Skip to main content

Dynamical Simulation and Calculation of the Load Factor of Spur Gears with Indexing Errors and Profile Modifications for Optimal Gear Design

  • Conference paper
  • First Online:
Power Transmissions

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 13))

Abstract

The exact geometry of tooth meshing is incorporated into a dynamical non-linear model of the considered gear system, in consideration of the effect of pitch errors, tooth separation, DOF-coupling, and profile modifications. Various possible combinations of error distributions and profile corrections are applied to the gear model, which is simulated dynamically to calculate the load factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\( \theta_{\text{i}} \) :

Angular position of gear i (additional subscripts: n, ref defined in the text)

\( {\mathbf{s}}_{\text{i}} \) :

Deflection vector of DOF i

\( \theta_{\text{s}} \) :

Slip angle

\( \updelta_{\text{k}} \) :

Angular interference of tooth pair k

\( {\text{i}}_{12} \) :

Transmission ratio

\( {\text{I}}_{12} \) :

Directional index (equal to 1 for external gears, −1 for internal gears)

\( {\mathbf{r}}_{\text{i}} , \) \( {\mathbf{r}}_{\text{i,k}} \) :

Position vector of a contact point in relation to centre of gear i (the optional k index refers to a specific tooth pair)

\( {\mathbf{f}}_{\text{i}} \) :

Vector function of tooth profile of gear i

\( {\mathbf{a}}_{12} \) :

Centre distance vector

\( {\mathbf{R}} \) :

Generic rotary translation matrix

\( {\hat{\mathbf{x}}}_{\text{i}} \) :

Unitary vector along the \( {\text{x}}_{\text{i}} \) direction, where i=1, 2, 3 (in Cartesian coordinates)

\( {\mathbf{n}}_{\text{k}} \) :

Normal unitary vector at contact point of tooth pair k

\( {\mathbf{m}}_{\text{k}} \) :

Unitary vector along the direction of instant sliding velocity of tooth pair k

\( \sigma^{{({\text{j}})}} ,\,\sigma_{\text{o}} ,\,\sigma_{\text{or}} \) :

Anticipated indexing error of tooth j, maximum anticipated indexing error, maximum real indexing error

\( {\text{U}}\sigma ,\,{\text{L}}\sigma \) :

Upper and lower tolerance for the maximum indexing error \( \sigma_{\text{o}} \)

\( {\text{m,m}}_{\text{r}} \) :

Prescribed modification (equal to maximum slip angle \( \theta_{\text{s}} \)), actual modification

\( {\text{Um,\,Lm}} \) :

Upper and lower tolerance for the modification \( {\text{m}} \)

\( {\text{k}}_{\text{k}} \) :

Instant stiffness of individual tooth pair k

\( {\text{c}}_{\text{hyst}} \) :

Damping coefficient due to tooth material hysterisis

\( {\text{f}}_{\text{k}} \) :

Instant friction coefficient of individual tooth pair k

\( {\text{F}}_{\text{k,elast}} \) :

Elastic component of the contact force of tooth pair k

\( {\mathbf{F}}_{\text{k,hyst}} \) :

Hysteretic component of the contact force of tooth pair k

\( {\mathbf{F}}_{\text{k,frict}} \) :

Frictional component of the contact force of tooth pair k

\( {\mathbf{M}}_{\text{i}} \) :

Mass matrix of rotating element i

\( {\mathbf{C}}_{\text{i}} \) :

Damping coefficient for bending of shaft i due to hysterisis

\( {\mathbf{K}}_{\text{i}} \) :

Lumped bending stiffness matrix of DOF i (shaft with elastic supports: bearings/ housing)

\( {\text{J}}_{\text{i}} \) :

Mass moment of inertia of rotating element i

\( {\text{D}}_{\text{i}} \) :

Damping coefficient related to rotation of DOF i (i.e. windage)

\( {\text{E}}_{{{\text{i}} - {\text{j}}}} \) :

Damping coefficient for torsion of shaft segment i − j due to hysterisis

\( {\text{G}}_{{{\text{i}} - {\text{j}}}} \) :

Torsional stiffness of shaft segment i − j.

References

  • AGMA 109.16 (1965) Profile and longitudinal corrections on involute gears. AGMA, 1965

    Google Scholar 

  • AGMA 170.01 (1976) Design guide for vehicle spur and helical gears. AGMA, 1976

    Google Scholar 

  • Andersson A, Vedmar L (2003) A dynamic model to determine vibrations in involute helical gears. J Sound Vib 206:195–212

    Article  Google Scholar 

  • Casuba R, Evans JW (1981) An extended model for determining dynamic loads in spur gearing. ASME J Mech Des 103:398–409

    Article  Google Scholar 

  • Cornell RW (1981) Compliance and stress sensitivity of spur gear teeth. ASME J Mech Des 103:447–459

    Article  Google Scholar 

  • Dowling NE (1998) Mechanical behavior of materials, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Dudley DW (1984) Handbook of practical gear design. McGraw-Hill, New York

    Google Scholar 

  • Litvin FL (1994) Gear geometry and applied theory. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Maag Taschenbuch, Maag Zahnräder AG (1985) Zürich

    Google Scholar 

  • Munro RG (1988) Data item on profile and lead correction. BGA Technical Publications, Leicester

    Google Scholar 

  • Muthukumar R, Raghavan MR (1987) Estimation of gear tooth deflection by the finite element method. Mech Mach Theory 22:177–181

    Article  Google Scholar 

  • Niemann G, Winter H (1983) Maschinenelemente Band II. Springer, Berlin

    Book  Google Scholar 

  • Seol IH, Kim DH (1998) The kinematic and dynamic analysis of crowned spur gear drive. Comput Methods Appl Mech Eng 167:109–118

    Article  MATH  Google Scholar 

  • Spitas CA, Costopoulos ThN, Spitas VA (2002) Calculation of transmission errors, actual path of contact and actual contact ratio of non-conjugate gears. VDI-Berichte 1665:981–994

    Google Scholar 

  • Timoshenko S, Goodier J (1970) Theory of elasticity, 3rd edn. McGraw-Hill, New York

    MATH  Google Scholar 

  • Townsend DP (1992) Dudley’s gear handbook. The design, manufacture and application of gears (2nd edn). McGraw-Hill, New York

    Google Scholar 

  • Tsai M-H, Tsai Y-C (1997) A method for calculating static transmission errors of plastic spur gears using FEM evaluation. Finite Elem Anal Des 27:345–357

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Spitas, C., Spitas, V., Rajabalinejad, M. (2013). Dynamical Simulation and Calculation of the Load Factor of Spur Gears with Indexing Errors and Profile Modifications for Optimal Gear Design. In: Dobre, G. (eds) Power Transmissions. Mechanisms and Machine Science, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6558-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6558-0_13

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6557-3

  • Online ISBN: 978-94-007-6558-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics