Skip to main content

Mutations in Non-MMR Genes Modifying or Mimicking Lynch Syndrome Phenotype

  • Chapter
  • First Online:
  • 825 Accesses

Abstract

Lynch syndrome is an inherited cancer predisposition syndrome associated with an increased risk of colorectal, endometrial and many other cancers, typically with an earlier age of cancer onset. The underlying cause of Lynch syndrome is a defect in DNA mismatch repair (MMR) due to mutations in one of the DNA MMR genes: MLH1, MSH2, MSH6 or PMS2. It has been observed that cancer risk and cancer age of onset vary significantly among MMR gene mutation carriers suggesting that other non-MMR genes may modify the Lynch syndrome phenotype. Studies examining the association of genetic variation in non-MMR genes and colorectal cancer (CRC) risk in MMR mutation carriers have found an increased risk or an earlier age of cancer onset for polymorphisms in genes in pathways such as cell cycle, DNA repair and methylation, carcinogen metabolism, and others. Some common genetic variants associated with sporadic CRC risk in genome wide association studies have also been implicated in modifying CRC risk in Lynch syndrome suggesting a global role of these variants in influencing CRC risk. The Lynch syndrome cancer phenotype is also manifested indirectly through epimutations outside the MMR genes that influence expression of these genes. For example, deletions in the EPCAM gene upstream of the MSH2 promoter region lead to hypermethylation of the MSH2 promoter, resulting in loss of MSH2 expression and predisposing people with EPCAM deletions to a cancer spectrum that mimics Lynch syndrome. The chapter provides a review of mutations in non-MMR genes that modify or mimic the Lynch syndrome phenotype.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Elledge SJ (1996) Cell cycle checkpoints: preventing an identity crisis. Science 274(5293):1664–1672

    PubMed  CAS  Google Scholar 

  2. Chen J, Sen S, Amos CI, Wei C, Jones JS, Lynch P, Frazier ML (2007) Association between Aurora-A kinase polymorphisms and age of onset of hereditary nonpolyposis colorectal cancer in a Caucasian population. Mol Carcinog 46(4):249–256. doi:10.1002/mc.20283

    PubMed  CAS  Google Scholar 

  3. Jones JS, Chi X, Gu X, Lynch PM, Amos CI, Frazier ML (2004) p53 polymorphism and age of onset of hereditary nonpolyposis colorectal cancer in a Caucasian population. Clin Cancer Res 10(17):5845–5849. doi:10.1158/1078-0432.CCR-03-0590;10/17/5845 [pii]

    PubMed  CAS  Google Scholar 

  4. Kong S, Amos CI, Luthra R, Lynch PM, Levin B, Frazier ML (2000) Effects of cyclin D1 polymorphism on age of onset of hereditary nonpolyposis colorectal cancer. Cancer Res 60(2):249–252

    PubMed  CAS  Google Scholar 

  5. Zecevic M, Amos CI, Gu X, Campos IM, Jones JS, Lynch PM, Rodriguez-Bigas MA, Frazier ML (2006) IGF1 gene polymorphism and risk for hereditary nonpolyposis colorectal cancer. J Natl Cancer Inst 98(2):139–143. doi:10.1093/jnci/djj016; 98/2/139 [pii]

    PubMed  CAS  Google Scholar 

  6. Donnellan R, Chetty R (1998) Cyclin D1 and human neoplasia. Mol Pathol 51(1):1–7

    PubMed  CAS  Google Scholar 

  7. Sherr CJ (1995) D-type cyclins. Trends Biochem Sci 20(5):187–190. doi:S0968-­0004(00)89005-2 [pii]

    PubMed  CAS  Google Scholar 

  8. Knudsen KE, Diehl JA, Haiman CA, Knudsen ES (2006) Cyclin D1: polymorphism, aberrant splicing and cancer risk. Oncogene 25(11):1620–1628. doi:10.1038/sj.onc.1209371; 1209371 [pii]

    PubMed  CAS  Google Scholar 

  9. Bala S, Peltomaki P (2001) CYCLIN D1 as a genetic modifier in hereditary nonpolyposis colorectal cancer. Cancer Res 61(16):6042–6045

    PubMed  CAS  Google Scholar 

  10. Kruger S, Engel C, Bier A, Mangold E, Pagenstecher C, Doeberitz MK, Holinski-Feder E, Moeslein G, Keller G, Kunstmann E, Friedl W, Plaschke J, Ruschoff J, Schackert HK (2006) Absence of association between cyclin D1 (CCND1) G870A polymorphism and age of onset in hereditary nonpolyposis colorectal cancer. Cancer Lett 236(2):191–197

    PubMed  Google Scholar 

  11. Talseth BA, Ashton KA, Meldrum C, Suchy J, Kurzawski G, Lubinski J, Scott RJ (2008) Aurora-A and Cyclin D1 polymorphisms and the age of onset of colorectal cancer in hereditary nonpolyposis colorectal cancer. Int J Cancer 122(6):1273–1277. doi:10.1002/ijc.23177

    PubMed  CAS  Google Scholar 

  12. Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88(3):323–331. doi:S0092-8674(00)81871-1 [pii]

    PubMed  CAS  Google Scholar 

  13. Kruger S, Bier A, Engel C, Mangold E, Pagenstecher C, von Knebel DM, Holinski-Feder E, Moeslein G, Schulmann K, Plaschke J, Ruschoff J, Schackert HK (2005) The p53 codon 72 variation is associated with the age of onset of hereditary non-polyposis colorectal cancer (HNPCC). J Med Genet 42(10):769–773. doi:10.1136/jmg.2004.028506, 42/10/769 [pii]

    PubMed  CAS  Google Scholar 

  14. Kruger S, Engel C, Bier A, Silber AS, Gorgens H, Mangold E, Pagenstecher C, Holinski-­Feder E, von Knebel DM, Royer-Pokora B, Dechant S, Pox C, Rahner N, Muller A, Schackert HK, German HC (2007) The additive effect of p53 Arg72Pro and RNASEL Arg462Gln genotypes on age of disease onset in Lynch syndrome patients with pathogenic germline mutations in MSH2 or MLH1. Cancer Lett 252(1):55–64. doi:10.1016/j.canlet.2006.12.006

    PubMed  Google Scholar 

  15. Kruger S, Silber AS, Engel C, Gorgens H, Mangold E, Pagenstecher C, Holinski-Feder E, von Knebel DM, Moeslein G, Dietmaier W, Stemmler S, Friedl W, Ruschoff J, Schackert HK, German Hereditary Non-Polyposis Colorectal Cancer C (2005) Arg462Gln sequence variation in the prostate-cancer-susceptibility gene RNASEL and age of onset of hereditary non-polyposis colorectal cancer: a case–control study. Lancet Oncol 6(8):566–572. doi:10.1016/S1470-2045(05)70253-9

    PubMed  Google Scholar 

  16. Sotamaa K, Liyanarachchi S, Mecklin JP, Jarvinen H, Aaltonen LA, Peltomaki P, de la Chapelle A (2005) p53 codon 72 and MDM2 SNP309 polymorphisms and age of colorectal cancer onset in Lynch syndrome. Clin Cancer Res 11(19 Pt 1):6840–6844. doi:10.1158/1078-­0432.CCR-05-1139; 11/19/6840 [pii]

    PubMed  CAS  Google Scholar 

  17. Talseth BA, Meldrum C, Suchy J, Kurzawski G, Lubinski J, Scott RJ (2006) Age of diagnosis of colorectal cancer in HNPCC patients is more complex than that predicted by R72P polymorphism in TP53. Int J Cancer 118(10):2479–2484. doi:10.1002/ijc.21661

    PubMed  CAS  Google Scholar 

  18. Momand J, Wu HH, Dasgupta G (2000) MDM2–master regulator of the p53 tumor suppressor protein. Gene 242(1–2):15–29. doi:S0378-1119(99)00487-4 [pii]

    PubMed  CAS  Google Scholar 

  19. Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC, Bargonetti J, Bartel F, Taubert H, Wuerl P, Onel K, Yip L, Hwang SJ, Strong LC, Lozano G, Levine AJ (2004) A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119(5):591–602. doi:10.1016/j.cell.2004.11.022; S0092867404010517 [pii]

    PubMed  CAS  Google Scholar 

  20. Talseth BA, Meldrum C, Suchy J, Kurzawski G, Lubinski J, Scott RJ (2007) MDM2 SNP309 T>G alone or in combination with the TP53 R72P polymorphism does not appear to influence disease expression and age of diagnosis of colorectal cancer in HNPCC patients. Int J Cancer 120(3):563–565. doi:10.1002/ijc.22339

    PubMed  CAS  Google Scholar 

  21. Pollak MN, Schernhammer ES, Hankinson SE (2004) Insulin-like growth factors and neoplasia. Nat Rev Cancer 4(7):505–518. doi:10.1038/nrc1387; nrc1387 [pii]

