Skip to main content

Molecular Mechanisms of Hereditary Diffuse Gastric Cancer Initiation and Progression

  • Chapter
  • First Online:
Spotlight on Familial and Hereditary Gastric Cancer

Abstract

The stomachs of CDH1 germline mutation carriers contain multifocal, stage T1a signet ring cell carcinomas which are generally indolent, but show an unpredictable tendency towards rapid progression. The trigger for the initial development of these cancer foci is downregulation of the 2nd CDH1 allele, largely through epigenetic mechanisms. The loss of E-cadherin expression impacts on the orientation of the mitotic spindle, and we hypothesise that a proportion of proliferating cells in the gastric gland divide out of the epithelial plane and penetrate the lamina propria. It is possible that a proportion of the foci of signet ring cells in the lamina propria are transient, perhaps due to the absence of stem cell capability. Other foci in time undergo an epithelial-mesenchymal transition, in which they gain a more fibroblastic appearance, mediated at least in part by the expression of the oncogene c-SRC, and acquire the ability to invade surrounding tissues. In addition to highlighting the importance of an epithelial-mesenchymal transition, studies on sporadic disease suggest crucial roles for the Notch and Hedgehog pathways in disease progression. Deregulation of these pathways is likely to cooperate with E-cadherin downregulation to impact on fundamental biological processes including cellular interactions, differentiation and stemness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAF:

Cancer-Associated Fibroblasts

CSC:

Cancer Stem Cell

DGC:

Diffuse Gastric Cancers

EMT:

Epithelial-Mesenchymal Transition

HDACi:

Histone Deacetylase Inhibitors

HDGC:

Hereditary Diffuse Gastric Cancer

HH:

Hedgehog

LBC:

Lobular Breast Carcinomas

LCIS:

Lobular Carcinoma In Situ

LOH:

Loss Of Heterozygosity

MMP:

Matrix Metalloproteases

SRCC:

Signet Ring Cell Carcinoma

VPA:

Valproic Acid

References

  • Aghdassi A, Sendler M, Guenther A, Mayerle J, Behn CO, Heidecke CD, Friess H, Buchler M, Evert M, Lerch MM, Weiss FU (2012) Recruitment of histone deacetylases HDAC1 and HDAC2 by the transcriptional repressor ZEB1 downregulates E-cadherin expression in pancreatic cancer. Gut 61:439–448. doi:10.1136/gutjnl-2011-300060

    PubMed  CAS  Google Scholar 

  • Alt-Holland A, Sowalsky AG, Szwec-Levin Y, Shamis Y, Hatch H, Feig LA, Garlick JA (2011) Suppression of E-cadherin function drives the early stages of Ras-induced squamous cell carcinoma through upregulation of FAK and Src. J Invest Dermatol 131:2306–2315. doi:10.1038/jid.2011.188

    PubMed  CAS  Google Scholar 

  • Andrade VP, Ostrovnaya I, Seshan VE, Morrogh M, Giri D, Olvera N, De Brot M, Morrow M, Begg CB, King TA (2012) Clonal relatedness between lobular carcinoma in situ and synchronous malignant lesions. Breast Cancer Res 14:R103. doi:10.1186/bcr3222

    PubMed  CAS  Google Scholar 

  • Annicotte JS, Iankova I, Miard S, Fritz V, Sarruf D, Abella A, Berthe ML, Noel D, Pillon A, Iborra F, Dubus P, Maudelonde T, Culine S, Fajas L (2006) Peroxisome proliferator-activated receptor gamma regulates E-cadherin expression and inhibits growth and invasion of prostate cancer. Mol Cell Biol 26:7561–7574

    PubMed  CAS  Google Scholar 

  • Aulmann S, Penzel R, Longerich T, Funke B, Schirmacher P, Sinn HP (2008) Clonality of lobular carcinoma in situ (LCIS) and metachronous invasive breast cancer. Breast Cancer Res Treat 107:331–335. doi:10.1007/s10549-007-9557-0

    PubMed  Google Scholar 

  • Baldewijns MM, van Vlodrop IJ, Vermeulen PB, Soetekouw PM, van Engeland M, de Bruine AP (2010) VHL and HIF signalling in renal cell carcinogenesis. J Pathol 221:125–138. doi:10.1002/path.2689

    PubMed  CAS  Google Scholar 

  • Barber M, Murrell A, Ito Y, Maia AT, Hyland S, Oliveira C, Save V, Carneiro F, Paterson A, Grehan N, Dwerryhouse S, Lao-Sirieix P, Caldas C, Fitzgerald R (2008a) Mechanisms and sequelae of E-cadherin silencing in hereditary diffuse gastric cancer. J Pathol 216:295–306. doi:10.1002/path.2426

    PubMed  CAS  Google Scholar 

  • Barber ME, Save V, Carneiro F, Dwerryhouse S, Lao-Sirieix P, Hardwick RH, Caldas C, Fitzgerald RC (2008b) Histopathological and molecular analysis of gastrectomy specimens from hereditary diffuse gastric cancer patients has implications for endoscopic surveillance of individuals at risk. J Pathol 216:286–294. doi:10.1002/path.2415

    PubMed  CAS  Google Scholar 

  • Barshishat M, Polak-Charcon S, Schwartz B (2000) Butyrate regulates E-cadherin transcription, isoform expression and intracellular position in colon cancer cells. Br J Cancer 82:195–203

    PubMed  CAS  Google Scholar 

  • Bauer L, Langer R, Becker K, Hapfelmeier A, Ott K, Novotny A, Hofler H, Keller G (2012) Expression profiling of stem cell-related genes in neoadjuvant-treated gastric cancer: a NOTCH2, GSK3B and beta-catenin gene signature predicts survival. PLoS One 7:e44566. doi:10.1371/journal.pone.0044566

    PubMed  CAS  Google Scholar 

  • Benusiglio PR, Caron O, Consolino E, Duvillard P, Coulet F, Blayau M, Malka D (2012) Cleft lip, cleft palate, hereditary diffuse gastric cancer and germline mutations in CDH1. Int J Cancer. doi:10.1002/ijc.27923

    PubMed  Google Scholar 

  • Blair VR (2012) Familial gastric cancer: genetics, diagnosis, and management. Surg Oncol Clin N Am 21:35–56. doi:10.1016/j.soc.2011.09.003

