Skip to main content

Regulation of Neuroblastoma Cell Differentiation by Retinoic Acid: Role of Alternative Splicing and micro-RNAs

  • Chapter
  • First Online:
Pediatric Cancer, Volume 4

Part of the book series: Pediatric Cancer ((PECA,volume 4))

  • 1661 Accesses

Abstract

High-risk metastatic neuroblastoma tumors have a poor prognosis even after aggressive multimodal therapeutic protocols. Retinoic Acid (RA) treatments were included in these multimodal therapies because its ability to induce differentiation of neuroblastoma cells in vitro and it appears to reduce the risk of tumor recurrence as established in a large multicentre clinical assay. The present article deals with the molecular actions of RA on neuroblastoma cells. We want to discuss novel actions of RA at the post-transcriptional level (alternative splicing, translational control of specific mRNAs, microRNA regulation) that in addition to the well-characterized actions of RA at the transcriptional level contribute to neuroblastoma cell differentiation. We propose that RA acts coordinately over the multiple regulatory layers of gene expression and therefore must be considered as a global regulator of gene expression in neuroblastoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam AH, Suzuki H, Tsukahara T (2010) Retinoic acid treatment and cell aggregation independently regulate alternative splicing in P19 cells during neural differentiation. Cell Biol Int 34:631ā€“643

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Altucci L, Rossin A, Hirsch O, Nebbioso A, Vitoux D, Wilhelm E, Guidez F, De Simone M, Schiavone EM, Grimwade D, Zelent A, de The H, Gronemeyer H (2005) Rexinoid-triggered differentiation and tumor-selective apoptosis of acute myeloid leukemia by protein kinase A-mediated desubordination of retinoid X receptor. Cancer Res 65:8754ā€“8765

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Apostolatos H, Apostolatos A, Vickers T, Watson JE, Song S, Vale F, Cooper DR, Sanchez-Ramos J, Patel NA (2010) Vitamin A metabolite, all-trans-retinoic acid, mediates alternative splicing of protein kinase C deltaVIII (PKCdeltaVIII) isoform via splicing factor SC35. J Biol Chem 285:25987ā€“25995

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Auboeuf D, Honig A, Berget SM, Oā€™Malley BW (2002) Coordinate regulation of transcription and splicing by steroid receptor coregulators. Science 298:416ā€“419

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Auboeuf D, Dowhan DH, Kang YK, Larkin K, Lee JW, Berget SM, Oā€™Malley BW (2004) Differential recruitment of nuclear receptor coactivators may determine alternative RNA splice site choice in target genes. Proc Natl Acad Sci U S A 101:2270ā€“2274

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Auboeuf D, Batsche E, Dutertre M, Muchardt C, Oā€™Malley BW (2007) Coregulators: transducing signal from transcription to alternative splicing. Trends Endocrinol Metab 18:122ā€“129

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215ā€“233

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Boutz PL, Stoilov P, Li Q, Lin CH, Chawla G, Ostrow K, Shiue L, Ares M Jr, Black DL (2007) A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev 21:1636ā€“1652

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Bruck N, Vitoux D, Ferry C, Duong V, Bauer A, de The H, Rochette-Egly C (2009) A coordinated phosphorylation cascade initiated by p38MAPK/MSK1 directs RARalpha to target promoters. EMBO J 28:34ā€“47

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Calarco JA, Superina S, Oā€™Hanlon D, Gabut M, Raj B, Pan Q, Skalska U, Clarke L, Gelinas D, van der Kooy D, Zhen M, Ciruna B, Blencowe BJ (2009) Regulation of vertebrate nervous system alternative splicing and development by an SR-related protein. Cell 138:898ā€“910

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Chekulaeva M, Filipowicz W (2009) Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 21:452ā€“460

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Chen JD, Evans RM (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454ā€“457

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Coutinho-Mansfield GC, Xue Y, Zhang Y, Fu XD (2007) PTB/nPTB switch: a post-transcriptional mechanism for programming neuronal differentiation. Genes Dev 21:1573ā€“1577

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • De Preter K, Mestdagh P, Vermeulen J, Zeka F, Naranjo A, Bray I, Castel V, Chen C, Drozynska E, Eggert A, Hogarty MD, Izycka-Swieszewska E, London WB, Noguera R, Piqueras M, Bryan K, Schowe B, van Sluis P, Molenaar JJ, Schramm A, Schulte JH, Stallings RL, Versteeg R, Laureys G, Van Roy N, Speleman F, Vandesompele J (2011) miRNA expression profiling enables risk stratification in archived and fresh neuroblastoma tumor samples. Clin Cancer Res 17:7684ā€“7692