    PubMed  CAS  Google Scholar 

  22. Rosen CJ, Kurland ES, Vereault D, Adler RA, Rackoff PJ, Craig WY, Witte S, Rogers J, Bilezikian JP (1998) Association between serum insulin growth factor-I (IGF-I) and a simple sequence repeat in IGF-I gene: implications for genetic studies of bone mineral density. J Clin Endocrinol Metab 83(7):2286–2290

    PubMed  CAS  Google Scholar 

  23. Reeves S, Meldrum C, Scott RJ (2006) Re: IGF-1 gene polymorphism and risk for hereditary nonpolyposis colorectal cancer. J Natl Cancer Inst 98(22):1664–1665. doi:10.1093/jnci/djj452; 98/22/1664 [pii]

    PubMed  CAS  Google Scholar 

  24. Reeves SG, Rich D, Meldrum CJ, Colyvas K, Kurzawski G, Suchy J, Lubinski J, Scott RJ (2008) IGF1 is a modifier of disease risk in hereditary non-polyposis colorectal cancer. Int J Cancer 123(6):1339–1343. doi:10.1002/ijc.23668

    PubMed  CAS  Google Scholar 

  25. Houlle S, Charbonnier F, Houivet E, Tinat J, Buisine MP, Caron O, Benichou J, Baert-­Desurmont S, Frebourg T (2011) Evaluation of Lynch syndrome modifier genes in 748 MMR mutation carriers. Eur J Hum Genet 19(8):887–892. doi:10.1038/ejhg.2011.44; ejhg201144 [pii]

    PubMed  CAS  Google Scholar 

  26. Marumoto T, Hirota T, Morisaki T, Kunitoku N, Zhang D, Ichikawa Y, Sasayama T, Kuninaka S, Mimori T, Tamaki N, Kimura M, Okano Y, Saya H (2002) Roles of aurora-A kinase in mitotic entry and G2 checkpoint in mammalian cells. Genes Cells 7(11):1173–1182. doi:592 [pii]

    PubMed  CAS  Google Scholar 

  27. Chen J, Etzel CJ, Amos CI, Zhang Q, Viscofsky N, Lindor NM, Lynch PM, Frazier ML (2009) Genetic variants in the cell cycle control pathways contribute to early onset colorectal cancer in Lynch syndrome. Cancer Causes Control 20(9):1769–1777. doi:10.1007/s10552-009-9416-x

    PubMed  Google Scholar 

  28. Vineis P, Malats N, Lang M, d’Errico A, Caporaso N, Cuzick J, Boffetta P (1999) Metabolic polymorphisms and susceptibility to cancer, vol 148. IARC Scientific Publication. International Agency for Research on Cancer, Lyon

    Google Scholar 

  29. Heinimann K, Scott RJ, Chappuis P, Weber W, Muller H, Dobbie Z, Hutter P (1999) N-acetyltransferase 2 influences cancer prevalence in hMLH1/hMSH2 mutation carriers. Cancer Res 59(13):3038–3040

    PubMed  CAS  Google Scholar 

  30. Frazier ML, O’Donnell FT, Kong S, Gu X, Campos I, Luthra R, Lynch PM, Amos CI (2001) Age-associated risk of cancer among individuals with N-acetyltransferase 2 (NAT2) mutations and mutations in DNA mismatch repair genes. Cancer Res 61(4):1269–1271

    PubMed  CAS  Google Scholar 

  31. Pistorius S, Gorgens H, Kruger S, Engel C, Mangold E, Pagenstecher C, Holinski-Feder E, Moeslein G, von Knebel DM, Ruschoff J, Karner-Hanusch J, Saeger HD, Schackert HK (2006) N-acetyltransferase (NAT) 2 acetylator status and age of onset in patients with hereditary nonpolyposis colorectal cancer (HNPCC). Cancer Lett 241(1):150–157. doi:10.1016/j.canlet.2005.10.018; S0304-3835(05)00933-X [pii]

    PubMed  CAS  Google Scholar 

  32. Talseth BA, Meldrum C, Suchy J, Kurzawski G, Lubinski J, Scott RJ (2006) Genetic polymorphisms in xenobiotic clearance genes and their influence on disease expression in hereditary nonpolyposis colorectal cancer patients. Cancer Epidemiol Biomarkers Prev 15(11):2307–2310. doi:10.1158/1055-9965.EPI-06-0040; 15/11/2307 [pii]

    PubMed  CAS  Google Scholar 

  33. Moisio AL, Sistonen P, Mecklin JP, Jarvinen H, Peltomaki P (1998) Genetic polymorphisms in carcinogen metabolism and their association to hereditary nonpolyposis colon cancer. Gastroenterology 115(6):1387–1394. doi:S0016508598006003 [pii]

    PubMed  CAS  Google Scholar 

  34. Jones JS, Gu X, Campos IM, Lynch PM, Amos CI, Frazier ML (2004) GSTM1 polymorphism does not affect hereditary nonpolyposis colorectal cancer age of onset. Cancer Epidemiol Biomarkers Prev 13(4):676–678

    PubMed  CAS  Google Scholar 

  35. Felix R, Bodmer W, Fearnhead NS, van der Merwe L, Goldberg P, Ramesar RS (2006) GSTM1 and GSTT1 polymorphisms as modifiers of age at diagnosis of hereditary nonpolyposis colorectal cancer (HNPCC) in a homogeneous cohort of individuals carrying a single predisposing mutation. Mutat Res 602(1–2):175–181. doi:10.1016/j.mrfmmm.2006.09.004; S0027-5107(06)00273-9 [pii]

    PubMed  CAS  Google Scholar 

  36. Pande M, Amos CI, Osterwisch DR, Chen J, Lynch PM, Broaddus R, Frazier ML (2008) Genetic variation in genes for the xenobiotic-metabolizing enzymes CYP1A1, EPHX1, GSTM1, GSTT1, and GSTP1 and susceptibility to colorectal cancer in Lynch syndrome. Cancer Epidemiol Biomarkers Prev 17(9):2393–2401. doi:10.1158/1055-9965.EPI-08-0326; 17/9/2393 [pii]

    PubMed  CAS  Google Scholar 

  37. Campbell PT, Edwards L, McLaughlin JR, Green J, Younghusband HB, Woods MO (2007) Cytochrome P450 17A1 and catechol O-methyltransferase polymorphisms and age at Lynch syndrome colon cancer onset in Newfoundland. Clin Cancer Res 13(13):3783–3788. doi:10.1158/1078-0432.CCR-06-2987; 13/13/3783 [pii]

    PubMed  CAS  Google Scholar 

  38. Pande M, Chen J, Amos CI, Lynch PM, Broaddus R, Frazier ML (2007) Influence of methylenetetrahydrofolate reductase gene polymorphisms C677T and A1298C on age-associated risk for colorectal cancer in a caucasian lynch syndrome population. Cancer Epidemiol Biomarkers Prev 16(9):1753–1759. doi:10.1158/1055-9965.EPI-07-0384; 16/9/1753 [pii]

    PubMed  CAS  Google Scholar 

  39. Wood RD, Mitchell M, Lindahl T (2005) Human DNA repair genes, 2005. Mutat Res 577(1–2):275–283. doi:10.1016/j.mrfmmm.2005.03.007; S0027-5107(05)00163-6 [pii]

    PubMed  CAS  Google Scholar 

  40. Wood RD, Mitchell M, Sgouros J, Lindahl T (2001) Human DNA repair genes. Science 291(5507):1284–1289. doi:10.1126/science.1056154;291/5507/1284 [pii]

    PubMed  CAS  Google Scholar 

  41. Robertson KD (2001) DNA methylation, methyltransferases, and cancer. Oncogene 20(24):3139–3155. doi:10.1038/sj.onc.1204341

    PubMed  CAS  Google Scholar 

  42. Khanna KK, Lavin MF, Jackson SP, Mulhern TD (2001) ATM, a central controller of cellular responses to DNA damage. Cell Death Differ 8(11):1052–1065. doi:10.1038/sj.cdd.4400874

    PubMed  CAS  Google Scholar 

  43. Maillet P, Chappuis PO, Vaudan G, Dobbie Z, Muller H, Hutter P, Sappino AP (2000) A polymorphism in the ATM gene modulates the penetrance of hereditary non-polyposis colorectal cancer. Int J Cancer 88(6):928–931. doi:10.1002/1097-­0215(20001215)88:6<928::AID-IJC14>3.0.CO;2-P [pii]

    PubMed  CAS  Google Scholar 

  44. Jones JS, Gu X, Lynch PM, Rodriguez-Bigas M, Amos CI, Frazier ML (2005) ATM polymorphism and hereditary nonpolyposis colorectal cancer (HNPCC) age of onset (United States). Cancer Causes Control 16(6):749–753. doi:10.1007/s10552-005-1540-7

    PubMed  Google Scholar 

  45. Audebert M, Radicella JP, Dizdaroglu M (2000) Effect of single mutations in the OGG1 gene found in human tumors on the substrate specificity of the Ogg1 protein. Nucleic Acids Res 28(14):2672–2678