    PubMed  Google Scholar 

  • Bleuming SA, He XC, Kodach LL, Hardwick JC, Koopman FA, Ten Kate FJ, van Deventer SJ, Hommes DW, Peppelenbosch MP, Offerhaus GJ, Li L, van den Brink GR (2007) Bone morphogenetic protein signaling suppresses tumorigenesis at gastric epithelial transition zones in mice. Cancer Res 67:8149–8155

    PubMed  CAS  Google Scholar 

  • Boussadia O, Kutsch S, Hierholzer A, Delmas V, Kemler R (2002) E-cadherin is a survival factor for the lactating mouse mammary gland. Mech Dev 115:53–62

    PubMed  CAS  Google Scholar 

  • Brabletz S, Bajdak K, Meidhof S, Burk U, Niedermann G, Firat E, Wellner U, Dimmler A, Faller G, Schubert J, Brabletz T (2011) The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J 30:770–782. doi:10.1038/emboj.2010.349

    PubMed  CAS  Google Scholar 

  • Caldwell CM, Green RA, Kaplan KB (2007) APC mutations lead to cytokinetic failures in vitro and tetraploid genotypes in Min mice. J Cell Biol 178:1109–1120. doi:10.1083/jcb.200703186

    PubMed  CAS  Google Scholar 

  • Carneiro F, Huntsman DG, Smyrk TC, Owen DA, Seruca R, Pharoah P, Caldas C, Sobrinho-­Simoes M (2004) Model of the early development of diffuse gastric cancer in E-cadherin mutation carriers and its implications for patient screening. J Pathol 203:681–687

    PubMed  CAS  Google Scholar 

  • Cayouette M, Whitmore AV, Jeffery G, Raff M (2001) Asymmetric segregation of Numb in retinal development and the influence of the pigmented epithelium. J Neurosci 21:5643–5651

    PubMed  CAS  Google Scholar 

  • Charlton A, Blair V, Shaw D, Parry S, Guilford P, Martin IG (2004) Hereditary diffuse gastric cancer: predominance of multiple foci of signet ring cell carcinoma in distal stomach and transitional zone. Gut 53:814–820

    PubMed  CAS  Google Scholar 

  • Chen T, Yang K, Yu J, Meng W, Yuan D, Bi F, Liu F, Liu J, Dai B, Chen X, Wang F, Zeng F, Xu H, Hu J, Mo X (2012) Identification and expansion of cancer stem cells in tumor tissues and peripheral blood derived from gastric adenocarcinoma patients. Cell Res 22:248–258. doi:10.1038/cr.2011.109

    PubMed  CAS  Google Scholar 

  • den Elzen N, Buttery CV, Maddugoda MP, Ren G, Yap AS (2009) Cadherin adhesion receptors orient the mitotic spindle during symmetric cell division in mammalian epithelia. Mol Biol Cell 20:3740–3750. doi:10.1091/mbc.E09-01-0023

    Google Scholar 

  • Derksen PW, Liu X, Saridin F, van der Gulden H, Zevenhoven J, Evers B, van Beijnum JR, Griffioen AW, Vink J, Krimpenfort P, Peterse JL, Cardiff RD, Berns A, Jonkers J (2006) Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary ­carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell 10:437–449

    PubMed  CAS  Google Scholar 

  • Dumont N, Wilson MB, Crawford YG, Reynolds PA, Sigaroudinia M, Tlsty TD (2008) Sustained induction of epithelial to mesenchymal transition activates DNA methylation of genes silenced in basal-like breast cancers. Proc Natl Acad Sci USA 105:14867–14872. doi:10.1073/pnas.0807146105

    PubMed  CAS  Google Scholar 

  • Fischer E, Legue E, Doyen A, Nato F, Nicolas JF, Torres V, Yaniv M, Pontoglio M (2006) Defective planar cell polarity in polycystic kidney disease. Nat Genet 38:21–23. doi:10.1038/ng1701

    PubMed  CAS  Google Scholar 

  • Fleming ES, Temchin M, Wu Q, Maggio-Price L, Tirnauer JS (2009) Spindle misorientation in tumors from APC(min/+) mice. Mol Carcinog 48:592–598. doi:10.1002/mc.20506

    PubMed  CAS  Google Scholar 

  • Forster S, Gretschel S, Jons T, Yashiro M, Kemmner W (2011) THBS4, a novel stromal molecule of diffuse-type gastric adenocarcinomas, identified by transcriptome-wide expression profiling. Mod Pathol 24:1390–1403. doi:10.1038/modpathol.2011.99

    PubMed  Google Scholar 

  • Frebourg T, Oliveira C, Hochain P, Karam R, Manouvrier S, Graziadio C, Vekemans M, Hartmann A, Baert-Desurmont S, Alexandre C, Lejeune Dumoulin S, Marroni C, Martin C, Castedo S, Lovett M, Winston J, Machado JC, Attie T, Jabs EW, Cai J, Pellerin P, Triboulet JP, Scotte M, Le Pessot F, Hedouin A, Carneiro F, Blayau M, Seruca R (2006) Cleft lip/palate and CDH1/E-­cadherin mutations in families with hereditary diffuse gastric cancer. J Med Genet 43:138–142

    PubMed  CAS  Google Scholar 

  • Fuchs M, Hermannstadter C, Specht K, Knyazev P, Ullrich A, Rosivatz E, Busch R, Hutzler P, Hofler H, Luber B (2005) Effect of tumor-associated mutant E-cadherin variants with defects in exons 8 or 9 on matrix metalloproteinase 3. J Cell Physiol 202:805–813. doi:10.1002/jcp.20192

    PubMed  CAS  Google Scholar 

  • Fujii S, Ochiai A (2008) Enhancer of zeste homolog 2 downregulates E-cadherin by mediating histone H3 methylation in gastric cancer cells. Cancer Sci 99:738–746. doi:10.1111/j.1349-7006.2008.00743.x

    PubMed  CAS  Google Scholar 

  • Fukaya M, Isohata N, Ohta H, Aoyagi K, Ochiya T, Saeki N, Yanagihara K, Nakanishi Y, Taniguchi H, Sakamoto H, Shimoda T, Nimura Y, Yoshida T, Sasaki H (2006) Hedgehog signal activation in gastric pit cell and in diffuse-type gastric cancer. Gastroenterology 131:14–29. doi:10.1053/j.gastro.2006.05.0, S0016-5085(06)01001-8 [pii]

    PubMed  CAS  Google Scholar 

  • Gala M, Chung DC (2011) Hereditary colon cancer syndromes. Semin Oncol 38:490–499. doi:10.1053/j.seminoncol.2011.05.003

    PubMed  Google Scholar 

  • Grady WM, Willis J, Guilford PJ, Dunbier AK, Toro TT, Lynch H, Wiesner G, Ferguson K, Eng C, Park JG, Kim SJ, Markowitz S (2000) Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nat Genet 26:16–17

    PubMed  CAS  Google Scholar 

  • Graziano F, Arduini F, Ruzzo A, Mandolesi A, Bearzi I, Silva R, Muretto P, Testa E, Mari D, Magnani M, Scartozzi M, Cascinu S (2004) Combined analysis of E-cadherin gene (CDH1) promoter hypermethylation and E-cadherin protein expression in patients with gastric cancer: implications for treatment with demethylating drugs. Ann Oncol 15:489–492

    PubMed  CAS  Google Scholar 

  • Green RA, Kaplan KB (2003) Chromosome instability in colorectal tumor cells is associated with defects in microtubule plus-end attachments caused by a dominant mutation in APC. J Cell Biol 163:949–961. doi:10.1083/jcb.200307070

    PubMed  CAS  Google Scholar 

  • Gupta PB, Chaffer CL, Weinberg RA (2009) Cancer stem cells: mirage or reality? Nat Med 15:1010–1012. doi:10.1038/nm0909-1010

    PubMed  CAS  Google Scholar 

  • Hahn MA, Hahn T, Lee DH, Esworthy RS, Kim BW, Riggs AD, Chu FF, Pfeifer GP (2008) Methylation of polycomb target genes in intestinal cancer is mediated by inflammation. Cancer Res 68:10280–10289. doi:10.1158/0008-5472.CAN-08-1957

    PubMed  CAS  Google Scholar 

  • Hajj P, Ferlicot S, Massoud W, Awad A, Hammoudi Y, Charpentier B, Durrbach A, Droupy S, Benoit G (2009) Prevalence of renal cell carcinoma in patients with autosomal dominant polycystic kidney disease and chronic renal failure. Urology 74:631–634. doi:10.1016/j.urology.2009.02.078

    PubMed  Google Scholar 

  • Hayashi A, Horiuchi A, Kikuchi N, Hayashi T, Fuseya C, Suzuki A, Konishi I, Shiozawa T (2010) Type-specific roles of histone deacetylase (HDAC) overexpression in ovarian carcinoma: HDAC1 enhances cell proliferation and HDAC3 stimulates cell migration with downregulation of E-cadherin. Int J Cancer 127:1332–1346. doi:10.1002/ijc.25151

    PubMed  CAS  Google Scholar 

  • He LC, Gao FH, Xu HZ, Zhao S, Ma CM, Li J, Zhang S, Wu YL (2012) Ikaros inhibits proliferation and, through upregulation of Slug, increases metastatic ability of ovarian serous ­adenocarcinoma cells. Oncol Rep 28:1399–1405. doi:10.3892/or.2012.1946

    PubMed  CAS  Google Scholar 

  • Hohenstein P, Molenaar L, Elsinga J, Morreau H, van der Klift H, Struijk A, Jagmohan-Changur S, Smits R, van Kranen H, van Ommen GJ, Cornelisse C, Devilee P, Fodde R (2003) Serrated adenomas and mixed polyposis caused by a splice acceptor deletion in the mouse Smad4 gene. Genes Chromosomes Cancer 36:273–282

    PubMed  CAS  Google Scholar 

  • Hou F, Yuan W, Huang J, Qian L, Chen Z, Ge J, Wu S, Chen J, Wang J (2012) Overexpression of EphA2 correlates with epithelial-mesenchymal transition-related proteins in gastric cancer and their prognostic importance for postoperative patients. Med Oncol 29:2691–2700. doi:10.1007/s12032-011-0127-2

    PubMed  CAS  Google Scholar 

  • Humar B, Guilford P (2008) Hereditary diffuse gastric cancer and lost cell polarity: a short path to cancer. Future Oncol 4:229–239. doi:10.2217/14796694.4.2.229

    PubMed  CAS  Google Scholar 

  • Humar B, Guilford P (2009) Hereditary diffuse gastric cancer: a manifestation of lost cell polarity. Cancer Sci 100:1151–1157. doi:10.1111/j.1349-7006.2009.01163.x

    PubMed  CAS  Google Scholar 

  • Humar B, Fukuzawa R, Blair V, Dunbier A, More H, Charlton A, Yang HK, Kim WH, Reeve AE, Martin I, Guilford P (2007) Destabilized adhesion in the gastric proliferative zone and c-Src kinase activation mark the development of early diffuse gastric cancer. Cancer Res 67:2480–2489

    PubMed  CAS  Google Scholar 

  • Humar B, Blair V, Charlton A, More H, Martin I, Guilford P (2009) E-cadherin deficiency initiates gastric signet-ring cell carcinoma in mice and man. Cancer Res 69:2050–2056. doi:10.1158/0008-5472.CAN-08-2457

    PubMed  CAS  Google Scholar 

  • Huntsman DG, Carneiro F, Lewis FR, MacLeod PM, Hayashi A, Monaghan KG, Maung R, Seruca R, Jackson CE, Caldas C (2001) Early gastric cancer in young, asymptomatic carriers of germ-­line E-cadherin mutations. N Engl J Med 344:1904–1909. doi:10.1056/NEJM200106213442504

    PubMed  CAS  Google Scholar 

  • Hwang ES, Nyante SJ, Yi Chen Y, Moore D, DeVries S, Korkola JE, Esserman LJ, Waldman FM (2004) Clonality of lobular carcinoma in situ and synchronous invasive lobular carcinoma. Cancer 100:2562–2572. doi:10.1002/cncr.20273

    PubMed  Google Scholar 

  • Jiang Y, He Y, Li H, Li HN, Zhang L, Hu W, Sun YM, Chen FL, Jin XM (2012) Expressions of putative cancer stem cell markers ABCB1, ABCG2, and CD133 are correlated with the degree of differentiation of gastric cancer. Gastric Cancer 15:440–450. doi:10.1007/s10120-012-0140-y

    PubMed  CAS  Google Scholar 

  • Jin H, Yu Y, Zhang T, Zhou X, Zhou J, Jia L, Wu Y, Zhou BP, Feng Y (2010) Snail is critical for tumor growth and metastasis of ovarian carcinoma. Int J Cancer 126:2102–2111. doi:10.1002/ijc.24901

