaloid from Schizanthus grahamii (Gill.). Journal of Natural Products, 54, 1094–1096.

    Google Scholar 

  • Muñoz, O., Schneider, C., Breitmaier, E. (1994). A new pyrrolidine alkaloid from Schizanthus integrifolius Phil. Liebigs Annalen der Chemie, 5, 521–522.

    Google Scholar 

  • Nakahara, K., Kawabata, S., Ono, H., Ogura, K., Tanaka, T., Ooshima, T., & Hamada, S. (1993). Inhibitory effect of oolong tea polyphenols on glucosyl transferases of mutants streptococci. Applied and Environmental Microbiology, 59, 968–973.

    CAS  Google Scholar 

  • Nastel, P. (2004). Isoflavones: Effect on cardiovascular risk and functions. In Proceedings of the international congress series 1262, p. 317.

    Google Scholar 

  • Nuutila, A. M., & Oksman-Caldentey, K. M. (2003). Secondary metabolism in plant cell cultures. In B. Thomas, D. J. Murphy, & B. G. Murray (Eds.), Encyclopedia of applied plant science (pp. 1388–1395). San Diego: Academic Press.

    Google Scholar 

  • Oksman-Caldentey, K. M., & Arroo, R. (2000). Regulation of tropane alkaloid metabolism in plants and plant cell cultures. In R. Verpoorte & A. W. Alfermann (Eds.), Metabolic engineering of plant secondary metabolism (pp. 253–281). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Oksman-Caldentey, K. M., & Hiltunen, R. (1996). Transgenic crops for improved pharmaceutical products. Field Crops Research, 45, 57–69.

    Google Scholar 

  • Otsuka, M. H., Fujimura, H., Sawada, T., & Goto, M. (1981). Studies on anti-inflammatory agents. II. Anti-inflammatory constituents from rhizome of coptis japonica. Yakugaku Zasshi, 101, 883–890.

    CAS  Google Scholar 

  • Parr, A. J., & Peerless, A. C. J. (1988). Alkaloid production by transformed root cultures of Catharanthus roseus. Plant Cell Reports, 7, 309–312.

    CAS  Google Scholar 

  • Pauli, G. F., Ofterdinger-Daegel, S., & Teborg, D. (1995). Digitali scrophularia. Ein pharmazeutischer Streifzug durch die Familie derBraunwurzgewächse. Deutsche Apotheker-Zeitung, 135, 21–34.

    CAS  Google Scholar 

  • Pengsuparp, T., Cai, L., Constant, H., Fong, H. H., Lin, L. Z., Kinghorn, A. D., Pezzuto, J. M., Cordell, G. A., Ingolfsdottir, K., & Wagner, H. (1995). Mechanistic evaluation of new plant-derived compounds that inhibit HIV-1 reverse transcriptase. Journal of Natural Products, 58, 1024–1031.

    CAS  Google Scholar 

  • Penuelas, P., & Munne-Bosch, S. (2005). Isoprenoids: An evolutionary pool for photoprotection. Trends in Plant Science, 10, 166–169.

    CAS  Google Scholar 

  • Perrett, S., Whitfield, P. J., Sanderson, L., & Bartlett, A. (1995). The plant molluscicide Millettia thonningii (Leguminosae) as a topical antischistosomal agent. Journal of Ethnopharmacology, 47, 49–54.

    CAS  Google Scholar 

  • Piovan, A., & Filippini, R. (2000). Somatic embryogenesis and indole alkaloid production in Catharanthus roseus. Plant Biosystems, 134, 179–184.

    Google Scholar 

  • Poulton, J. E., & Moller, B. L. (1993). Glucosinolates. In P. J. Lea (Ed.), Methods in plant biochemistry (Vol. 9, pp. 209–237). London: Academic Press.

    Google Scholar 

  • Premjet, D., Itoh, K., & Tachibana, S. (2002). Enhancement of podophyllotoxin production by biogenetic precursors and elicitors in cell suspension cultures of Juniperus chinenesis. Pakistan Journal of Biological Sciences, 5, 1267–1271.