    PubMed  CAS  Google Scholar 

  46. Bruner SD, Norman DP, Verdine GL (2000) Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 403(6772):859–866. doi:10.1038/35002510

    PubMed  CAS  Google Scholar 

  47. Kim IJ, Ku JL, Kang HC, Park JH, Yoon KA, Shin Y, Park HW, Jang SG, Lim SK, Han SY, Shin YK, Lee MR, Jeong SY, Shin HR, Lee JS, Kim WH, Park JG (2004) Mutational analysis of OGG1, MYH, MTH1 in FAP, HNPCC and sporadic colorectal cancer patients: R154H OGG1 polymorphism is associated with sporadic colorectal cancer patients. Hum Genet 115(6):498–503. doi:10.1007/s00439-004-1186-7

    PubMed  CAS  Google Scholar 

  48. Arizono K, Osada Y, Kuroda Y (2008) DNA repair gene hOGG1 codon 326 and XRCC1 codon 399 polymorphisms and bladder cancer risk in a Japanese population. Jpn J Clin Oncol 38(3):186–191. doi:10.1093/jjco/hym176; hym176 [pii]

    PubMed  Google Scholar 

  49. Le ML, Donlon T, Lum-Jones A, Seifried A, Wilkens LR (2002) Association of the hOGG1 Ser326Cys polymorphism with lung cancer risk. Cancer Epidemiol Biomarkers Prev 11(4):409–412

    Google Scholar 

  50. Reeves SG, Meldrum C, Groombridge C, Spigelman A, Suchy J, Kurzawski G, Lubinski J, Scott RJ (2012) DNA repair gene polymorphisms and risk of early onset colorectal cancer in Lynch syndrome. Cancer Epidemiol 36(2):183–189. doi:10.1016/j.canep.2011.09.003; S1877-7821(11)00131-7 [pii]

    PubMed  CAS  Google Scholar 

  51. Park JY, Lee SY, Jeon HS, Bae NC, Chae SC, Joo S, Kim CH, Park JH, Kam S, Kim IS, Jung TH (2002) Polymorphism of the DNA repair gene XRCC1 and risk of primary lung cancer. Cancer Epidemiol Biomarkers Prev 11(1):23–27

    PubMed  CAS  Google Scholar 

  52. Hu XB, Feng Z, Fan YC, Xiong ZY, Huang QW (2011) Polymorphisms in DNA repair gene XRCC1 and increased genetic susceptibility to glioma. Asian Pac J Cancer Prev 12(11):2981–2984

    PubMed  Google Scholar 

  53. Roszak A, Lianeri M, Jagodzinski PP (2011) Involvement of the XRCC1 Arg399Gln gene polymorphism in the development of cervical carcinoma. Int J Biol Markers 26(4):216–220. doi:10.5301/JBM.2011.8581; 19A082A6-27AD-4984-ACBB-6A005E869663 [pii]

    PubMed  CAS  Google Scholar 

  54. Krupa R, Sliwinski T, Wisniewska-Jarosinska M, Chojnacki J, Wasylecka M, Dziki L, Morawiec J, Blasiak J (2011) Polymorphisms in RAD51, XRCC2 and XRCC3 genes of the homologous recombination repair in colorectal cancer–a case control study. Mol Biol Rep 38(4):2849–2854. doi:10.1007/s11033-010-0430-6

    PubMed  CAS  Google Scholar 

  55. Romanowicz-Makowska H, Smolarz B, Zadrozny M, Westfa B, Baszczynski J, Kokolaszwili G, Burzyfiski M, Polac I, Sporny S (2012) The association between polymorphisms of the RAD51-G135C, XRCC2-Arg188His and XRCC3-Thr241Met genes and clinico-pathologic features in breast cancer in Poland. Eur J Gynaecol Oncol 33(2):145–150

    PubMed  CAS  Google Scholar 

  56. Acharya S, Wilson T, Gradia S, Kane MF, Guerrette S, Marsischky GT, Kolodner R, Fishel R (1996) hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6. Proc Natl Acad Sci USA 93(24):13629–13634

    PubMed  CAS  Google Scholar 

  57. Bocker T, Barusevicius A, Snowden T, Rasio D, Guerrette S, Robbins D, Schmidt C, Burczak J, Croce CM, Copeland T, Kovatich AJ, Fishel R (1999) hMSH5: a human MutS homologue that forms a novel heterodimer with hMSH4 and is expressed during spermatogenesis. Cancer Res 59(4):816–822

    PubMed  CAS  Google Scholar 

  58. Guerrette S, Wilson T, Gradia S, Fishel R (1998) Interactions of human hMSH2 with hMSH3 and hMSH2 with hMSH6: examination of mutations found in hereditary nonpolyposis colorectal cancer. Mol Cell Biol 18(11):6616–6623

    PubMed  CAS  Google Scholar 

  59. Wang Y, Qin J (2003) MSH2 and ATR form a signaling module and regulate two branches of the damage response to DNA methylation. Proc Natl Acad Sci USA 100(26):15387–15392. doi:10.1073/pnas.2536810100;2536810100 [pii]

    PubMed  CAS  Google Scholar 

  60. Clark AB, Valle F, Drotschmann K, Gary RK, Kunkel TA (2000) Functional interaction of proliferating cell nuclear antigen with MSH2-MSH6 and MSH2-MSH3 complexes. J Biol Chem 275(47):36498–36501. doi:10.1074/jbc.C000513200; C000513200 [pii]

    PubMed  CAS  Google Scholar 

  61. Kleczkowska HE, Marra G, Lettieri T, Jiricny J (2001) hMSH3 and hMSH6 interact with PCNA and colocalize with it to replication foci. Genes Dev 15(6):724–736. doi:10.1101/gad.191201

    PubMed  CAS  Google Scholar 

  62. Ohta S, Shiomi Y, Sugimoto K, Obuse C, Tsurimoto T (2002) A proteomics approach to identify proliferating cell nuclear antigen (PCNA)-binding proteins in human cell lysates. Identification of the human CHL12/RFCs2-5 complex as a novel PCNA-binding protein. J Biol Chem 277(43):40362–40367. doi:10.1074/jbc.M206194200; M206194200 [pii]

    PubMed  CAS  Google Scholar 

  63. Rodriguez M, Yu X, Chen J, Songyang Z (2003) Phosphopeptide binding specificities of BRCA1 COOH-terminal (BRCT) domains. J Biol Chem 278(52):52914–52918. doi:10.1074/jbc.C300407200; C300407200 [pii]

    PubMed  CAS  Google Scholar 

  64. Wang Q, Zhang H, Guerrette S, Chen J, Mazurek A, Wilson T, Slupianek A, Skorski T, Fishel R, Greene MI (2001) Adenosine nucleotide modulates the physical interaction between hMSH2 and BRCA1. Oncogene 20(34):4640–4649. doi:10.1038/sj.onc.1204625

    PubMed  CAS  Google Scholar 

  65. Vogelsang M, Wang Y, Veber N, Mwapagha LM, Parker MI (2012) The cumulative effects of polymorphisms in the DNA mismatch repair genes and tobacco smoking in oesophageal cancer risk. PLoSOne 7(5):e36962. doi:10.1371/journal.pone.0036962; PONE-D-12-00461 [pii]

    CAS  Google Scholar 

  66. Berndt SI, Platz EA, Fallin MD, Thuita LW, Hoffman SC, Helzlsouer KJ (2007) Mismatch repair polymorphisms and the risk of colorectal cancer. Int J Cancer 120(7):1548–1554. doi:10.1002/ijc.22510

    PubMed  CAS  Google Scholar 

  67. Chuang LS, Ian HI, Koh TW, Ng HH, Xu G, Li BF (1997) Human DNA-(cytosine-5) methyltransferase-­PCNA complex as a target for p21WAF1. Science 277(5334):1996–2000

    PubMed  CAS  Google Scholar 

  68. Shen H, Wang L, Spitz MR, Hong WK, Mao L, Wei Q (2002) A novel polymorphism in human cytosine DNA-methyltransferase-3B promoter is associated with an increased risk of lung cancer. Cancer Res 62(17):4992–4995

    PubMed  CAS  Google Scholar 

  69. Singal R, Das PM, Manoharan M, Reis IM, Schlesselman JJ (2005) Polymorphisms in the DNA methyltransferase 3b gene and prostate cancer risk. Oncol Rep 14(2):569–573

    PubMed  CAS  Google Scholar 

  70. Jung AY, Poole EM, Bigler J, Whitton J, Potter JD, Ulrich CM (2008) DNA methyltransferase and alcohol dehydrogenase: gene-nutrient interactions in relation to risk of colorectal polyps. Cancer Epidemiol Biomarkers Prev 17(2):330–338. doi:10.1158/1055-9965.EPI-07-2608; 17/2/330 [pii]

    PubMed  CAS  Google Scholar 

  71. Coppede F, Zitarosa MT, Migheli F, Lo GA, Bagnoli S, Dardano A, Nacmias B, Mancuso M, Monzani F, Siciliano G, Sorbi S, Migliore L (2012) DNMT3B promoter polymorphisms and risk of late onset Alzheimer’s disease. Curr Alzheimer Res 9(5):550–554. doi:CAR-­EPUB-20120123-004 [pii]