    PubMed  CAS  Google Scholar 

  • Juergens RA, Wrangle J, Vendetti FP, Murphy SC, Zhao M, Coleman B, Sebree R, Rodgers K, Hooker CM, Franco N, Lee B, Tsai S, Delgado IE, Rudek MA, Belinsky SA, Herman JG, Baylin SB, Brock MV, Rudin CM (2011) Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer. Cancer Discov 1:598–607. doi:10.1158/2159-8290.CD-11-0214

    PubMed  CAS  Google Scholar 

  • Kameda C, Nakamura M, Tanaka H, Yamasaki A, Kubo M, Tanaka M, Onishi H, Katano M (2010) Oestrogen receptor-alpha contributes to the regulation of the hedgehog signalling pathway in ERalpha-positive gastric cancer. Br J Cancer 102:738–747. doi:10.1038/sj.bjc.6605517

    PubMed  CAS  Google Scholar 

  • Kang DH, Han ME, Song MH, Lee YS, Kim EH, Kim HJ, Kim GH, Kim DH, Yoon S, Baek SY, Kim BS, Kim JB, Oh SO (2009) The role of hedgehog signaling during gastric regeneration. J Gastroenterol 44:372–379. doi:10.1007/s00535-009-0006-1

    PubMed  CAS  Google Scholar 

  • Kim TH, Shivdasani RA (2011) Notch signaling in stomach epithelial stem cell homeostasis. J Exp Med 208:677–688. doi:10.1084/jem.20101737

    PubMed  CAS  Google Scholar 

  • Kim JH, Shin HS, Lee SH, Lee I, Lee YS, Park JC, Kim YJ, Chung JB, Lee YC (2010) Contrasting activity of Hedgehog and Wnt pathways according to gastric cancer cell differentiation: relevance of crosstalk mechanisms. Cancer Sci 101:328–335. doi:10.1111/j.1349-7006.2009.01395.x

    PubMed  CAS  Google Scholar 

  • Kluijt I, Siemerink EJ, Ausems MG, van Os TA, de Jong D, Simoes-Correia J, van Krieken JH, Ligtenberg MJ, Figueiredo J, van Riel E, Sijmons RH, Plukker JT, van Hillegersberg R, Dekker E, Oliveira C, Cats A, Hoogerbrugge N (2012) CDH1-related hereditary diffuse gastric cancer syndrome: clinical variations and implications for counseling. Int J Cancer 131:367–376. doi:10.1002/ijc.26398

    PubMed  CAS  Google Scholar 

  • Koizume S, Tachibana K, Sekiya T, Hirohashi S, Shiraishi M (2002) Heterogeneity in the modification and involvement of chromatin components of the CpG island of the silenced human CDH1 gene in cancer cells. Nucleic Acids Res 30:4770–4780

    PubMed  CAS  Google Scholar 

  • Kumagai T, Wakimoto N, Yin D, Gery S, Kawamata N, Takai N, Komatsu N, Chumakov A, Imai Y, Koeffler HP (2007) Histone deacetylase inhibitor, suberoylanilide hydroxamic acid (Vorinostat, SAHA) profoundly inhibits the growth of human pancreatic cancer cells. Int J Cancer 121:656–665

    PubMed  CAS  Google Scholar 

  • Kurashige J, Kamohara H, Watanabe M, Hiyoshi Y, Iwatsuki M, Tanaka Y, Kinoshita K, Saito S, Baba Y, Baba H (2012) MicroRNA-200b regulates cell proliferation, invasion, and migration by directly targeting ZEB2 in gastric carcinoma. Ann Surg Oncol 19(Suppl 3):S656–S664. doi:10.1245/s10434-012-2217-6

    PubMed  Google Scholar 

  • Landan G, Cohen NM, Mukamel Z, Bar A, Molchadsky A, Brosh R, Horn-Saban S, Zalcenstein DA, Goldfinger N, Zundelevich A, Gal-Yam EN, Rotter V, Tanay A (2012) Epigenetic ­polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues. Nat Genet 44:1207–1214. doi:10.1038/ng.2442

    PubMed  CAS  Google Scholar 

  • Le Borgne R, Bellaiche Y, Schweisguth F (2002) Drosophila E-cadherin regulates the orientation of asymmetric cell division in the sensory organ lineage. Curr Biol 12:95–104

    PubMed  Google Scholar 

  • Li LC, Chui RM, Sasaki M, Nakajima K, Perinchery G, Au HC, Nojima D, Carroll P, Dahiya R (2000) A single nucleotide polymorphism in the E-cadherin gene promoter alters transcriptional activities. Cancer Res 60:873–876

    PubMed  CAS  Google Scholar 

  • Li DW, Wu Q, Peng ZH, Yang ZR, Wang Y (2007) Expression and significance of Notch1 and PTEN in gastric cancer. Chin J Cancer 26:1183–1187

    Google Scholar 

  • Lim SO, Kim HS, Quan X, Ahn SM, Kim H, Hsieh D, Seong JK, Jung G (2011) Notch1 binds and induces degradation of Snail in hepatocellular carcinoma. BMC Biol 9:83. doi:10.1186/1741-7007-9-83

    PubMed  CAS  Google Scholar 

  • Liu YC, Shen CY, Wu HS, Hsieh TY, Chan DC, Chen CJ, Yu JC, Yu CP, Harn HJ, Chen PJ, Hsieh CB, Chen TW, Hsu HM (2006) Mechanisms inactivating the gene for E-cadherin in sporadic gastric carcinomas. World J Gastroenterol 12:2168–2173

    PubMed  CAS  Google Scholar 

  • Liu Y, Hong Y, Zhao Y, Ismail TM, Wong Y, Eu KW (2008) Histone H3 (lys-9) deacetylation is associated with transcriptional silencing of E-cadherin in colorectal cancer cell lines. Cancer Invest 26:575–582. doi:10.1080/07357900701837168

    PubMed  CAS  Google Scholar 

  • Liu AN, Zhu ZH, Chang SJ, Hang XS (2012) Twist expression associated with the epithelial-­mesenchymal transition in gastric cancer. Mol Cell Biochem 367:195–203. doi:10.1007/s11010-012-1333-8

    PubMed  CAS  Google Scholar 

  • Lukaszewicz-Zajac M, Mroczko B, Szmitkowski M (2011) Gastric cancer – the role of matrix metalloproteinases in tumor progression. Clin Chim Acta 412:1725–1730. doi:10.1016/j.cca.2011.06.003

