Skip to main content

The Basic Architecture of Viruses

  • Chapter
  • First Online:
Structure and Physics of Viruses

Part of the book series: Subcellular Biochemistry ((SCBI,volume 68))

Abstract

Viruses are elegant macromolecular assemblies and constitute a paradigm of the economy of genomic resources; they must use simple general principles and a very limited number of viral components to complete their life cycles successfully. Viruses need only one or a few different capsid structural subunits to build an infectious particle, which is made possible because of two reasons: extensive use of symmetry and built-in conformational flexibility. Although viruses from the numerous virus families come in many shapes and sizes, two major types of symmetric assemblies are found: icosahedral and helical particles. The enormous diversity of virus structures might be derived from one or a limited number of basic schemes that has become more complex by consecutive incorporation of structural elements. The intrinsic structural polymorphism of the viral proteins and other observations indicate that capsids are dynamic structures. Study of virus structures is required to understand structure-function relationships in viruses, including those related to morphogenesis and antigenicity. These structural foundations can be extended to other macromolecular complexes that control many fundamental processes in biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Also especially recommended for further reading are references [5, 6, 9, 21, 30, 41] listed above.

Abbreviations

3D:

Three-dimensional

CP:

Capsid protein

cryo-EM:

Cryo-electron microscopy

cryo-ET:

Cryo-electron tomography

ds:

Double-stranded

ss:

Single-stranded

T:

Triangulation number

References and Further Reading

  1. Harrison SC (2007) Principles of virus structure. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Strauss SE (eds) Fields virology, vol 1. Lippincott Williams & Wilkins, Philadelphia, pp 59–98

    Google Scholar 

  2. Dokland T (2000) Freedom and restraint: themes in virus capsid assembly. Structure Fold Des 8:R157–R162

    Article  PubMed  CAS  Google Scholar 

  3. Flint SJ, Enquist LW, Krug RM, Racaniello VR, Skalka AM (2000) Principles of virology. Molecular biology, pathogenesis, and control. ASM Press, Washington, DC

    Google Scholar 

  4. Cann AJ (2012) Principles of molecular virology. Elsevier, Amsterdam

    Google Scholar 

  5. Baker TS, Olson NH, Fuller SD (1999) Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol Mol Biol Rev 63:862–922

    PubMed  CAS  Google Scholar 

  6. Prasad BV, Schmid MF (2012) Principles of virus structural organization. Adv Exp Med Biol 726:17–47

    Article  PubMed  CAS  Google Scholar 

  7. Hendrix RW, Johnson JE (2012) Bacteriophage HK97 capsid assembly and maturation. Adv Exp Med Biol 726:351–363

    Article  PubMed  CAS  Google Scholar 

  8. Chang J, Liu X, Rochat RH, Baker ML, Chiu W (2012) Reconstructing virus structures from nanometer to near-atomic resolutions with cryo-electron microscopy and tomography. Adv Exp Med Biol 726:49–90

    Article  PubMed  CAS  Google Scholar 

  9. Zhou ZH (2011) Atomic resolution cryo electron microscopy of macromolecular complexes. Adv Protein Chem Struct Biol 82:1–35

    Article  PubMed  CAS  Google Scholar 

  10. Harrison SC, Olson AJ, Schutt CE, Winkler FK, Bricogne G (1978) Tomato bushy stunt virus at 2.9 A resolution. Nature 276:368–373

    Article  PubMed  CAS  Google Scholar 

  11. Hogle JM, Chow M, Filman DJ (1985) Three-dimensional structure of poliovirus at 2.9 A resolution. Science 229:1358–1365

    Article  PubMed  CAS  Google Scholar 

  12. Rossmann MG, Arnold E, Erickson JW, Frankenberger EA, Griffith JP, Hecht HJ, Johnson JE, Kamer G, Luo M, Mosser AG et al (1985) Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317:145–153

    Article  PubMed  CAS  Google Scholar 

  13. Rossmann M, Johnson J (1989) Icosahedral RNA virus structure. Annu Rev Biochem 58:533–573

    Article  PubMed  CAS  Google Scholar 

  14. Roberts MM, White JL, Grutter MG, Burnett RM (1986) Three-dimensional structure of the adenovirus major coat protein hexon. Science 232:1148–1151