    PubMed  CAS  Google Scholar 

  72. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257. doi:S0092-8674(00)81656-6 [pii]

    PubMed  CAS  Google Scholar 

  73. Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA, Jones PA (1999) The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res 27(11):2291–2298. doi:gkc377 [pii]

    PubMed  CAS  Google Scholar 

  74. Jones JS, Amos CI, Pande M, Gu X, Chen J, Campos IM, Wei Q, Rodriguez-Bigas M, Lynch PM, Frazier ML (2006) DNMT3b polymorphism and hereditary nonpolyposis colorectal cancer age of onset. Cancer Epidemiol Biomarkers Prev 15(5):886–891. doi:10.1158/1055-­9965.EPI-05-0644; 15/5/886 [pii]

    PubMed  CAS  Google Scholar 

  75. Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J (2000) BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 14(8):927–939

    PubMed  CAS  Google Scholar 

  76. Shahi A, Lee JH, Kang Y, Lee SH, Hyun JW, Chang IY, Jun JY, You HJ (2011) Mismatch-­repair protein MSH6 is associated with Ku70 and regulates DNA double-strand break repair. Nucleic Acids Res 39(6):2130–2143. doi:10.1093/nar/gkq1095; gkq1095 [pii]

    PubMed  CAS  Google Scholar 

  77. Houlston RS, Cheadle J, Dobbins SE, Tenesa A, Jones AM, Howarth K, Spain SL, Broderick P, Domingo E, Farrington S, Prendergast JG, Pittman AM, Theodoratou E, Smith CG, Olver B, Walther A, Barnetson RA, Churchman M, Jaeger EE, Penegar S, Barclay E, Martin L, Gorman M, Mager R, Johnstone E, Midgley R, Niittymaki I, Tuupanen S, Colley J, Idziaszczyk S, Thomas HJ, Lucassen AM, Evans DG, Maher ER, Maughan T, Dimas A, Dermitzakis E, Cazier JB, Aaltonen LA, Pharoah P, Kerr DJ, Carvajal-Carmona LG, Campbell H, Dunlop MG, Tomlinson IP (2010) Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33. Nat Genet 42(11):973–977. doi:10.1038/ng.670; ng.670 [pii]

    PubMed  CAS  Google Scholar 

  78. Dunlop MG, Dobbins SE, Farrington SM, Jones AM, Palles C, Whiffin N, Tenesa A, Spain S, Broderick P, Ooi LY, Domingo E, Smillie C, Henrion M, Frampton M, Martin L, Grimes G, Gorman M, Semple C, Ma YP, Barclay E, Prendergast J, Cazier JB, Olver B, Penegar S, Lubbe S, Chander I, Carvajal-Carmona LG, Ballereau S, Lloyd A, Vijayakrishnan J, Zgaga L, Rudan I, Theodoratou E, Thomas H, Maher E, Evans G, Walker L, Halliday D, Lucassen A, Paterson J, Hodgson S, Homfray T, Side L, Izatt L, Donaldson A, Tomkins S, Morrison P, Brewer C, Henderson A, Davidson R, Murday V, Cook J, Haites N, Bishop T, Sheridan E, Green A, Marks C, Carpenter S, Broughton M, Greenhalge L, Suri M, Starr JM, Deary I, Kirac I, Kovacevic D, Aaltonen LA, Renkonen-Sinisalo L, Mecklin JP, Matsuda K, Nakamura Y, Okada Y, Gallinger S, Duggan DJ, Conti D, Newcomb P, Hopper J, Jenkins MA, Schumacher F, Casey G, Easton D, Shah M, Pharoah P, Lindblom A, Liu T, Edler D, Lenander C, Dalen J, Hjern F, Lundqvist N, Lindforss U, Pahlman L, Smedh K, Tornqvist A, Holm J, Janson M, Andersson M, Ekelund S, Olsson L, Smith CG, West H, Cheadle JP, Macdonald G, Samuel LM, Ahmad A, Corrie P, Jodrell D, Palmer C, Wilson C, O’Hagan J, Smith D, McDermott R, Walshe J, Cassidy J, McDonald A, Mohammed N, White J, Yosef H, Breathnach O, Grogan L, Thomas R, Eatock M, Henry P, Houston R, Johnston P, Wilson R, Geh I, Danwata F, Hindley A, Susnerwala S, Bradley C, Conn A, Raine A, Twelves C, Falk S, Hopkins K, Tahir S, Dhadda A, Maraveyas A, Sgouros J, Teo M, Ahmad R, Cleator S, Creak A, Lowdell C, Riddle P, Benstead K, Farrugia D, Reed N, Shepherd S, Levine E, Mullamitha S, Saunders M, Valle J, Wilson G, Jones A, Weaver A, Clark PI, Haylock B, Iqbal MI, Myint AS, Smith D, Beesley S, Sevitt T, Nicoll J, Daniel F, Ford V, Talbot T, Butt M, Hamid A, Mack P, Roy R, Osborne R, McKinna F, Alsab H, Basu D, Murray P, Sizer B, Azam FA, Neupane R, Waterston A, Glaholm J, Blesing C, Lowndes S, Medisetti A, Gaya A, Leslie M, Maisey N, Ross P, Dunn G, Al-Salihi O, Wasan HS, Palmer C, Tan LT, Dent J, Hofmann U, Joffe JK, Sherwin E, Soomal R, Chakrabarti A, Joseph S, Van d, V, Wadd NJ, Wilson D, Anjarwalia S, Hall J, Hughes R, Polychronis A, Scarffe JH, Hill M, James RD, Shah R, Summers J, Hartley A, Carney D, McCaffrey J, Bystricky B, O’Reilly S, Gupta R, Al-Mishlab T, Gidden F, O’Hara R, Stewart J, Ashford R, Glynne-Jones R, Harrison M, Mawdsley S, Barlow H, Tighe M, Walther J, Neal J, Rees C, Bridgewater J, Karp S, McGovern U, Atherton PJ, El-Deeb H, Macmillan C, Patel K, Bessell EM, Dickinson PD, Potter V, Jephcott C, McAdam K, Wrigley J, Osborne R, Muthuramalingam S, O’Callaghan A, Bridgewater J, Melcher L, Braconi C, Geh JI, Palmer D, Narayana P, Steven N, Gaya A (2012) Common variation near CDKN1A, POLD3 and SHROOM2 influences colorectal cancer risk. Nat Genet 44(7):770–776. doi:10.1038/ng.2293; ng.2293 [pii]

    Google Scholar 

  79. Tomlinson IP, Webb E, Carvajal-Carmona L, Broderick P, Howarth K, Pittman AM, Spain S, Lubbe S, Walther A, Sullivan K, Jaeger E, Fielding S, Rowan A, Vijayakrishnan J, Domingo E, Chandler I, Kemp Z, Qureshi M, Farrington SM, Tenesa A, Prendergast JG, Barnetson RA, Penegar S, Barclay E, Wood W, Martin L, Gorman M, Thomas H, Peto J, Bishop DT, Gray R, Maher ER, Lucassen A, Kerr D, Evans DG, Schafmayer C, Buch S, Volzke H, Hampe J, Schreiber S, John U, Koessler T, Pharoah P, van WT, Morreau H, Wijnen JT, Hopper JL, Southey MC, Giles GG, Severi G, Castellvi-Bel S, Ruiz-Ponte C, Carracedo A, Castells A, Forsti A, Hemminki K, Vodicka P, Naccarati A, Lipton L, Ho JW, Cheng KK, Sham PC, Luk J, Agundez JA, Ladero JM, de la Hoya M, Caldes T, Niittymaki I, Tuupanen S, Karhu A, Aaltonen L, Cazier JB, Campbell H, Dunlop MG, Houlston RS (2008) A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. NatGenet 40 (5):623–630. doi:10.1038/ng.111; ng.111 [pii]

  80. Tomlinson I, Webb E, Carvajal-Carmona L, Broderick P, Kemp Z, Spain S, Penegar S, Chandler I, Gorman M, Wood W, Barclay E, Lubbe S, Martin L, Sellick G, Jaeger E, Hubner R, Wild R, Rowan A, Fielding S, Howarth K, Silver A, Atkin W, Muir K, Logan R, Kerr D, Johnstone E, Sieber O, Gray R, Thomas H, Peto J, Cazier JB, Houlston R (2007) A genome-­wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet 39(8):984–988. doi:10.1038/ng2085; ng2085 [pii]

