Skip to main content

X-Ray Crystallography of Viruses

  • Chapter
  • First Online:
Structure and Physics of Viruses

Part of the book series: Subcellular Biochemistry ((SCBI,volume 68))

Abstract

For about 30 years X-ray crystallography has been by far the most powerful approach for determining virus structures at close to atomic resolutions. Information provided by these studies has deeply and extensively enriched and shaped our vision of the virus world. In turn, the ever increasing complexity and size of the virus structures being investigated have constituted a major driving force for methodological and conceptual developments in X-ray macromolecular crystallography. Landmarks of new virus structures determinations, such as the ones from the first animal viruses or from the first membrane-containing viruses, have often been associated to methodological breakthroughs in X-ray crystallography. In this chapter we present the common ground of proteins and virus crystallography with an emphasis in the peculiarities of virus studies. For example, the solution of the phase problem, a central issue in X-ray diffraction, has benefited enormously from the presence of non-crystallographic symmetry in virus crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ad:

Adenovirus

Ad5:

Adenovirus type 5

BTV:

Bluetongue virus

EM:

Electron microscopy

HRV2/HRV14:

Human rhinovirus serotypes 2 or 14

MR:

Molecular replacement

SBMV:

Southern bean mosaic virus

STNV:

Satellite tobacco necrosis virus

TBSV:

Tomato bushy stunt virus

VLP:

Virus-like particle

References and Further Reading

  1. Harrison SC, Olson AJ, Schutt CE, Winkler FK, Bricogne G (1978) Tomato bushy stunt virus at 2.9 A resolution. Nature 276:368–373

    Article  PubMed  CAS  Google Scholar 

  2. Abad-Zapatero C, Abdel-Meguid SS, Johnson JE, Leslie AG, Rayment I, Rossmann MG, Suck D, Tsukihara T (1980) Structure of southern bean mosaic virus at 2.8 A resolution. Nature 286:33–39

    Article  PubMed  CAS  Google Scholar 

  3. Liljas L, Unge T, Jones TA, Fridborg K, Lövgren S, Skoglund U, Strandberg B (1982) Structure of satellite tobacco necrosis virus at 3.0 A resolution. J Mol Biol 159:93–108

    Article  PubMed  CAS  Google Scholar 

  4. Verdaguer N, Blaas D, Fita I (2000) Structure of human rhinovirus serotype 2 (HRV2). J Mol Biol 300:1179–1194

    Article  PubMed  CAS  Google Scholar 

  5. Verdaguer N, Fita I, Reithmayer M, Moser R, Blaas D (2004) X-ray structure of a minor group human rhinovirus bound to a fragment of its cellular receptor protein. Nat Struct Mol Biol 11:429–434

    Article  PubMed  CAS  Google Scholar 

  6. Garriga D, Pickl-Herk A, Luque D, Wruss J, Castón JR, Blaas D, Verdaguer N (2012) Insights into minor group rhinovirus uncoating: the X-ray structure of the HRV2 empty capsid. PLoS Pathog 8:e1002473

    Article  PubMed  CAS  Google Scholar 

  7. Rossmann MG, Arnold E, Erickson JW et al (1985) Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317:145–153

    Article  PubMed  CAS  Google Scholar 

  8. Hogle JM, Chow M, Filman DJ (1985) Three-dimensional structure of poliovirus at 2.9 A resolution. Science 229:1358–1365

    Article  PubMed  CAS  Google Scholar 

  9. Grimes JM, Burroughs JN, Gouet P, Diprose JM, Malby R, Ziéntara S, Mertens PP, Stuart DI (1998) The atomic structure of the bluetongue virus core. Nature 395:470–478

    Article  PubMed  CAS  Google Scholar 

  10. Wilson IA, Skehel JJ, Wiley DC (1981) Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289:366–373

    Article  PubMed  CAS  Google Scholar 

  11. Roberts MM, White JL, Grütter MG, Burnett RM (1986) Three-dimensional structure of the adenovirus major coat protein hexon. Science 232:1148–1151

    Article  PubMed  CAS  Google Scholar 

  12. Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA (1998) Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393:648–659

    Article  PubMed  CAS  Google Scholar 

  13. Abrescia NG, Cockburn JJ, Grimes JM et al (2004) Insights into assembly from structural analysis of bacteriophage PRD1. Nature 432:68–74