    Article  PubMed  CAS  Google Scholar 

  15. Nandhagopal N, Simpson AA, Gurnon JR, Yan X, Baker TS, Graves MV, Van Etten JL, Rossmann MG (2002) The structure and evolution of the major capsid protein of a large, lipid-containing DNA virus. Proc Natl Acad Sci U S A 99:14758–14763

    Article  PubMed  CAS  Google Scholar 

  16. Abrescia NG, Cockburn JJ, Grimes JM, Sutton GC, Diprose JM, Butcher SJ, Fuller SD, San Martin C, Burnett RM, Stuart DI, Bamford DH, Bamford JK (2004) Insights into assembly from structural analysis of bacteriophage PRD1. Nature 432:68–74

    Article  PubMed  CAS  Google Scholar 

  17. Fu CY, Johnson JE (2012) Structure and cell biology of archaeal virus STIV. Curr Opin Virol 2:122–127

    Article  PubMed  CAS  Google Scholar 

  18. Lomonossoff GP, Johnson JE (1991) The synthesis and structure of comovirus capsids. Prog Biophys Mol Biol 55:107–137

    Article  PubMed  CAS  Google Scholar 

  19. Bahar MW, Graham SC, Stuart DI, Grimes JM (2011) Insights into the evolution of a complex virus from the crystal structure of vaccinia virus D13. Structure 19:1011–1020

    Article  PubMed  CAS  Google Scholar 

  20. Wikoff WR, Liljas L, Duda RL, Tsuruta H, Hendrix RW, Johnson JE (2000) Topologically linked protein rings in the bacteriophage HK97 capsid. Science 289:2129–2133

    Article  PubMed  CAS  Google Scholar 

  21. Veesler D, Johnson JE (2012) Virus maturation. Annu Rev Biophys 41:473–496

    Article  PubMed  CAS  Google Scholar 

  22. Zlotnick A (2005) Theoretical aspects of virus capsid assembly. J Mol Recognit 18:479–490

    Article  PubMed  CAS  Google Scholar 

  23. Johnson JE (2008) Multi-disciplinary studies of viruses: the role of structure in shaping the questions and answers. J Struct Biol 163:246–253

    Article  PubMed  CAS  Google Scholar 

  24. Crick FH, Watson JD (1956) Structure of small viruses. Nature 177:473–475

    Article  PubMed  CAS  Google Scholar 

  25. Caspar DLD, Klug A (1962) Physical principles in the construction of regular viruses. Cold Spring Harbor Symp Quant Biol 27:1–24

    Article  PubMed  CAS  Google Scholar 

  26. Liljas L (1986) The structure of spherical viruses. Prog Biophys Mol Biol 48:1–36

    Article  PubMed  CAS  Google Scholar 

  27. Johnson JE, Speir JA (1997) Quasi-equivalent viruses: a paradigm for protein assemblies. J Mol Biol 269:665–675

    Article  PubMed  CAS  Google Scholar 

  28. Johnson JE (1996) Functional implications of protein-protein interactions in icosahedral viruses. Proc Natl Acad Sci USA 93:27–33

    Article  PubMed  CAS  Google Scholar 

  29. Chen DH, Baker ML, Hryc CF, DiMaio F, Jakana J, Wu W, Dougherty M, Haase-Pettingell C, Schmid MF, Jiang W, Baker D, King JA, Chiu W (2011) Structural basis for scaffolding-mediated assembly and maturation of a dsDNA virus. Proc Natl Acad Sci USA 108:1355–1360

    Article  PubMed  CAS  Google Scholar 

  30. Steven A, Trus B, Booy F, Cheng N, Zlotnick A, Castón J, Conway J (1997) The making and breaking of symmetry in virus capsid assembly: glimpses of capsid biology from cryoelectron microscopy. FASEB J 11:733–742

    PubMed  CAS  Google Scholar 

  31. Zhang W, Olson NH, Baker TS, Faulkner L, Agbandje-McKenna M, Boulton MI, Davies JW, McKenna R (2001) Structure of the Maize streak virus geminate particle. Virology 279:471–477

    Article  PubMed  CAS  Google Scholar 

  32. Zlotnick A, Cheng N, Conway JF, Booy FP, Steven AC, Stahl SJ, Wingfield PT (1996) Dimorphism of hepatitis B virus capsids is strongly influenced by the C-terminus of the capsid protein. Biochemistry 35:7412–7421