    PubMed  CAS  Google Scholar 

  81. Zanke BW, Greenwood CM, Rangrej J, Kustra R, Tenesa A, Farrington SM, Prendergast J, Olschwang S, Chiang T, Crowdy E, Ferretti V, Laflamme P, Sundararajan S, Roumy S, Olivier JF, Robidoux F, Sladek R, Montpetit A, Campbell P, Bezieau S, O’Shea AM, Zogopoulos G, Cotterchio M, Newcomb P, McLaughlin J, Younghusband B, Green R, Green J, Porteous ME, Campbell H, Blanche H, Sahbatou M, Tubacher E, Bonaiti-Pellie C, Buecher B, Riboli E, Kury S, Chanock SJ, Potter J, Thomas G, Gallinger S, Hudson TJ, Dunlop MG (2007) Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat Genet 39(8):989–994. doi:10.1038/ng2089; ng2089 [pii]

    PubMed  CAS  Google Scholar 

  82. Tenesa A, Farrington SM, Prendergast JG, Porteous ME, Walker M, Haq N, Barnetson RA, Theodoratou E, Cetnarskyj R, Cartwright N, Semple C, Clark AJ, Reid FJ, Smith LA, Kavoussanakis K, Koessler T, Pharoah PD, Buch S, Schafmayer C, Tepel J, Schreiber S, Volzke H, Schmidt CO, Hampe J, Chang-Claude J, Hoffmeister M, Brenner H, Wilkening S, Canzian F, Capella G, Moreno V, Deary IJ, Starr JM, Tomlinson IP, Kemp Z, Howarth K, Carvajal-Carmona L, Webb E, Broderick P, Vijayakrishnan J, Houlston RS, Rennert G, Ballinger D, Rozek L, Gruber SB, Matsuda K, Kidokoro T, Nakamura Y, Zanke BW, Greenwood CM, Rangrej J, Kustra R, Montpetit A, Hudson TJ, Gallinger S, Campbell H, Dunlop MG (2008) Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat Genet 40(5):631–637. doi:10.1038/ng.133; ng.133 [pii]

    PubMed  CAS  Google Scholar 

  83. Houlston RS, Webb E, Broderick P, Pittman AM, Di Bernardo MC, Lubbe S, Chandler I, Vijayakrishnan J, Sullivan K, Penegar S, Carvajal-Carmona L, Howarth K, Jaeger E, Spain SL, Walther A, Barclay E, Martin L, Gorman M, Domingo E, Teixeira AS, Kerr D, Cazier JB, Niittymaki I, Tuupanen S, Karhu A, Aaltonen LA, Tomlinson IP, Farrington SM, Tenesa A, Prendergast JG, Barnetson RA, Cetnarskyj R, Porteous ME, Pharoah PD, Koessler T, Hampe J, Buch S, Schafmayer C, Tepel J, Schreiber S, Volzke H, Chang-Claude J, Hoffmeister M, Brenner H, Zanke BW, Montpetit A, Hudson TJ, Gallinger S, Campbell H, Dunlop MG (2008) Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nat Genet 40(12):1426–1435. doi:10.1038/ng.262; ng.262 [pii]

    PubMed  CAS  Google Scholar 

  84. Jaeger E, Webb E, Howarth K, Carvajal-Carmona L, Rowan A, Broderick P, Walther A, Spain S, Pittman A, Kemp Z, Sullivan K, Heinimann K, Lubbe S, Domingo E, Barclay E, Martin L, Gorman M, Chandler I, Vijayakrishnan J, Wood W, Papaemmanuil E, Penegar S, Qureshi M, Farrington S, Tenesa A, Cazier JB, Kerr D, Gray R, Peto J, Dunlop M, Campbell H, Thomas H, Houlston R, Tomlinson I (2008) Common genetic variants at the CRAC1 (HMPS) locus on chromosome 15q13.3 influence colorectal cancer risk. Nat Genet 40(1):26–28. doi:10.1038/ng.2007.41; ng.2007.41 [pii]

    PubMed  CAS  Google Scholar 

  85. Broderick P, Carvajal-Carmona L, Pittman AM, Webb E, Howarth K, Rowan A, Lubbe S, Spain S, Sullivan K, Fielding S, Jaeger E, Vijayakrishnan J, Kemp Z, Gorman M, Chandler I, Papaemmanuil E, Penegar S, Wood W, Sellick G, Qureshi M, Teixeira A, Domingo E, Barclay E, Martin L, Sieber O, Kerr D, Gray R, Peto J, Cazier JB, Tomlinson I, Houlston RS (2007) A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nat Genet 39(11):1315–1317. doi:10.1038/ng.2007.18; ng.2007.18 [pii]

    PubMed  CAS  Google Scholar 

  86. Peters U, Hutter CM, Hsu L, Schumacher FR, Conti DV, Carlson CS, Edlund CK, Haile RW, Gallinger S, Zanke BW, Lemire M, Rangrej J, Vijayaraghavan R, Chan AT, Hazra A, Hunter DJ, Ma J, Fuchs CS, Giovannucci EL, Kraft P, Liu Y, Chen L, Jiao S, Makar KW, Taverna D, Gruber SB, Rennert G, Moreno V, Ulrich CM, Woods MO, Green RC, Parfrey PS, Prentice RL, Kooperberg C, Jackson RD, LaCroix AZ, Caan BJ, Hayes RB, Berndt SI, Chanock SJ, Schoen RE, Chang-Claude J, Hoffmeister M, Brenner H, Frank B, Bezieau S, Kury S, Slattery ML, Hopper JL, Jenkins MA, Le ML, Lindor NM, Newcomb PA, Seminara D, Hudson TJ, Duggan DJ, Potter JD, Casey G (2012) Meta-analysis of new genome-wide association studies of colorectal cancer risk. Hum Genet 131(2):217–234. doi:10.1007/s00439-011-1055-0

    PubMed  Google Scholar 

  87. Pittman AM, Naranjo S, Jalava SE, Twiss P, Ma Y, Olver B, Lloyd A, Vijayakrishnan J, Qureshi M, Broderick P, van Wezel T, Morreau H, Tuupanen S, Aaltonen LA, Alonso ME, Manzanares M, Gavilan A, Visakorpi T, Gomez-Skarmeta JL, Houlston RS (2010) Allelic variation at the 8q23.3 colorectal cancer risk locus functions as a cis-acting regulator of EIF3H. PLoSGenet 6(9). doi:10.1371/journal.pgen.1001126

  88. Talseth-Palmer BA, Brenne IS, Ashton KA, Evans TJ, McPhillips M, Groombridge C, Suchy J, Kurzawski G, Spigelman A, Lubinski J, Scott RJ (2011) Colorectal cancer susceptibility loci on chromosome 8q23.3 and 11q23.1 as modifiers for disease expression in Lynch syndrome. J Med Genet 48(4):279–284. doi:10.1136/jmg.2010.079962; jmg.2010.079962 [pii]

    PubMed  CAS  Google Scholar 

  89. Wijnen JT, Brohet RM, van Eijik R, Jagmohan-Changur S, Middeldorp A, Tops CM, van PM, Ausems MG, Gomez GE, Hes FJ, Hoogerbrugge N, Menko FH, van Os TA, Sijmons RH, Verhoef S, Wagner A, Nagengast FM, Kleibeuker JH, Devilee P, Morreau H, Goldgar D, Tomlinson IP, Houlston RS, van Wezel T, Vasen HF (2009) Chromosome 8q23.3 and 11q23.1 variants modify colorectal cancer risk in Lynch syndrome. Gastroenterology 136 (1):131–137. doi:10.1053/j.gastro.2008.09.033; S0016-5085(08)01701-0 [pii]

  90. Berndt SI, Potter JD, Hazra A, Yeager M, Thomas G, Makar KW, Welch R, Cross AJ, Huang WY, Schoen RE, Giovannucci E, Chan AT, Chanock SJ, Peters U, Hunter DJ, Hayes RB (2008) Pooled analysis of genetic variation at chromosome 8q24 and colorectal neoplasia risk. Hum Mol Genet 17(17):2665–2672. doi:10.1093/hmg/ddn166; ddn166 [pii]

    PubMed  CAS  Google Scholar 

  91. Cui R, Okada Y, Jang SG, Ku JL, Park JG, Kamatani Y, Hosono N, Tsunoda T, Kumar V, Tanikawa C, Kamatani N, Yamada R, Kubo M, Nakamura Y, Matsuda K (2011) Common variant in 6q26-q27 is associated with distal colon cancer in an Asian population. Gut 60(6):799–805. doi:10.1136/gut.2010.215947; gut.2010.215947 [pii]

    PubMed  CAS  Google Scholar 

  92. Curtin K, Lin WY, George R, Katory M, Shorto J, Cannon-Albright LA, Bishop DT, Cox A, Camp NJ (2009) Meta association of colorectal cancer confirms risk alleles at 8q24 and 18q21. Cancer Epidemiol Biomarkers Prev 18(2):616–621. doi:10.1158/1055-9965.EPI-08-0690; 1055–9965.EPI-08-0690 [pii]

    PubMed  CAS  Google Scholar 

  93. Gruber SB, Moreno V, Rozek LS, Rennerts HS, Lejbkowicz F, Bonner JD, Greenson JK, Giordano TJ, Fearson ER, Rennert G (2007) Genetic variation in 8q24 associated with risk of colorectal cancer. Cancer Biol Ther 6(7):1143–1147. doi:4704 [pii]