    Google Scholar 

  • Prior, R., Cao, G., Martin, A., Sofic, E., McEwen, J., O’Brien, C., Lischner, N., Ehlenfeldt, M., Kalt, W., Krewer, G., & Mainland, M. (1998). Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity and variety of Vaccinium species. Journal of Agricultural and Food Chemistry, 46, 2686–2693.

    CAS  Google Scholar 

  • Rajendra, K., & D’Souza, L. (2000). Secondary metabolite of ayurvedic plants in vitro. In P. C. Trivedi (Ed.), Plant biotechnology recent advances (pp. 350–358). New Delhi: Panima Publishing Corporation.

    Google Scholar 

  • Rischer, M., Adamczyk, M., Ratz, H., Hose, S., Marchesan, M., Paper, D. H., Franz, G., Wolf-Heuss, E., & Engel, J. (1998). Quantitative determination of the iridoid glycosides aucubin and catalpol in Plantago lanceolata L. extracts by HPTLC and HPLC. Journal of Planar Chromatography, 11, 374–378.

    CAS  Google Scholar 

  • Roberts, S. C. (2007). Production and engineering of terpenoids in plant cell culture. Nature Chemical Biology, 3, 387–395.

    CAS  Google Scholar 

  • Robins, R. J., & Walton, R. J. (1993). The biosynthesis of tropane alkaloids. In G. A. Cordell (Ed.), The alkaloids (Vol. 44, pp. 115–187). Orlando: Academic.

    Google Scholar 

  • Robins, R. J., Woolley, J. G., Ansarin, M., Eagles, J., & Goodfellow, B. J. (1994). Phenyllactic acid but not tropic acid is an intermediate in the biosynthesis of tropane alkaloid in Datura and Brugmansia transformed root cultures. Planta, 194(1), 86–94.

    CAS  Google Scholar 

  • Rokem, J. S., Schwarzberg, J., & Goldberg, I. (1984). Autoclaved fungal mycelia increase diosgenin production in cell suspension cultures of Dioscorea deltoida. Plant Cell Reports, 3, 159–160.

    CAS  Google Scholar 

  • Sacchettini, J. C., & Poulter, C. D. (1997). Creating isoprenoid diversity. Science, 277, 1788–1789.

    CAS  Google Scholar 

  • Saito, K. (1993). Genetic engineering in tissue culture of medical plants. Plant Tissue Culture Letters, 10, 1–8.

    CAS  Google Scholar 

  • Sakanaka, S., Kim, M., Taniguchi, M., & Yamamoto, T. (1989). Antibacterial substances in Japanese green tea extract against Streptococcus mutans, a cariogenic bacterium. Agricultural and Biological Chemistry, 53, 2307–2311.

    CAS  Google Scholar 

  • Sakanaka, S., Shimura, N., Aizawa, M., Kim, M., & Yamamoto, T. (1992). Preventive effect of green tea polyphenols against dental caries in conventional rats. Bioscience, Biotechnology, and Biochemistry, 56, 592–594.

    CAS  Google Scholar 

  • San-Martín, A., Rovirosa, J., Gambaro, V., & Castillo, M. (1980). Tropane alkaloids from Schizanthushookeri. Phytochemistry, 19, 2007–2008.

    Google Scholar 

  • San-Martín, A., Labbé, C., Muñoz, O., Castillo, M., Reina, M., De la Fuente, G., & González, A. G. (1987). New tropane alkaloids from Schizanthus grahamii. Phytochemistry, 26, 819–822.

    Google Scholar 

  • Sarin, R., & Khanna, P. (1989). High yielding tissues of two papaver species grown in vitro. Journal of the Indian Botanical Society, 68, 95–96.

    Google Scholar 

  • Sato, F., & Yamada, Y. (1984). High berberine-producing cultures of Coptis japonica cells. Phytochemistry, 23, 281–285.

    CAS  Google Scholar 

  • Sato, M., Fujiwara, S., Tsuchiya, H., Fujii, T., Iinuma, M., Tosa, H., & Ohkawa, Y. (1996). Flavones with antibacterial activity against cariogenic bacteria. Journal of Ethnopharmacology, 54, 171–176.