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Duong V, Rochette-Egly C (2011) The molecular physiology of nuclear retinoic acid receptors. From health to disease. Biochim Biophys Acta 1812:1023ā€“1031

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Escamilla JM, BƤuerl C, LĆ³pez CMR, Pekkala SP, Navarro S, Barettino D (2012) Retinoic-acid-induced downregulation of the 67 KDa laminin receptor correlates with reduced biological aggressiveness of human neuroblastoma cells. In: Shimada H (ed) Neuroblastoma-present and future. InTech Open Access Publisher, Manhattan, NY, USA pp 217ā€“232

    Google ScholarĀ 

  • Foley NH, Bray I, Watters KM, Das S, Bryan K, Bernas T, Prehn JH, Stallings RL (2011) MicroRNAs 10a and 10b are potent inducers of neuroblastoma cell differentiation through targeting of nuclear receptor corepressor 2. Cell Death Differ 18:1089ā€“1098

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Hammes SR, Levin ER (2007) Extranuclear steroid receptors: nature and actions. Endocr Rev 28:726ā€“741

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Jensen KB, Dredge BK, Stefani G, Zhong R, Buckanovich RJ, Okano HJ, Yang YY, Darnell RB (2000) Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron 25:359ā€“371

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Laserna EJ, Valero ML, Sanz L, del Pino MM, Calvete JJ, Barettino D (2009) Proteomic analysis of phosphorylated nuclear proteins underscores novel roles for rapid actions of retinoic acid in the regulation of mRNA splicing and translation. Mol Endocrinol 23:1799ā€“1814

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lau P, Hudson LD (2010) MicroRNAs in neural cell differentiation. Brain Res 1338:14ā€“19

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Long JC, Caceres JF (2009) The SR protein family of splicing factors: master regulators of gene expression. Biochem J 417:15ā€“27

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lopez-Carballo G, Moreno L, Masia S, Perez P, Barettino D (2002) Activation of the phosphatidylinositol 3-kinase/Akt signaling pathway by retinoic acid is required for neural differentiation of SH-SY5Y human neuroblastoma cells. J Biol Chem 277:25297ā€“25304

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lovat F, Valeri N, Croce CM (2011) MicroRNAs in the pathogenesis of cancer. Semin Oncol 38:724ā€“733

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682ā€“688

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Maris JM (2010) Recent advances in neuroblastoma. N Engl J Med 362:2202ā€“2211

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Mark M, Ghyselinck NB, Chambon P (2009) Function of retinoic acid receptors during embryonic development. Nucl Recept Signal 7:e002

    PubMedĀ  Google ScholarĀ 

  • Masia S, Alvarez S, de Lera AR, Barettino D (2007) Rapid, nongenomic actions of retinoic acid on phosphatidylinositol-3-kinase signaling pathway mediated by the retinoic acid receptor. Mol Endocrinol 21:2391ā€“2402

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, Swift P, Shimada H, Black CT, Brodeur GM, Gerbing RB, Reynolds CP (1999) Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis- retinoic acid. Childrenā€™s Cancer Group. N Engl J Med 341:1165ā€“1173

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Matthay KK, Reynolds CP, Seeger RC, Shimada H, Adkins ES, Haas-Kogan D, Gerbing RB, London WB, Villablanca JG (2009) Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a childrenā€™s oncology group study. J Clin Oncol 27:1007ā€“1013

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Meseguer S, Mudduluru G, Escamilla JM, Allgayer H, Barettino D (2011) MicroRNAs-10a and -10b contribute to retinoic acid-induced differentiation of neuroblastoma cells and target the alternative Splicing Regulatory Factor SFRS1 (SF2/ASF). J Biol Chem 286:4150ā€“4164

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Michlewski G, Sanford JR, Caceres JF (2008) The splicing factor SF2/ASF regulates translation initiation by enhancing phosphorylation of 4E-BP1. Mol Cell 30:179ā€“189

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P, Constantine-Paton M, Horvitz HR (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5:R68

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Moriarty CH, Pursell B, Mercurio AM (2010) miR-10b targets Tiam1: implications for Rac activation and carcinoma migration. J Biol Chem 285:20541ā€“20546