    PubMed  CAS  Google Scholar 

  94. Haiman CA, Le ML, Yamamato J, Stram DO, Sheng X, Kolonel LN, Wu AH, Reich D, Henderson BE (2007) A common genetic risk factor for colorectal and prostate cancer. Nat Genet 39(8):954–956. doi:10.1038/ng2098; ng2098 [pii]

    PubMed  CAS  Google Scholar 

  95. Li M, Zhou Y, Chen P, Yang H, Yuan X, Tajima K, Cao J, Wang H (2011) Genetic variants on chromosome 8q24 and colorectal neoplasia risk: a case–control study in China and a meta-­analysis of the published literature. PLoS One 6(3):e18251. doi:10.1371/journal.pone.0018251

    PubMed  CAS  Google Scholar 

  96. Pomerantz MM, Ahmadiyeh N, Jia L, Herman P, Verzi MP, Doddapaneni H, Beckwith CA, Chan JA, Hills A, Davis M, Yao K, Kehoe SM, Lenz HJ, Haiman CA, Yan C, Henderson BE, Frenkel B, Barretina J, Bass A, Tabernero J, Baselga J, Regan MM, Manak JR, Shivdasani R, Coetzee GA, Freedman ML (2009) The 8q24 cancer risk variant rs6983267 shows long-­range interaction with MYC in colorectal cancer. Nat Genet 41(8):882–884. doi:10.1038/ng.403; ng.403 [pii]

    PubMed  CAS  Google Scholar 

  97. Poynter JN, Figueiredo JC, Conti DV, Kennedy K, Gallinger S, Siegmund KD, Casey G, Thibodeau SN, Jenkins MA, Hopper JL, Byrnes GB, Baron JA, Goode EL, Tiirikainen M, Lindor N, Grove J, Newcomb P, Jass J, Young J, Potter JD, Haile RW, Duggan DJ, Le ML (2007) Variants on 9p24 and 8q24 are associated with risk of colorectal cancer: results from the Colon Cancer Family Registry. Cancer Res 67(23):11128–11132. doi:10.1158/0008-­5472.CAN-07-3239; 67/23/11128 [pii]

    PubMed  CAS  Google Scholar 

  98. Schafmayer C, Buch S, Volzke H, von SW, Egberts JH, Schniewind B, Brosch M, Ruether A, Franke A, Mathiak M, Sipos B, Henopp T, Catalcali J, Hellmig S, ElSharawy A, Katalinic A, Lerch MM, John U, Folsch UR, Fandrich F, Kalthoff H, Schreiber S, Krawczak M, Tepel J, Hampe J (2009) Investigation of the colorectal cancer susceptibility region on chromosome 8q24.21 in a large German case–control sample. IntJCancer 124 (1):75–80. doi:10.1002/ijc.23872

  99. Yeager M, Xiao N, Hayes RB, Bouffard P, Desany B, Burdett L, Orr N, Matthews C, Qi L, Crenshaw A, Markovic Z, Fredrikson KM, Jacobs KB, Amundadottir L, Jarvie TP, Hunter DJ, Hoover R, Thomas G, Harkins TT, Chanock SJ (2008) Comprehensive resequence analysis of a 136 kb region of human chromosome 8q24 associated with prostate and colon cancers. Hum Genet 124(2):161–170. doi:10.1007/s00439-008-0535-3

    PubMed  CAS  Google Scholar 

  100. Kocarnik JD, Hutter CM, Slattery ML, Berndt SI, Hsu L, Duggan DJ, Muehling J, Caan BJ, Beresford SA, Rajkovic A, Sarto GE, Marshall JR, Hammad N, Wallace RB, Makar KW, Prentice RL, Potter JD, Hayes RB, Peters U (2010) Characterization of 9p24 risk locus and colorectal adenoma and cancer: gene-environment interaction and meta-analysis. Cancer Epidemiol Biomarkers Prev 19(12):3131–3139. doi:10.1158/1055-9965.EPI-10-0878; 1055–9965.EPI-10-0878 [pii]

    PubMed  CAS  Google Scholar 

  101. Tomlinson IP, Carvajal-Carmona LG, Dobbins SE, Tenesa A, Jones AM, Howarth K, Palles C, Broderick P, Jaeger EE, Farrington S, Lewis A, Prendergast JG, Pittman AM, Theodoratou E, Olver B, Walker M, Penegar S, Barclay E, Whiffin N, Martin L, Ballereau S, Lloyd A, Gorman M, Lubbe S, Howie B, Marchini J, Ruiz-Ponte C, Fernandez-Rozadilla C, Castells A, Carracedo A, Castellvi-Bel S, Duggan D, Conti D, Cazier JB, Campbell H, Sieber O, Lipton L, Gibbs P, Martin NG, Montgomery GW, Young J, Baird PN, Gallinger S, Newcomb P, Hopper J, Jenkins MA, Aaltonen LA, Kerr DJ, Cheadle J, Pharoah P, Casey G, Houlston RS, Dunlop MG (2011) Multiple common susceptibility variants near BMP pathway loci GREM1, BMP4, and BMP2 explain part of the missing heritability of colorectal cancer. PLoS Genet 7(6):e1002105. doi:10.1371/journal.pgen.1002105; PGENETICS-D-11-00483 [pii]

    PubMed  CAS  Google Scholar 

  102. Middeldorp A, Jagmohan-Changur S, van ER, Tops C, Devilee P, Vasen HF, Hes FJ, Houlston R, Tomlinson I, Houwing-Duistermaat JJ, Wijnen JT, Morreau H, van WT (2009) Enrichment of low penetrance susceptibility loci in a Dutch familial colorectal cancer cohort. Cancer EpidemiolBiomarkers Prev 18 (11):3062–3067. doi:10.1158/1055-9965.EPI-09-0601; 1055–9965.EPI-09-0601 [pii]

  103. Pittman AM, Naranjo S, Webb E, Broderick P, Lips EH, van WT, Morreau H, Sullivan K, Fielding S, Twiss P, Vijayakrishnan J, Casares F, Qureshi M, Gomez-Skarmeta JL, Houlston RS (2009) The colorectal cancer risk at 18q21 is caused by a novel variant altering SMAD7 expression. Genome Res 19 (6):987–993. doi:10.1101/gr.092668.109; gr.092668.109 [pii]

  104. Thompson CL, Plummer SJ, Acheson LS, Tucker TC, Casey G, Li L (2009) Association of common genetic variants in SMAD7 and risk of colon cancer. Carcinogenesis 30(6):982–986. doi:10.1093/carcin/bgp086; bgp086 [pii]

    PubMed  CAS  Google Scholar 

  105. Gudmundsson J, Sulem P, Manolescu A, Amundadottir LT, Gudbjartsson D, Helgason A, Rafnar T, Bergthorsson JT, Agnarsson BA, Baker A, Sigurdsson A, Benediktsdottir KR, Jakobsdottir M, Xu J, Blondal T, Kostic J, Sun J, Ghosh S, Stacey SN, Mouy M, Saemundsdottir J, Backman VM, Kristjansson K, Tres A, Partin AW, Albers-Akkers MT, Godino-Ivan MJ, Walsh PC, Swinkels DW, Navarrete S, Isaacs SD, Aben KK, Graif T, Cashy J, Ruiz-Echarri M, Wiley KE, Suarez BK, Witjes JA, Frigge M, Ober C, Jonsson E, Einarsson GV, Mayordomo JI, Kiemeney LA, Isaacs WB, Catalona WJ, Barkardottir RB, Gulcher JR, Thorsteinsdottir U, Kong A, Stefansson K (2007) Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 39(5):631–637. doi:10.1038/ng1999; ng1999 [pii]

    PubMed  CAS  Google Scholar 

  106. Haiman CA, Patterson N, Freedman ML, Myers SR, Pike MC, Waliszewska A, Neubauer J, Tandon A, Schirmer C, McDonald GJ, Greenway SC, Stram DO, Le ML, Kolonel LN, Frasco M, Wong D, Pooler LC, Ardlie K, Oakley-Girvan I, Whittemore AS, Cooney KA, John EM, Ingles SA, Altshuler D, Henderson BE, Reich D (2007) Multiple regions within 8q24 independently affect risk for prostate cancer. Nat Genet 39(5):638–644. doi:10.1038/ng2015; ng2015 [pii]

    PubMed  CAS  Google Scholar 

  107. Yeager M, Chatterjee N, Ciampa J, Jacobs KB, Gonzalez-Bosquet J, Hayes RB, Kraft P, Wacholder S, Orr N, Berndt S, Yu K, Hutchinson A, Wang Z, Amundadottir L, Feigelson HS, Thun MJ, Diver WR, Albanes D, Virtamo J, Weinstein S, Schumacher FR, Cancel-Tassin G, Cussenot O, Valeri A, Andriole GL, Crawford ED, Haiman CA, Henderson B, Kolonel L, Le ML, Siddiq A, Riboli E, Key TJ, Kaaks R, Isaacs W, Isaacs S, Wiley KE, Gronberg H, Wiklund F, Stattin P, Xu J, Zheng SL, Sun J, Vatten LJ, Hveem K, Kumle M, Tucker M, Gerhard DS, Hoover RN, Fraumeni JF Jr, Hunter DJ, Thomas G, Chanock SJ (2009) Identification of a new prostate cancer susceptibility locus on chromosome 8q24. Nat Genet 41(10):1055–1057. doi:10.1038/ng.444; ng.444 [pii]