    Article  PubMed  CAS  Google Scholar 

  14. Cockburn JJ, Abrescia NG, Grimes JM et al (2004) Membrane structure and interactions with protein and DNA in bacteriophage PRD1. Nature 2004(432):122–125

    Article  Google Scholar 

  15. Reddy VS, Natchiar SK, Stewart PL, Nemerow GR (2010) Crystal structure of human adenovirus at 3.5 A resolution. Science 329:1071–1075

    Article  PubMed  CAS  Google Scholar 

  16. Stehle T, Casasnovas JM (2009) Specificity switching in virus-receptor complexes. Curr Opin Struct Biol 19:181–188

    Article  PubMed  CAS  Google Scholar 

  17. Ganser-Pornillos BK, Yeager M, Sundquist WI (2008) The structural biology of HIV assembly. Curr Opin Struct Biol 18:203–217

    Article  PubMed  CAS  Google Scholar 

  18. Harrison SC (2005) Mechanism of membrane fusion by viral envelope proteins. Adv Virus Res 64:231–261

    Article  PubMed  CAS  Google Scholar 

  19. Mukhopadhyay S, Kuhn RJ, Rossmann MG (2005) A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3:13–22

    Article  PubMed  CAS  Google Scholar 

  20. Wang X, Peng W, Ren J et al (2012) A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nat Struct Mol Biol 19:424–429

    Article  PubMed  CAS  Google Scholar 

  21. Burzlaff H, Gruber B, Wolf PM et al (2002) Crystal lattices. In: Hahn T (ed) International tables for crystallography, vol A. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  22. Fry E, Grimes J, Stuart DI (1999) Virus crystallography. Mol Biotechnol 12:13–23

    Article  PubMed  CAS  Google Scholar 

  23. Fry E, Logan D, Stuart D (1996) Virus crystallography. In: Jones C, Mulloy B, Sanderson M (eds) Methods in molecular biology, vol 56: crystallographic methods and protocols. Humana Press, Totowa

    Google Scholar 

  24. Vijayachandran LS, Viola C, Garzoni F et al (2011) Robots, pipelines, polyproteins: enabling multiprotein expression in prokaryotic and eukaryotic cells. J Struct Biol 175:198–208

    Article  PubMed  CAS  Google Scholar 

  25. Chayen NE, Helliwell JR, Snell EH (2010) Macromolecular crystallization and crystal perfection. Oxford University Press, Oxford

    Book  Google Scholar 

  26. Newman J (2005) Expanding screening space through the use of alternative reservoirs in vapor-diffusion experiments. Acta Crystallogr D Biol Crystallogr 61:490–493

    Article  PubMed  Google Scholar 

  27. Chayen NE (2005) Protein crystallization: automation robotization and miniaturization. In: Sundstrum M, Norin M, Edwards A (eds) Structural genomics and high throughput structural biology. CRC Press/Taylor & Francis, Abingdon

    Google Scholar 

  28. Garman E (2003) ‘Cool’ crystals: macromolecular cryocrystallography and radiation damage. Curr Opin Struct Biol 13:545–551

    Article  PubMed  CAS  Google Scholar 

  29. Mueller M, Jenni S, Ban N (2007) Strategies for crystallization and structure determination of very large macromolecular assemblies. Curr Opin Struct Biol 17:572–579

    Article  PubMed  CAS  Google Scholar 

  30. Cockburn JJ, Bamford JK, Grimes JM, Bamford DH, Stuart DI (2003) Crystallization of the membrane-containing bacteriophage PRD1 in quartz capillaries by vapour diffusion. Acta Crystallogr D Biol Crystallogr 59:538–540

    Article  PubMed  CAS  Google Scholar 

  31. Axford D, Owen RL, Aishima J et al (2012) In situ macromolecular crystallography using microbeams. Acta Crystallogr D Biol Crystallogr 68:592–600

    Article  PubMed  CAS  Google Scholar 

  32. Reinisch KM, Nibert ML, Harrison SC (2000) Structure of the reovirus core at 3.6 Å resolution. Nature 404:960–967

    Article  PubMed  CAS  Google Scholar 

  33. Gouet P, Diprose JM, Grimes JM et al (1999) The highly ordered double-stranded RNA Genome of bluetongue virus revealed by crystallography. Cell 97:481–490

    Article  PubMed  CAS  Google Scholar 

  34. Taka J, Naitow H, Yoshimura M, Miyazaki N, Nakagawa A, Tsukihara T (2005) Ab initio crystal structure determination of spherical viruses that exhibit a centrosymmetric location in the unit cell. Acta Crystallogr D Biol Crystallogr 61:1099–1106