    CAS  Google Scholar 

  • Sauerwein, M., Yoshimatsu, K., & Shimomura, K. (1992). Approaches in the production of secondary metabolites by plant tissue cultures. Plant Tissue Culture Letters, 9, 1–9.

    CAS  Google Scholar 

  • Saupe, S. G. (1981). Cyanogenesis and angiosperm phylogeny. In D. A. Young & D. S. Siegler (Eds.), Phytochemistry and angiosperm phylogeny (pp. 80–116). New York: Praeger.

    Google Scholar 

  • Sayavedra, S. L., & Krikorian, A. (2000). Long term stability of electro manipulated protoplasts of Glycine max var. Acme and a Catharanthus roseus mutant. Journal of Plant Physiology, 156, 137–140.

    Google Scholar 

  • Schiel, O., & Berlin, J. (1987). Large scale fermentation and alkaloid production of cell suspension cultures of Catharanthus roseus. Plant Cell Tissue and Organ Culture, 8, 153–162.

    CAS  Google Scholar 

  • Seo, W. T., Park, Y. H., & Choe, T. B. (1993). Identification and production of flavonoids in a cell suspension culture of Scutellaria baicalensis. Plant Cell Reports, 12, 414–417.

    CAS  Google Scholar 

  • Singh, B. D. (2004). Biotechnology (1st ed., p. 338). New Delhi: Kalyani Publishers.

    Google Scholar 

  • Smith, M. A. L., Madhavi, D. L., Fang, Y., & Tomczak, M. M. (1997). Continuous cell culture and product recovery from wild Vaccinium pahalae germplasm. Journal of Plant Physiology, 150, 462–466.

    CAS  Google Scholar 

  • Spencer, K. C., & Seigler, D. S. (1984). Cyanogenic glycosides of Carica papaya and its phylogenetic position with respect to the violales and capparales. American Journal of Botany, 71, 1444–1447.

    CAS  Google Scholar 

  • Srivastava, N. K., & Srivastava, A. K. (2007). Influence of gibberellic acid on CO2 metabolism, growth, and production of alkaloids in Catharanthus roseus. Photosynthetica, 45(1), 156–160.

    Google Scholar 

  • Staba, E. J., Zito, S., & Amin, M. (1982). Alkaloid production from papaver tissue cultures. Journal of Natural Products, 45, 256–262.

    CAS  Google Scholar 

  • Sudha, C. G., Obul Reddy, B., Ravishankar, G. A., & Seeni, S. (2003). Production of ajmalicine and ajmaline in hairy root cultures of Rauvolfia micrantha Hook f., a rare and endemic medicinal plant. Biotechnology Letters, 25, 631–636.

    CAS  Google Scholar 

  • Takahashi, S., & Fujita, Y. (1991). In: A. Komamine, M. Misawa, F. DiCosmo (Eds.), Plant cell culture in Japan (pp. 92–98/pp. 72–78). Tokyo: CMC Co. Ltd.

    Google Scholar 

  • Takido, M. (1987). Chemistry of Huangqin (Scutellaria Root). Gendai Toyo Igaku, 8, 50–56.

    Google Scholar 

  • Tanaka, O. (1982). Steviol-glycosides: New natural sweeteners. Trends in Analytical Chemistry, 1, 246–248.

    CAS  Google Scholar 

  • Tanaka, N., & Matsumoto, T. (1993). Regenerants from Ajuga hairy roots with high productivity of 20-hydroxyecdysone. Plant Cell Reports, 13, 87–90.

    CAS  Google Scholar 

  • Tang, C. H. (1971). Benzyl isothiocyanate of papaya fruit. Phytochemistry, 10, 117–121.

    CAS  Google Scholar 

  • Tang, W., & Eisenbrand, G. (1992). Chinese drugs of plant origin (p. 919). New York: Springer. 105.

    Google Scholar 

  • Tang, C. H., Syed, M. M., & Hamilton, R. A. (1972). Benzyl isothiocyanate in the caricaceae. Phytochemistry, 11, 2531–2533.