    PubMed  CAS  Google Scholar 

  108. Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, Struewing JP, Morrison J, Field H, Luben R, Wareham N, Ahmed S, Healey CS, Bowman R, Meyer KB, Haiman CA, Kolonel LK, Henderson BE, Le ML, Brennan P, Sangrajrang S, Gaborieau V, Odefrey F, Shen CY, Wu PE, Wang HC, Eccles D, Evans DG, Peto J, Fletcher O, Johnson N, Seal S, Stratton MR, Rahman N, Chenevix-Trench G, Bojesen SE, Nordestgaard BG, Axelsson CK, Garcia-Closas M, Brinton L, Chanock S, Lissowska J, Peplonska B, Nevanlinna H, Fagerholm R, Eerola H, Kang D, Yoo KY, Noh DY, Ahn SH, Hunter DJ, Hankinson SE, Cox DG, Hall P, Wedren S, Liu J, Low YL, Bogdanova N, Schurmann P, Dork T, Tollenaar RA, Jacobi CE, Devilee P, Klijn JG, Sigurdson AJ, Doody MM, Alexander BH, Zhang J, Cox A, Brock IW, MacPherson G, Reed MW, Couch FJ, Goode EL, Olson JE, Meijers-Heijboer H, van den Ouweland A, Uitterlinden A, Rivadeneira F, Milne RL, Ribas G, Gonzalez-Neira A, Benitez J, Hopper JL, McCredie M, Southey M, Giles GG, Schroen C, Justenhoven C, Brauch H, Hamann U, Ko YD, Spurdle AB, Beesley J, Chen X, Mannermaa A, Kosma VM, Kataja V, Hartikainen J, Day NE, Cox DR, Ponder BA (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447(7148):1087–1093. doi:nature05887 [pii];10.1038/nature05887

    PubMed  CAS  Google Scholar 

  109. White KL, Sellers TA, Fridley BL, Vierkant RA, Phelan CM, Tsai YY, Kalli KR, Berchuck A, Iversen ES, Hartmann LC, Liebow M, Armasu S, Fredericksen Z, Larson MC, Duggan D, Couch FJ, Schildkraut JM, Cunningham JM, Goode EL (2010) Variation at 8q24 and 9p24 and risk of epithelial ovarian cancer. Twin Res Hum Genet 13(1):43–56. doi:10.1375/twin.13.1.43; 10.1375/twin.13.1.43 [pii]

    PubMed  Google Scholar 

  110. Tenesa A, Dunlop MG (2009) New insights into the aetiology of colorectal cancer from genome-wide association studies. Nat Rev Genet 10(6):353–358. doi:10.1038/nrg2574; nrg2574 [pii]

    PubMed  CAS  Google Scholar 

  111. Goel A, Boland CR (2010) Recent insights into the pathogenesis of colorectal cancer. Curr Opin Gastroenterol 26(1):47–52. doi:10.1097/MOG.0b013e328332b850

    PubMed  CAS  Google Scholar 

  112. Chen LS, Hutter CM, Potter JD, Liu Y, Prentice RL, Peters U, Hsu L (2010) Insights into colon cancer etiology via a regularized approach to gene set analysis of GWAS data. Am J Hum Genet 86(6):860–871. doi:10.1016/j.ajhg.2010.04.014; S0002-9297(10)00217-X [pii]

    PubMed  CAS  Google Scholar 

  113. Xu Y, Pasche B (2007) TGF-beta signaling alterations and susceptibility to colorectal cancer. Hum Mol Genet 16(Spec No 1):R14–R20. doi:10.1093/hmg/ddl486; 16/R1/R14 [pii]

    PubMed  CAS  Google Scholar 

  114. Labbe E, Lock L, Letamendia A, Gorska AE, Gryfe R, Gallinger S, Moses HL, Attisano L (2007) Transcriptional cooperation between the transforming growth factor-beta and Wnt pathways in mammary and intestinal tumorigenesis. Cancer Res 67(1):75–84. doi:10.1158/0008-5472.CAN-06-2559; 67/1/75 [pii]

    PubMed  CAS  Google Scholar 

  115. Akhurst RJ (2004) TGF beta signaling in health and disease. Nat Genet 36(8):790–792. doi:10.1038/ng0804-790; ng0804-790 [pii]

    PubMed  CAS  Google Scholar 

  116. Grady WM, Markowitz SD (2002) Genetic and epigenetic alterations in colon cancer. Annu Rev Genomics Hum Genet 3:101–128. doi:10.1146/annurev.genom.3.022502.103043;022502.103043 [pii]

    PubMed  CAS  Google Scholar 

  117. Grady WM, Myeroff LL, Swinler SE, Rajput A, Thiagalingam S, Lutterbaugh JD, Neumann A, Brattain MG, Chang J, Kim SJ, Kinzler KW, Vogelstein B, Willson JK, Markowitz S (1999) Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. Cancer Res 59(2):320–324

    PubMed  CAS  Google Scholar 

  118. Ikushima H, Miyazono K (2010) TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 10(6):415–424. doi:10.1038/nrc2853; nrc2853 [pii]

    PubMed  CAS  Google Scholar 

  119. Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y, Wang XF (1995) Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci USA 92(12):5545–5549

    PubMed  CAS  Google Scholar 

  120. Hannon GJ, Beach D (1994) p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature 371(6494):257–261. doi:10.1038/371257a0

    PubMed  CAS  Google Scholar 

  121. Pande M, Frazier ML, Lynch PM, Broaddus R, Amos CI (2010) Genome wide association identified colorectal cancer susceptibility loci and colorectal cancer risk in Lynch syndrome. Hered Cancer Clin Pract 8(S1):16

    Google Scholar 

  122. Calabrese G, Crescenzi C, Morizio E, Palka G, Guerra E, Alberti S (2001) Assignment of TACSTD1 (alias TROP1, M4S1) to human chromosome 2p21 and refinement of mapping of TACSTD2 (alias TROP2, M1S1) to human chromosome 1p32 by in situ hybridization. Cytogenet Cell Genet 92(1–2):164–165. doi:56891; 56891 [pii]

    PubMed  CAS  Google Scholar 

  123. Chaudry MA, Sales K, Ruf P, Lindhofer H, Winslet MC (2007) EpCAM an immunotherapeutic target for gastrointestinal malignancy: current experience and future challenges. Br J Cancer 96(7):1013–1019. doi:10.1038/sj.bjc.6603505; 6603505 [pii]

    PubMed  CAS  Google Scholar 

  124. Hitchins MP (2010) Inheritance of epigenetic aberrations (constitutional epimutations) in cancer susceptibility. Adv Genet 70:201–243. doi:10.1016/B978-0-12-380866-0.60008-3; B978-0-12-380866-0.60008-3 [pii]

    PubMed  CAS  Google Scholar 

  125. Kempers MJ, Kuiper RP, Ockeloen CW, Chappuis PO, Hutter P, Rahner N, Schackert HK, Steinke V, Holinski-Feder E, Morak M, Kloor M, Buttner R, Verwiel ET, van Krieken JH, Nagtegaal ID, Goossens M, van der Post RS, Niessen RC, Sijmons RH, Kluijt I, Hogervorst FB, Leter EM, Gille JJ, Aalfs CM, Redeker EJ, Hes FJ, Tops CM, van Nesselrooij BP, van Gijn ME, Gomez Garcia EB, Eccles DM, Bunyan DJ, Syngal S, Stoffel EM, Culver JO, Palomares MR, Graham T, Velsher L, Papp J, Olah E, Chan TL, Leung SY, van Kessel AG, Kiemeney LA, Hoogerbrugge N, Ligtenberg MJ (2011) Risk of colorectal and endometrial cancers in EPCAM deletion-positive Lynch syndrome: a cohort study. Lancet Oncol 12(1):49–55. doi:10.1016/S1470-2045(10)70265-5; S1470-2045(10)70265-5 [pii]

    PubMed  Google Scholar 

  126. Chan TL, Yuen ST, Kong CK, Chan YW, Chan AS, Ng WF, Tsui WY, Lo MW, Tam WY, Li VS, Leung SY (2006) Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer. Nat Genet 38(10):1178–1183. doi:10.1038/ng1866; ng1866 [pii]

    PubMed  CAS  Google Scholar 

  127. Kovacs ME, Papp J, Szentirmay Z, Otto S, Olah E (2009) Deletions removing the last exon of TACSTD1 constitute a distinct class of mutations predisposing to Lynch syndrome. Hum Mutat 30(2):197–203. doi:10.1002/humu.20942