    PubMed  CAS  Google Scholar 

  • Ma X, Chen K, Huang S, Zhang X, Adegboyega PA, Evers BM, Zhang H, Xie J (2005) Frequent activation of the hedgehog pathway in advanced gastric adenocarcinomas. Carcinogenesis 26:1698–1705. doi:10.1093/carcin/bgi130, bgi130 [pii]

    PubMed  CAS  Google Scholar 

  • Ma Y, Yu WD, Su B, Seshadri M, Luo W, Trump DL, Johnson CS (2012) Regulation of motility, invasion, and metastatic potential of squamous cell carcinoma by 1alpha,25-­dihydroxycholecalciferol. Cancer. doi:10.1002/cncr.27531

    Google Scholar 

  • Maeda K, Takemura M, Umemori M, Adachi-Yamada T (2008) E-cadherin prolongs the moment for interaction between intestinal stem cell and its progenitor cell to ensure Notch signaling in adult Drosophila midgut. Genes Cells 13:1219–1227. doi:10.1111/j.1365-2443.2008.01239.x

    PubMed  CAS  Google Scholar 

  • Masuda T, Saito H, Kaneko F, Atsukawa K, Morita M, Inagaki H, Kumagai N, Tsuchimoto K, Ishii AH (2000) Up-regulation of E-cadherin and I-catenin in human hepatocellular carcinoma cell lines by sodium butyrate and interferon-alpha. In Vitro Cell Dev Biol Anim 36:387–394

    PubMed  CAS  Google Scholar 

  • McCabe MT, Lee EK, Vertino PM (2009) A multifactorial signature of DNA sequence and polycomb binding predicts aberrant CpG island methylation. Cancer Res 69:282–291. doi:10.1158/0008-5472.CAN-08-3274

    PubMed  CAS  Google Scholar 

  • McLin VA, Rankin SA, Zorn AM (2007) Repression of Wnt/beta-catenin signaling in the anterior endoderm is essential for liver and pancreas development. Development 134:2207–2217. doi:10.1242/dev.001230, dev.001230 [pii]

    PubMed  CAS  Google Scholar 

  • Meng Q, Qi M, Chen DZ, Yuan R, Goldberg ID, Rosen EM, Auborn K, Fan S (2000) Suppression of breast cancer invasion and migration by indole-3-carbinol: associated with up-regulation of BRCA1 and E-cadherin/catenin complexes. J Mol Med 78:155–165

    PubMed  CAS  Google Scholar 

  • Milutinovic S, D’Alessio AC, Detich N, Szyf M (2007) Valproate induces widespread epigenetic reprogramming which involves demethylation of specific genes. Carcinogenesis 28:560–571

    PubMed  CAS  Google Scholar 

  • Mimata A, Fukamachi H, Eishi Y, Yuasa Y (2011) Loss of E-cadherin in mouse gastric epithelial cells induces signet ring-like cells, a possible precursor lesion of diffuse gastric cancer. Cancer Sci 102:942–950. doi:10.1111/j.1349-7006.2011.01890.x

    PubMed  CAS  Google Scholar 

  • Mizoshita T, Inada K, Tsukamoto T, Kodera Y, Yamamura Y, Hirai T, Kato T, Joh T, Itoh M, Tatematsu M (2001) Expression of Cdx1 and Cdx2 mRNAs and relevance of this expression to differentiation in human gastrointestinal mucosa–with special emphasis on participation in intestinal metaplasia of the human stomach. Gastric Cancer 4:185–191

    Google Scholar 

  • Mohamet L, Hawkins K, Ward CM (2011) Loss of function of E-cadherin in embryonic stem cells and the relevance to models of tumorigenesis. J Oncol 2011:352616. doi:10.1155/2011/352616

    PubMed  Google Scholar 

  • Morandi L, Marucci G, Foschini MP, Cattani MG, Pession A, Riva C, Eusebi V (2006) Genetic similarities and differences between lobular in situ neoplasia (LN) and invasive lobular carcinoma of the breast. Virchows Arch 449:14–23. doi:10.1007/s00428-006-0192-7

    Google Scholar 

  • Moseley JB, Bartolini F, Okada K, Wen Y, Gundersen GG, Goode BL (2007) Regulated binding of adenomatous polyposis coli protein to actin. J Biol Chem 282:12661–12668. doi:10.1074/jbc.M61061520

    PubMed  CAS  Google Scholar 

  • Munemitsu S, Souza B, Muller O, Albert I, Rubinfeld B, Polakis P (1994) The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res 54:3676–3681

    PubMed  CAS  Google Scholar 

  • Mutoh H, Hayakawa H, Sashikawa M, Sakamoto H, Sugano K (2010) Direct repression of Sonic Hedgehog expression in the stomach by Cdx2 leads to intestinal transformation. Biochem J 427:423–434. doi:10.1042/BJ20091177

    PubMed  CAS  Google Scholar 

  • Nakamura R, Kataoka H, Sato N, Kanamori M, Ihara M, Igarashi H, Ravshanov S, Wang YJ, Li ZY, Shimamura T, Kobayashi T, Konno H, Shinmura K, Tanaka M, Sugimura H (2005) EPHA2/EFNA1 expression in human gastric cancer. Cancer Sci 96:42–47. doi:10.1111/j.1349-7006.2005.00007.x, CAS007 [pii]

    PubMed  CAS  Google Scholar 

  • Nam KT, O’Neal R, Lee YS, Lee YC, Coffey RJ, Goldenring JR (2012) Gastric tumor development in Smad3-deficient mice initiates from forestomach/glandular transition zone along the lesser curvature. Lab Invest 92:883–895. doi:10.1038/labinvest.2012.47

    PubMed  CAS  Google Scholar 

  • Nathke I (2006) Cytoskeleton out of the cupboard: colon cancer and cytoskeletal changes induced by loss of APC. Nat Rev Cancer 6:967–974. doi:10.1038/nrc2010

    PubMed  Google Scholar 

  • Nojima D, Nakajima K, Li LC, Franks J, Ribeiro-Filho L, Ishii N, Dahiya R (2001) CpG methylation of promoter region inactivates E-cadherin gene in renal cell carcinoma. Mol Carcinog 32:19–27