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Pahlman S, Ruusala AI, Abrahamsson L, Mattsson ME, Esscher T (1984) Retinoic acid-induced differentiation of cultured human neuroblastoma cells: a comparison with phorbolester-induced differentiation. Cell Differ 14:135ā€“144

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Piskunov A, Rochette-Egly C (2011) A retinoic acid receptor RARalpha pool present in membrane lipid rafts forms complexes with G protein alphaQ to activate p38MAPK. Oncogene 31:3333ā€“3345

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Sanford JR, Gray NK, Beckmann K, Caceres JF (2004) A novel role for shuttling SR proteins in mRNA translation. Genes Dev 18:755ā€“768

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Stallings RL (2009) MicroRNA involvement in the pathogenesis of neuroblastoma: potential for microRNA mediated therapeutics. Curr Pharm Des 15:456ā€“462

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Stamm S (2008) Regulation of alternative splicing by reversible protein phosphorylation. J Biol Chem 283:1223ā€“1227

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Theodosiou M, Laudet V, Schubert M (2010) From carrot to clinic: an overview of the retinoic acid signaling pathway. Cell Mol Life Sci 67:1423ā€“1445

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Underwood JG, Boutz PL, Dougherty JD, Stoilov P, Black DL (2005) Homologues of the Caenorhabditis elegans Fox-1 protein are neuronal splicing regulators in mammals. Mol Cell Biol 25:10005ā€“10016

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Veerla S, Lindgren D, Kvist A, Frigyesi A, Staaf J, Persson H, Liedberg F, Chebil G, Gudjonsson S, Borg A, Mansson W, Rovira C, Hoglund M (2009) MiRNA expression in urothelial carcinomas: important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31. Int J Cancer 124:2236ā€“2242

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Vicent GP, Ballare C, Nacht AS, Clausell J, Subtil-Rodriguez A, Quiles I, Jordan A, Beato M (2006) Induction of progesterone target genes requires activation of Erk and Msk kinases and phosphorylation of histone H3. Mol Cell 24:367ā€“381

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Voigt A, Zintl F (2003) Effects of retinoic acid on proliferation, apoptosis, cytotoxicity, migration, and invasion of neuroblastoma cells. Med Pediatr Oncol 40:205ā€“213

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Wakamatsu A, Imai J, Watanabe S, Isogai T (2010) Alternative splicing of genes during neuronal differentiation of NT2 pluripotential human embryonal carcinoma cells. FEBS Lett 584:4041ā€“4047

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Weiss FU, Marques IJ, Woltering JM, Vlecken DH, Aghdassi A, Partecke LI, Heidecke CD, Lerch MM, Bagowski CP (2009) Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer. Gastroenterology 137(2136ā€“2145):e2131ā€“e2137

    Google ScholarĀ 

  • Xiao SH, Manley JL (1997) Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing. Genes Dev 11:334ā€“344

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Zhong XY, Wang P, Han J, Rosenfeld MG, Fu XD (2009) SR proteins in vertical integration of gene expression from transcription to RNA processing to translation. Mol Cell 35:1ā€“10

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgements

The research work described in this article was financed through grants of the Spanish National Plan for Research, Development and Innovation (SAF2003-00311, SAF2006-00647, SAF2007-60780, and SAF2010-15032), Generalitat Valenciana (ACOMP 09/212) and Genoma EspaƱa to D. Barettino. S. Meseguer was the recipient of an EACR training and travel fellowship award and a CSIC I3P predoctoral fellowship/contract. E. J. Laserna was the recipient of a pre-doctoral fellowship/contract (FPI) from ConsellerĆ­a de EducaciĆ³n y Ciencia de la Generalitat Valenciana (Spain). S. MasiĆ” was supported by a pre-doctoral fellowship (FPI) from the former Ministry of Science and Technology and a contract from Programa de ContrataciĆ³n de TĆ©cnicos, former Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domingo Barettino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Meseguer, S., Laserna, E.J., Escamilla, J.M., MasiĆ”, S., Barettino, D. (2013). Regulation of Neuroblastoma Cell Differentiation by Retinoic Acid: Role of Alternative Splicing and micro-RNAs. In: Hayat, M. (eds) Pediatric Cancer, Volume 4. Pediatric Cancer, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6591-7_5

Download citation

Publish with us

Policies and ethics