    PubMed  CAS  Google Scholar 

  128. Ligtenberg MJ, Kuiper RP, Chan TL, Goossens M, Hebeda KM, Voorendt M, Lee TY, Bodmer D, Hoenselaar E, Hendriks-Cornelissen SJ, Tsui WY, Kong CK, Brunner HG, van Kessel AG, Yuen ST, van Krieken JH, Leung SY, Hoogerbrugge N (2009) Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′ exons of TACSTD1. Nat Genet 41(1):112–117. doi:10.1038/ng.283; ng.283 [pii]

    PubMed  CAS  Google Scholar 

  129. Kuiper RP, Vissers LE, Venkatachalam R, Bodmer D, Hoenselaar E, Goossens M, Haufe A, Kamping E, Niessen RC, Hogervorst FB, Gille JJ, Redeker B, Tops CM, van Gijn ME, van den Ouweland AM, Rahner N, Steinke V, Kahl P, Holinski-Feder E, Morak M, Kloor M, Stemmler S, Betz B, Hutter P, Bunyan DJ, Syngal S, Culver JO, Graham T, Chan TL, Nagtegaal ID, van Krieken JH, Schackert HK, Hoogerbrugge N, van Kessel AG, Ligtenberg MJ (2011) Recurrence and variability of germline EPCAM deletions in Lynch syndrome. Hum Mutat 32(4):407–414. doi:10.1002/humu.21446

    PubMed  CAS  Google Scholar 

  130. Guarinos C, Castillejo A, Barbera VM, Perez-Carbonell L, Sanchez-Heras AB, Segura A, Guillen-Ponce C, Martinez-Canto A, Castillejo MI, Egoavil CM, Jover R, Paya A, Alenda C, Soto JL (2010) EPCAM germ line deletions as causes of Lynch syndrome in Spanish patients. J Mol Diagn 12(6):765–770. doi:10.2353/jmoldx.2010.100039; S1525-1578(10)60126-2 [pii]

    PubMed  CAS  Google Scholar 

  131. Crepin M, Dieu MC, Lejeune S, Escande F, Boidin D, Porchet N, Morin G, Manouvrier S, Mathieu M, Buisine MP (2012) Evidence of constitutional MLH1 epimutation associated to transgenerational inheritance of cancer susceptibility. Hum Mutat 33(1):180–188. doi:10.1002/humu.21617

    PubMed  CAS  Google Scholar 

  132. Goel A, Nguyen TP, Leung HC, Nagasaka T, Rhees J, Hotchkiss E, Arnold M, Banerji P, Koi M, Kwok CT, Packham D, Lipton L, Boland CR, Ward RL, Hitchins MP (2011) De novo constitutional MLH1 epimutations confer early-onset colorectal cancer in two new sporadic Lynch syndrome cases, with derivation of the epimutation on the paternal allele in one. Int J Cancer 128(4):869–878. doi:10.1002/ijc.25422

    PubMed  CAS  Google Scholar 

  133. Hitchins MP, Wong JJ, Suthers G, Suter CM, Martin DI, Hawkins NJ, Ward RL (2007) Inheritance of a cancer-associated MLH1 germ-line epimutation. N Engl J Med 356(7):697–705. doi:10.1056/NEJMoa064522; 356/7/697 [pii]

    PubMed  CAS  Google Scholar 

  134. Hitchins MP, Ward RL (2007) Erasure of MLH1 methylation in spermatozoa-implications for epigenetic inheritance. Nat Genet 39(11):1289. doi:10.1038/ng1107-1289; ng1107-1289 [pii]

    PubMed  CAS  Google Scholar 

  135. Hitchins MP, Ward RL (2009) Constitutional (germline) MLH1 epimutation as an aetiological mechanism for hereditary non-polyposis colorectal cancer. J Med Genet 46(12):793–802. doi:10.1136/jmg.2009.068122; jmg.2009.068122 [pii]

    PubMed  CAS  Google Scholar 

  136. Chen H, Taylor NP, Sotamaa KM, Mutch DG, Powell MA, Schmidt AP, Feng S, Hampel HL, de la Chapelle A, Goodfellow PJ (2007) Evidence for heritable predisposition to epigenetic silencing of MLH1. Int J Cancer 120(8):1684–1688. doi:10.1002/ijc.22406

    PubMed  CAS  Google Scholar 

  137. Mei M, Liu D, Dong S, Ingvarsson S, Goodfellow PJ, Chen H (2010) The MLH1–93 ­promoter variant influences gene expression. Cancer Epidemiol 34(1):93–95. doi:10.1016/j.canep.2009.12.009; S1877-7821(09)00188-X [pii]

    PubMed  CAS  Google Scholar 

  138. Morak M, Schackert HK, Rahner N, Betz B, Ebert M, Walldorf C, Royer-Pokora B, Schulmann K, von Knebel-Doeberitz M, Dietmaier W, Keller G, Kerker B, Leitner G, Holinski-Feder E (2008) Further evidence for heritability of an epimutation in one of 12 cases with MLH1 promoter methylation in blood cells clinically displaying HNPCC. Eur J Hum Genet 16(7):804–811. doi:10.1038/ejhg.2008.25; ejhg200825 [pii]

    PubMed  CAS  Google Scholar 

  139. Hitchins M, Williams R, Cheong K, Halani N, Lin VA, Packham D, Ku S, Buckle A, Hawkins N, Burn J, Gallinger S, Goldblatt J, Kirk J, Tomlinson I, Scott R, Spigelman A, Suter C, Martin D, Suthers G, Ward R (2005) MLH1 germline epimutations as a factor in hereditary nonpolyposis colorectal cancer. Gastroenterology 129(5):1392–1399. doi:10.1053/j.gastro.2005.09.003; S0016-5085(05)01787-7 [pii]

    PubMed  CAS  Google Scholar 

  140. Kane MF, Loda M, Gaida GM, Lipman J, Mishra R, Goldman H, Jessup JM, Kolodner R (1997) Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res 57(5):808–811

    PubMed  CAS  Google Scholar 

  141. Niv Y (2007) Microsatellite instability and MLH1 promoter hypermethylation in colorectal cancer. World J Gastroenterol 13(12):1767–1769

    PubMed  CAS  Google Scholar 

  142. Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, Kang GH, Widschwendter M, Weener D, Buchanan D, Koh H, Simms L, Barker M, Leggett B, Levine J, Kim M, French AJ, Thibodeau SN, Jass J, Haile R, Laird PW (2006) CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 38(7):787–793. doi:10.1038/ng1834; ng1834 [pii]

    PubMed  CAS  Google Scholar 

  143. Bellizzi AM, Frankel WL (2009) Colorectal cancer due to deficiency in DNA mismatch repair function: a review. Adv Anat Pathol 16(6):405–417. doi:10.1097/PAP.0b013e3181bb6bdc; 00125480-200911000-00004 [pii]

    PubMed  CAS  Google Scholar 

  144. Bouzourene H, Hutter P, Losi L, Martin P, Benhattar J (2010) Selection of patients with germline MLH1 mutated Lynch syndrome by determination of MLH1 methylation and BRAF mutation. Fam Cancer 9(2):167–172. doi:10.1007/s10689-009-9302-4

    PubMed  CAS  Google Scholar 

  145. Gazzoli I, Loda M, Garber J, Syngal S, Kolodner RD (2002) A hereditary nonpolyposis colorectal carcinoma case associated with hypermethylation of the MLH1 gene in normal tissue and loss of heterozygosity of the unmethylated allele in the resulting microsatellite instability-high tumor. Cancer Res 62(14):3925–3928

    PubMed  CAS  Google Scholar 

  146. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93(18):9821–9826

    PubMed  CAS  Google Scholar 

  147. Frazier ML, Xi L, Zong J, Viscofsky N, Rashid A, Wu EF, Lynch PM, Amos CI, Issa JP (2003) Association of the CpG island methylator phenotype with family history of cancer in patients with colorectal cancer. Cancer Res 63(16):4805–4808

    PubMed  CAS  Google Scholar 

  148. Herman JG, Umar A, Polyak K, Graff JR, Ahuja N, Issa JP, Markowitz S, Willson JK, Hamilton SR, Kinzler KW, Kane MF, Kolodner RD, Vogelstein B, Kunkel TA, Baylin SB (1998) Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci USA 95(12):6870–6875

    PubMed  CAS  Google Scholar 

  149. Suter CM, Martin DI, Ward RL (2004) Germline epimutation of MLH1 in individuals with multiple cancers. Nat Genet 36(5):497–501. doi:10.1038/ng1342; ng1342 [pii]

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marsha L. Frazier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pande, M., Chen, J., Wei, C., Huang, YJ., Frazier, M.L. (2013). Mutations in Non-MMR Genes Modifying or Mimicking Lynch Syndrome Phenotype. In: Vogelsang, M. (eds) DNA Alterations in Lynch Syndrome. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6597-9_7

Download citation

Publish with us

Policies and ethics