    Google Scholar 

  • Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L, Mohammad HP, Chen W, Daniel VC, Yu W, Berman DM, Jenuwein T, Pruitt K, Sharkis SJ, Watkins DN, Herman JG, Baylin SB (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39:237–242

    PubMed  CAS  Google Scholar 

  • Ohta H, Aoyagi K, Fukaya M, Danjoh I, Ohta A, Isohata N, Saeki N, Taniguchi H, Sakamoto H, Shimoda T, Tani T, Yoshida T, Sasaki H (2009) Cross talk between hedgehog and epithelial-­mesenchymal transition pathways in gastric pit cells and in diffuse-type gastric cancers. Br J Cancer 100:389–398. doi:10.1038/sj.bjc.6604846

    PubMed  CAS  Google Scholar 

  • Oliveira C, Sousa S, Pinheiro H, Karam R, Bordeira-Carrico R, Senz J, Kaurah P, Carvalho J, Pereira R, Gusmao L, Wen X, Cipriano MA, Yokota J, Carneiro F, Huntsman D, Seruca R (2009) Quantification of epigenetic and genetic 2nd hits in CDH1 during hereditary diffuse gastric cancer syndrome progression. Gastroenterology 136:2137–2148. doi:10.1053/j.gastro.2009.02.065

    PubMed  CAS  Google Scholar 

  • Orsulic S, Kemler R (2000) Expression of Eph receptors and ephrins is differentially regulated by E-cadherin. J Cell Sci 113(Pt 10):1793–1802

    PubMed  CAS  Google Scholar 

  • Pease JC, Tirnauer JS (2011) Mitotic spindle misorientation in cancer – out of alignment and into the fire. J Cell Sci 124:1007–1016. doi:10.1242/jcs.081406

    PubMed  CAS  Google Scholar 

  • Peinado H, Ballestar E, Esteller M, Cano A (2004) Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol 24:306–319

    PubMed  CAS  Google Scholar 

  • Pereira PS, Teixeira A, Pinho S, Ferreira P, Fernandes J, Oliveira C, Seruca R, Suriano G, Casares F (2006) E-cadherin missense mutations, associated with hereditary diffuse gastric cancer (HDGC) syndrome, display distinct invasive behaviors and genetic interactions with the Wnt and Notch pathways in Drosophila epithelia. Hum Mol Genet 15:1704–1712. doi:10.1093/hmg/ddl093, ddl093 [pii]

    PubMed  CAS  Google Scholar 

  • Piazzi G, Fini L, Selgrad M, Garcia M, Daoud Y, Wex T, Malfertheiner P, Gasbarrini A, Romano M, Meyer RL, Genta RM, Fox JG, Boland CR, Bazzoli F, Ricciardiello L (2011) Epigenetic regulation of Delta-Like1 controls Notch1 activation in gastric cancer. Oncotarget 2:1291–1301. doi:414 [pii]

    PubMed  Google Scholar 

  • Rocco A, Liguori E, Pirozzi G, Tirino V, Compare D, Franco R, Tatangelo F, Palaia R, D’Armiento FP, Pollastrone G, Affuso A, Bottazzi EC, Masone S, Persico G, Nardone G (2012) CD133 and CD44 cell surface markers do not identify cancer stem cells in primary human gastric tumors. J Cell Physiol 227:2686–2693. doi:10.1002/jcp.23013

    PubMed  CAS  Google Scholar 

  • Rogers WM, Dobo E, Norton JA, Van Dam J, Jeffrey RB, Huntsman DG, Kingham K, Chun N, Ford JM, Longacre TA (2008) Risk-reducing total gastrectomy for germline mutations in E-cadherin (CDH1): pathologic findings with clinical implications. Am J Surg Pathol 32:799–809. doi:10.1097/PAS.0b013e31815e7f1a

    PubMed  Google Scholar 

  • Rosivatz E, Becker I, Specht K, Fricke E, Luber B, Busch R, Hofler H, Becker KF (2002) Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am J Pathol 161:1881–1891. doi:10.1016/S0002-9440(10)64464-1, S0002-9440(10)64464-1 [pii]

    PubMed  CAS  Google Scholar 

  • Ryu HS, do Park J, Kim HH, Kim WH, Lee HS (2012) Combination of epithelial-mesenchymal transition and cancer stem cell-like phenotypes has independent prognostic value in gastric cancer. Hum Pathol 43:520–528. doi:10.1016/j.humpath.2011.07.003, S0046-8177(11)00312-1 [pii]

    PubMed  Google Scholar 

  • Sadvakassova G, Dobocan MC, Congote LF (2009) Osteopontin and the C-terminal peptide of thrombospondin-4 compete for CD44 binding and have opposite effects on CD133+ cell colony formation. BMC Res Notes 2:215. doi:10.1186/1756-0500-2-215, 1756-0500-2-215 [pii]

    PubMed  Google Scholar 

  • Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J, Eden E, Yakhini Z, Ben-Shushan E, Reubinoff BE, Bergman Y, Simon I, Cedar H (2007) Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39:232–236

    PubMed  CAS  Google Scholar 

  • Serrels A, Canel M, Brunton VG, Frame MC (2011) Src/FAK-mediated regulation of E-cadherin as a mechanism for controlling collective cell movement: insights from in vivo imaging. Cell Adh Migr 5:360–365

    PubMed  Google Scholar 

  • Shimada S, Mimata A, Sekine M, Mogushi K, Akiyama Y, Fukamachi H, Jonkers J, Tanaka H, Eishi Y, Yuasa Y (2012) Synergistic tumour suppressor activity of E-cadherin and p53 in a conditional mouse model for metastatic diffuse-type gastric cancer. Gut 61:344–353. doi:10.1136/gutjnl-2011-300050

    PubMed  CAS  Google Scholar 

  • Si HX, Tsao SW, Lam KY, Srivastava G, Liu Y, Wong YC, Shen ZY, Cheung AL (2001) E-cadherin expression is commonly downregulated by CpG island hypermethylation in esophageal carcinoma cells. Cancer Lett 173:71–78

    PubMed  CAS  Google Scholar 

  • Singh SR, Zeng X, Zheng Z, Hou SX (2011) The adult Drosophila gastric and stomach organs are maintained by a multipotent stem cell pool at the foregut/midgut junction in the cardia (proventriculus). Cell Cycle 10:1109–1120. doi:doi: 14830 [pii]