    Article  PubMed  Google Scholar 

  35. Baker TS, Johnson JE (1997) Principles of virus structure determination. In: Chiu W, Burnett RM, Garcea RL (eds) Structural biology of viruses. Oxford University Press, New York

    Google Scholar 

  36. Arnold E, Vriend G, Luo M, Griffith JP, Kamer G, Erickson JW, Johnson JE, Rossmann MG (1987) The structure determination of a common cold virus, human rhinovirus 14. Acta Crystallogr A43:346–361

    CAS  Google Scholar 

  37. Fry E, Acharya R, Stuart D (1993) Methods used in the structure determination of foot-and-mouth disease virus. Acta Crystallogr A49:45–55

    Google Scholar 

  38. Speir JA, Munshi S, Wang G, Baker TS, Johnson JE (1995) Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure 3:63–78

    Article  PubMed  CAS  Google Scholar 

  39. Wynne SA, Crowther RA, Leslie AGW (1999) The crystal structure of the human hepatitis B virus capsid. Mol Cell 3:771–780

    Article  PubMed  CAS  Google Scholar 

  40. Tsao J, Chapman MS, Wu H, Agbandje M, Keller W, Rossmann MG (1992) Structure determination of monoclinic canine parvovirus. Acta Crystallogr B48:75–88

    CAS  Google Scholar 

  41. Arnold E, Rossmann MG (1985) Effect of errors, redundancy and solvent content in the molecular replacement procedure for the structure determination of biological macromolecules. PNAS 83:5489–5493

    Article  Google Scholar 

  42. Rossmann MG (1989) The molecular replacement method. Acta Crystallogr A46:73–82

    Google Scholar 

  43. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  PubMed  Google Scholar 

  44. Brunger AT, Kuriyan J, Karplus M (1987) Crystallographic R factor refinement by molecular dynamics. Science 235:458–460

    Article  PubMed  CAS  Google Scholar 

  45. Murshudov GN, Skubak P, Lebedev AA et al (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D67:355–367

    Google Scholar 

  46. Garriga D, Querol-Audí J, Abaitua F et al (2006) The 2.6-Angstrom structure of infectious bursal disease virus-derived T=1 particles reveals new stabilizing elements of the virus capsid. J Virol 80:6895–6905

    Article  PubMed  CAS  Google Scholar 

  47. Nandhagopal N, Simpson AA, Gurnon JR et al (2002) The structure and evolution of the major capsid protein of a large, lipid-containing DNA virus. PNAS 99:14758–14763

    Article  PubMed  CAS  Google Scholar 

  48. Zhanga X, Xianga Y, Duniganb DD et al (2011) Three-dimensional structure and function of the Paramecium bursaria chlorella virus capsid. PNAS 108:14837–14842

    Article  Google Scholar 

  49. Abrescia NGA, Bamford DH, Grimes JM, Stuart DI (2012) Structure unifies the viral universe. Annu Rev Biochem 81:795–822

    Article  PubMed  CAS  Google Scholar 

  50. Raines KS, Salha S, Sanberg RL, Jiang H, Rodríguez JA, Fahimian B, Kapteyn HC, Du J, Miao J (2010) Three-dimensional structure determination from a single view. Nature 463:214–217

    Article  PubMed  CAS  Google Scholar 

  51. Seibert MM, Ekeberg T, Maia FR et al (2011) Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470:78–81

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Blow D (2002) Outline of crystallography for biologists. Oxford University Press, Oxford

    Google Scholar 

  • Rhodes G (2006) Crystallography made crystal clear, 3rd edn. Academic Press, London

    Google Scholar 

  • Rupp B (2010) Macromolecular crystallography. Garland Science, Taylor & Francis group, LLC, New York

    Google Scholar 

Download references

Acknowledgements

We would like to dedicate this chapter to Prof. M.G. Rossmann for his pioneering and continuous ground-breaking results in structural virology. This work was supported by grants from the Ministerio de Economia y Competitividad to N.V. (BIO2011-24333) and to I.F. (BFU2009-09268).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nuria Verdaguer or Ignacio Fita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Verdaguer, N., Garriga, D., Fita, I. (2013). X-Ray Crystallography of Viruses. In: Mateu, M. (eds) Structure and Physics of Viruses. Subcellular Biochemistry, vol 68. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6552-8_4

Download citation

Publish with us

Policies and ethics