    CAS  Google Scholar 

  • Thomson, W. A. R. (Ed.). (1978). Medicines from the Earth. Maidenhead: Mc Graw-Hill Book Co.

    Google Scholar 

  • Toda, M., Okubo, S., Ohnishi, R., & Shimamura, T. (1989). Antibacterial and bactericidal activities of Japanese green tea. Japanese Journal of Bacteriology, 45, 561–566.

    Google Scholar 

  • Toivonen, L. (1993). Utilization of hairy root cultures for production of secondary metabolites. Biotechnology Progress, 9, 12–20.

    CAS  Google Scholar 

  • Toivonen, L., & Rosenqvist, H. (1995). Establishment and growth characteristics of Glycyrrhiza glabra hairy root cultures. Plant Cell Tissue and Organ Culture, 41, 249–258.

    Google Scholar 

  • Tsuchiya, H., Sato, M., Iinuma, M., Yokoyama, J., Ohyama, M., Tanaka, T., Takase, I., & Namikawa, I. (1994). Inhibition of the growth of cariogenicbacteria in vitro by plant flavanones. Experientia, 50, 846–849.

    CAS  Google Scholar 

  • Tsuchiya, H., Sato, M., Miyazaki, T., Fujiwara, S., Tanigaki, S., Ohyama, M., Tanaka, T., & Iinuma, M. (1996). Comparative study on the anti bacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcu saureus. Journal of Ethnopharmacology, 50, 27–34.

    CAS  Google Scholar 

  • Ulbrich, B., Weisner, W., & Arens, H. (1985). Large-scale production of rosmarinic acid from plant cell cultures of Coleus blumei Benth. In K. H. Neumann & E. Reinhard (Eds.), Primary and secondary metabolism of plant cell cultures (pp. 293–303). Berlin: Springer.

    Google Scholar 

  • Ushiyama, A., Takahashi, M., & Fujita, K. (1991). Rokem et al. 1984; Matsumoto et al. 1980; Ushiyama, K. In: A. Komamine, M. Misawa, & F. DiCosmo (Eds.), Plant cell culture in Japan (pp. 92–98). Tokyo: CMC Co. Ltd.

    Google Scholar 

  • Vaniserce, M., Lee, C., Nalawade, S. M., Lin, C. Y., & Tasy, H. (2004). Studies on the production of some important secondary metabolite from medicinal plants by plant tissue culture. Botanical Bulletin of Academia Sinica, 45, 1–22.

    Google Scholar 

  • Vijaya, K., Ananthan, S., & Nalini, R. (1995). Antibacterial effect of theaflavin, polyphenon 60 (Camellia sinensis) and Euphorbia hirta on Shigella spp. – A cell culture study. Journal of Ethnopharmacology, 49, 115–118.

    CAS  Google Scholar 

  • Wallsgrove, R. M., & Bennett, R. N. (1995). The biosynthesis of glucosinolates in Brassicas. In R. M. Wallsgrove (Ed.), Amino acids and their derivatives in higher plants (pp. 243–259). Cambridge: CUP.

    Google Scholar 

  • Watanbe, H., Miyaji, C., Makino, M., & Abo, T. (1996). Therapeutic effects of glycyrrhizin in mice infected with LP-BM5 murine retrovirus and mechanisms involved in the prevention of disease progression. Biotherapy, 9, 209–220.

    CAS  Google Scholar 

  • Whitaker, R. J., et al. (1986). Production of secondary metabolites in plant cell cultures. American Chemical Society Symposium Series, 317, 347–362.

    CAS  Google Scholar 

  • Wichtl, H. M. (1989). Teedrogen. Stuttgart: Wissenschaftliche Verlagsgesellschaft mbH.

    Google Scholar 

  • Wilkins, R. W., & Judson, W. E. (1953). The use of Rauvolfia serpentine in hypertensive patients. New England Journal of Medicine, 248, 48–53.

    CAS  Google Scholar 

  • Williams, C., & Ronald, P. C. (1994). Rapid, homogenization-free isolation of rice DNA for PCR. Nucleic Acids Research, 22, 1917–1918.