    PubMed  CAS  Google Scholar 

  • Song Z, Yue W, Wei B, Wang N, Li T, Guan L, Shi S, Zeng Q, Pei X, Chen L (2011) Sonic hedgehog pathway is essential for maintenance of cancer stem-like cells in human gastric cancer. PLoS One 6:e17687. doi:10.1371/journal.pone.0017687

    PubMed  CAS  Google Scholar 

  • Sun Y, Gao X, Liu J, Kong QY, Wang XW, Chen XY, Wang Q, Cheng YF, Qu XX, Li H (2011) Differential Notch1 and Notch2 expression and frequent activation of Notch signaling in gastric cancers. Arch Pathol Lab Med 135:451–458. doi:10.1043/2009-0665-OA.1

    PubMed  CAS  Google Scholar 

  • Sunagawa M, Takeshita K, Nakajima A, Ochi K, Habu H, Endo M (1985) Duration of ENNG administration and its effect on histological differentiation of experimental gastric cancer. Br J Cancer 52:771–779

    PubMed  CAS  Google Scholar 

  • Sung CO, Lee KW, Han S, Kim SH (2011) Twist1 is up-regulated in gastric cancer-associated fibroblasts with poor clinical outcomes. Am J Pathol 179:1827–1838. doi:10.1016/j.ajpath.2011.06.032

    PubMed  CAS  Google Scholar 

  • Takai N, Desmond JC, Kumagai T, Gui D, Said JW, Whittaker S, Miyakawa I, Koeffler HP (2004a) Histone deacetylase inhibitors have a profound antigrowth activity in endometrial cancer cells. Clin Cancer Res 10:1141–1149

    PubMed  CAS  Google Scholar 

  • Takai N, Kawamata N, Gui D, Said JW, Miyakawa I, Koeffler HP (2004b) Human ovarian carcinoma cells: histone deacetylase inhibitors exhibit antiproliferative activity and potently induce apoptosis. Cancer 101:2760–2770

    PubMed  CAS  Google Scholar 

  • Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R, Gordon SA, Shimada Y, Wang TC (2009) Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 27:1006–1020. doi:10.1002/stem.30

    PubMed  CAS  Google Scholar 

  • Takekura N, Yasui W, Yoshida K, Tsujino T, Nakayama H, Kameda T, Yokozaki H, Nishimura Y, Ito H, Tahara E (1990) pp 60c-src protein kinase activity in human gastric carcinomas. Int J Cancer 45:847–851

    PubMed  CAS  Google Scholar 

  • Takeshima H, Ikegami D, Wakabayashi M, Niwa T, Kim YJ, Ushijima T (2012) Induction of aberrant trimethylation of histone H3 lysine 27 by inflammation in mouse colonic epithelial cells. Carcinogenesis. doi:10.1093/carcin/bgs294

    PubMed  Google Scholar 

  • Tamura G, Sakata K, Nishizuka S, Maesaaw C, Suzuki Y, Iwaya T, Terashima M, Saito K, Satodate R (1996) Inactivation of the E-cadherin gene in primary gastric carcinomas and gastric carcinoma cell lines. Jpn J Cancer Res 87:1153–1159

    PubMed  CAS  Google Scholar 

  • Tanis PJ, Ten Kate FJ, van Lanschot JJ (2008) No mucosal escape of signet-ring cell carcinoma for ten years in a patient with familial aggregation of gastric cancer. J Surg Oncol 97:294–296. doi:10.1002/jso.20958

    PubMed  Google Scholar 

  • Thoma CR, Toso A, Gutbrodt KL, Reggi SP, Frew IJ, Schraml P, Hergovich A, Moch H, Meraldi P, Krek W (2009) VHL loss causes spindle misorientation and chromosome instability. Nat Cell Biol 11:994–1001. doi:10.1038/ncb1912

    PubMed  CAS  Google Scholar 

  • Tinkle CL, Lechler T, Pasolli HA, Fuchs E (2004) Conditional targeting of E-cadherin in skin: insights into hyperproliferative and degenerative responses. Proc Natl Acad Sci USA 101:552–557. doi:10.1073/pnas.0307437100

    PubMed  CAS  Google Scholar 

  • Trimble CL, Piantadosi S, Gravitt P, Ronnett B, Pizer E, Elko A, Wilgus B, Yutzy W, Daniel R, Shah K, Peng S, Hung C, Roden R, Wu TC, Pardoll D (2005) Spontaneous regression of high-­grade cervical dysplasia: effects of human papillomavirus type and HLA phenotype. Clin Cancer Res 11:4717–4723. doi:10.1158/1078-0432.CCR-04-2599

    PubMed  CAS  Google Scholar 

  • Tripathi MK, Misra S, Khedkar SV, Hamilton N, Irvin-Wilson C, Sharan C, Sealy L, Chaudhuri G (2005) Regulation of BRCA2 gene expression by the SLUG repressor protein in human breast cells. J Biol Chem 280:17163–17171

    PubMed  CAS  Google Scholar 

  • Tsai HC, Li H, Van Neste L, Cai Y, Robert C, Rassool FV, Shin JJ, Harbom KM, Beaty R, Pappou E, Harris J, Yen RW, Ahuja N, Brock MV, Stearns V, Feller-Kopman D, Yarmus LB, Lin YC, Welm AL, Issa JP, Minn I, Matsui W, Jang YY, Sharkis SJ, Baylin SB, Zahnow CA (2012) Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell 21:430–446. doi:10.1016/j.ccr.2011.12.029

    PubMed  CAS  Google Scholar 

  • Vleminckx K, Vakaet L, Mareel M, Fiers W, van Roy F (1991) Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 66:107–119

    PubMed  CAS  Google Scholar 

  • von Burstin J, Eser S, Paul MC, Seidler B, Brandl M, Messer M, von Werder A, Schmidt A, Mages J, Pagel P, Schnieke A, Schmid RM, Schneider G, Saur D (2009) E-cadherin regulates ­metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex. Gastroenterology 137:361–371. doi:10.1053/j.gastro.2009.04.004, 371 e361-365

    Google Scholar 

  • Wagner PL, Kitabayashi N, Chen YT, Shin SJ (2009) Clonal relationship between closely approximated low-grade ductal and lobular lesions in the breast: a molecular study of 10 cases. Am J Clin Pathol 132:871–876. doi:10.1309/AJCP7AK1VWFNMCSW

    PubMed  CAS  Google Scholar 

  • Wakamatsu Y, Sakamoto N, Oo HZ, Naito Y, Uraoka N, Anami K, Sentani K, Oue N, Yasui W (2012) Expression of cancer stem cell markers ALDH1, CD44 and CD133 in primary tumor and lymph node metastasis of gastric cancer. Pathol Int 62:112–119. doi:10.1111/j.1440-1827.2011.02760.x

    PubMed  Google Scholar 

  • Wang X, Lu H, Urvalek AM, Li T, Yu L, Lamar J, DiPersio CM, Feustel PJ, Zhao J (2011) KLF8 promotes human breast cancer cell invasion and metastasis by transcriptional activation of MMP9. Oncogene 30:1901–1911. doi:10.1038/onc.2010.563

    PubMed  CAS  Google Scholar 

  • Ward JM, Weisburger EK (1975) Intestinal tumors in mice treated with a single injection of N-nitroso-N-butylurea. Cancer Res 35:1938–1943

    PubMed  CAS  Google Scholar 

  • Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C, Weisenberger DJ, Campan M, Young J, Jacobs I, Laird PW (2007) Epigenetic stem cell signature in cancer. Nat Genet 39:157–158

    PubMed  CAS  Google Scholar 

  • Williams SE, Beronja S, Pasolli HA, Fuchs E (2011) Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature 470:353–358. doi:10.1038/nature09793

    PubMed  CAS  Google Scholar 

  • Witta SE, Gemmill RM, Hirsch FR, Coldren CD, Hedman K, Ravdel L, Helfrich B, Dziadziuszko R, Chan DC, Sugita M, Chan Z, Baron A, Franklin W, Drabkin HA, Girard L, Gazdar AF, Minna JD, Bunn PA Jr (2006) Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res 66:944–950

    PubMed  CAS  Google Scholar 

  • Xue Z, Yan H, Li J, Liang S, Cai X, Chen X, Wu Q, Gao L, Wu K, Nie Y, Fan D (2012) Identification of cancer stem cells in vincristine preconditioned SGC7901 gastric cancer cell line. J Cell Biochem 113:302–312. doi:10.1002/jcb.23356

    PubMed  CAS  Google Scholar 

  • Yamashita YM, Jones DL, Fuller MT (2003) Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 301:1547–1550. doi:10.1126/science.1087795

    PubMed  CAS  Google Scholar 

  • Yanai K, Nakamura M, Akiyoshi T, Nagai S, Wada J, Koga K, Noshiro H, Nagai E, Tsuneyoshi M, Tanaka M, Katano M (2008) Crosstalk of hedgehog and Wnt pathways in gastric cancer. Cancer Lett 263:145–156. doi:10.1016/j.canlet.2007.12.030, S0304-3835(07)00637-4 [pii]

    PubMed  CAS  Google Scholar 

  • Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117:927–939. doi:10.1016/j.cell.2004.06.006

    PubMed  CAS  Google Scholar 

  • Yang J, Mani SA, Weinberg RA (2006) Exploring a new twist on tumor metastasis. Cancer Res 66:4549–4552. doi:10.1158/0008-5472.CAN-05-3850

    PubMed  CAS  Google Scholar 

  • Yingling J, Youn YH, Darling D, Toyo-Oka K, Pramparo T, Hirotsune S, Wynshaw-Boris A (2008) Neuroepithelial stem cell proliferation requires LIS1 for precise spindle orientation and symmetric division. Cell 132:474–486. doi:10.1016/j.cell.2008.01.026

    PubMed  CAS  Google Scholar 

  • Yoo YA, Kang MH, Kim JS, Oh SC (2008) Sonic hedgehog signaling promotes motility and invasiveness of gastric cancer cells through TGF-beta-mediated activation of the ALK5-Smad 3 pathway. Carcinogenesis 29:480–490. doi:10.1093/carcin/bgm281

    PubMed  CAS  Google Scholar 

  • Yoo YA, Kang MH, Lee HJ, Kim BH, Park JK, Kim HK, Kim JS, Oh SC (2011) Sonic hedgehog pathway promotes metastasis and lymphangiogenesis via activation of Akt, EMT, and MMP-9 pathway in gastric cancer. Cancer Res 71:7061–7070. doi:10.1158/0008-5472.CAN-11-1338

    PubMed  CAS  Google Scholar 

  • Yuan W, Chen Z, Wu S, Ge J, Chang S, Wang X, Chen J (2009) Expression of EphA2 and E-cadherin in gastric cancer: correlated with tumor progression and lymphogenous metastasis. Pathol Oncol Res 15:473–478. doi:10.1007/s12253-008-9132-y

    PubMed  CAS  Google Scholar 

  • Zahl PH, Maehlen J, Welch HG (2008) The natural history of invasive breast cancers detected by screening mammography. Arch Intern Med 168:2311–2316. doi:10.1001/archinte.168.21.2311

    PubMed  Google Scholar 

  • Zahl PH, Gotzsche PC, Maehlen J (2011) Natural history of breast cancers detected in the Swedish mammography screening programme: a cohort study. Lancet Oncol 12:1118–1124. doi:10.1016/S1470-2045(11)70250-9

    PubMed  Google Scholar 

  • Zhang Y, Yan W, Chen X (2011) Mutant p53 disrupts MCF-10A cell polarity in three-dimensional culture via epithelial-to-mesenchymal transitions. J Biol Chem 286:16218–16228. doi:10.1074/jbc.M110.214585

    PubMed  CAS  Google Scholar 

  • Zhou J, Li K, Gu Y, Feng B, Ren G, Zhang L, Wang Y, Nie Y, Fan D (2011) Transcriptional up-­regulation of RhoE by hypoxia-inducible factor (HIF)-1 promotes epithelial to mesenchymal transition of gastric cancer cells during hypoxia. Biochem Biophys Res Commun 415:348–354. doi:10.1016/j.bbrc.2011.10.065

    PubMed  CAS  Google Scholar 

  • Zou D, Yoon HS, Anjomshoaa A, Perez D, Fukuzawa R, Guilford P, Humar B (2009) Increased levels of active c-Src distinguish invasive from in situ lobular lesions. Breast Cancer Res 11:R45. doi:10.1186/bcr2332

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parry Guilford Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Guilford, P., Humar, B. (2013). Molecular Mechanisms of Hereditary Diffuse Gastric Cancer Initiation and Progression. In: Corso, G., Roviello, F. (eds) Spotlight on Familial and Hereditary Gastric Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6570-2_6

Download citation

Publish with us

Policies and ethics