    CAS  Google Scholar 

  • Wink, M., & Roberts, M. W. (1998). Alkaloids: Biochemistry, ecology, and medicinal applications. New York: Plenum Press.

    Google Scholar 

  • Withers, S. T., & Keasling, J. D. (2007). Biosynthesis and engineering of isoprenoid small molecules. Applied Microbiology and Biotechnology, 73, 980–990.

    CAS  Google Scholar 

  • Yamada, Y., & Sato, F. (1981). Production of berberine in cultured cells of Coptis. Phytochemistry, 20, 545–547.

    CAS  Google Scholar 

  • Yamamoto, H. (1991). In: Y.P. S Bajaj (Ed.), Medicinal and aromatic plants III. Biotechnology in agriculture and forestry, Vol. 15 (pp. 398–441).

    Google Scholar 

  • Yamamoto, Y., Watanabe, Y., & Ohnishi, S. (1987). 1,3-Oxazines and related compounds, XIII: Reaction of acyl Meldrum’s acids with Schiff bases giving 2,3-disubstituted 5-acy1-3,4,5,6-tetrahydro-2H-1,3-oxazine-4,6-diones and 2,3,6. Chemical and Pharmaceutical Bulletin, 35, 1860–1870.

    CAS  Google Scholar 

  • Yesil-Celiktas, O., Gurel, A., & Vardar-Sukan, F. (2010). Large scale cultivation of plant cell and tissue culture in bioreactors (pp. 1–54). Trivandrum: Transworld Research Network.

    Google Scholar 

  • Zarate, R. (1999). Tropane alkaloid production by Agrobacterium rhizogenes transformed hairy root cultures of Atropa baetica Willk. (Solanaceae). Plant Cell Reports, 18, 418–423.

    CAS  Google Scholar 

  • Zarate, R., Cantos, M., & Troncoso, A. (1997a). Induction and development of adventitious shoots of Atropa baetica as a means of propagation. Euphytica, 94, 361–366.

    Google Scholar 

  • Zarate, R., Hermosin, B., Cantos, M., & Troncoso, A. (1997b). Tropane alkaloid distribution in Atropa baetica plants. Journal of Chemical Ecology, 23, 2059–2066.

    CAS  Google Scholar 

  • Zhao, J., & Zhu, W. H. (2000). Enhanced ajmalicine production in Catharanthus roseus cell cultures by combined elicitor treatment: From shake-flask to 20-l airlift bioreactor. Biotechnology Letters, 22, 509–514.

    CAS  Google Scholar 

  • Zhao, J., Lawrence, T., Davis, C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23, 283–333.

    CAS  Google Scholar 

  • Zhou, Y., Hirotani, M., Yoshikawa, T., & Furuya, T. (1997). Flavonoids and phenylethanoids from hairy root cultures of Scutellaria baicalensis. Phytochemistry, 44, 83–87.

    CAS  Google Scholar 

  • Zwenger, S., & Basu, C. (2008). Plant terpenoids: Applications and future potentials. Biotechnology and Molecular Biology Reviews, 3(1), 1–7.

    Google Scholar 

Download references

Acknowledgements

Dr. Anwar Shahzad gratefully acknowledges the financial support provided by UGC and UP-CST in the form of research projects (vide no. 39-369/2010 SR and vide no. CST/D3836 respectively). Arjumend Shaheen would also like to acknowledge project fellowship given by UGC. Dr. Aastha Sahai is also thankful to CSIR, New Delhi, for the award of Senior Research Fellowship (09/112(0454)2K11-EMR-I) for providing research assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar Shahzad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shahzad, A., Shaheen, A., Kozgar, M.I., Sahai, A., Sharma, S. (2013). Phytoactive Compounds from In Vitro Derived Tissues. In: Shahid, M., Shahzad, A., Malik, A., Sahai, A. (eds) Recent Trends in Biotechnology and Therapeutic Applications of Medicinal Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6603-7_1

Download citation

Publish with us

Policies and ethics