    Article  PubMed  CAS  Google Scholar 

  33. Rayment I, Baker TS, Caspar DL, Murakami WT (1982) Polyoma virus capsid structure at 22.5 A resolution. Nature 295:110–115

    Article  PubMed  CAS  Google Scholar 

  34. Liddington RC, Yan Y, Moulai J, Sahli R, Benjamin TL, Harrison SC (1991) Structure of simian virus 40 at 3.8-A resolution. Nature 354:278–284

    Article  PubMed  CAS  Google Scholar 

  35. Grimes JM, Burroughs JN, Gouet P, Diprose JM, Malby R, Zientara S, Mertens PP, Stuart DI (1998) The atomic structure of the Bluetongue virus core. Nature 395:470–478

    Article  PubMed  CAS  Google Scholar 

  36. Reinisch KM, Nibert ML, Harrison SC (2000) Structure of the Reovirus core at 3.6 Å resolution. Nature 404:960–967

    Article  PubMed  CAS  Google Scholar 

  37. Naitow H, Tang J, Canady M, Wickner RB, Johnson JE (2002) L-A virus at 3.4 a resolution reveals particle architecture and mRNA decapping mechanism. Nat Struct Biol 9:725–728

    Article  PubMed  CAS  Google Scholar 

  38. Luque D, Gonzalez JM, Garriga D, Ghabrial SA, Havens WM, Trus B, Verdaguer N, Carrascosa JL, Caston JR (2010) The T = 1 capsid protein of penicillium chrysogenum virus is formed by a repeated helix-rich core indicative of gene duplication. J Virol 84:7256–7266

    Article  PubMed  CAS  Google Scholar 

  39. Bamford DH, Grimes JM, Stuart DI (2005) What does structure tell us about virus evolution? Curr Opin Struct Biol 15:655–663

    Article  PubMed  CAS  Google Scholar 

  40. Baker ML, Jiang W, Rixon FJ, Chiu W (2005) Common ancestry of herpesviruses and tailed DNA bacteriophages. J Virol 79:14967–14970

    Article  PubMed  CAS  Google Scholar 

  41. Abrescia NG, Bamford DH, Grimes JM, Stuart DI (2012) Structure unifies the viral universe. Annu Rev Biochem 81:795–822

    Article  PubMed  CAS  Google Scholar 

  42. Pesavento JB, Crawford SE, Estes MK, Prasad BV (2006) Rotavirus proteins: structure and assembly. Curr Top Microbiol Immunol 309:189–219

    Article  PubMed  CAS  Google Scholar 

  43. Coulibaly F, Chevalier C, Gutsche I, Pous J, Navaza J, Bressanelli S, Delmas B, Rey FA (2005) The birnavirus crystal structure reveals structural relationships among icosahedral viruses. Cell 120:761–772

    Article  PubMed  CAS  Google Scholar 

  44. Saugar I, Luque D, Ona A, Rodriguez JF, Carrascosa JL, Trus BL, Caston JR (2005) Structural polymorphism of the major capsid protein of a double-stranded RNA virus: an amphipathic alpha helix as a molecular switch. Structure 13:1007–1017

    Article  PubMed  CAS  Google Scholar 

  45. Luque D, Saugar I, Rodriguez JF, Verdaguer N, Garriga D, Martin CS, Velazquez-Muriel JA, Trus BL, Carrascosa JL, Caston JR (2007) Infectious bursal disease virus capsid assembly and maturation by structural rearrangements of a transient molecular switch. J Virol 81:6869–6878

    Article  PubMed  CAS  Google Scholar 

  46. Irigoyen N, Caston JR, Rodriguez JF (2012) Host proteolytic activity is necessary for infectious bursal disease virus capsid protein assembly. J Biol Chem 287:24473–24482

    Article  PubMed  CAS  Google Scholar 

  47. Yan X, Yu Z, Zhang P, Battisti AJ, Holdaway HA, Chipman PR, Bajaj C, Bergoin M, Rossmann MG, Baker TS (2009) The capsid proteins of a large, icosahedral dsDNA virus. J Mol Biol 385:1287–1299

    Article  PubMed  CAS  Google Scholar 

  48. Zhang X, Xiang Y, Dunigan DD, Klose T, Chipman PR, Van Etten JL, Rossmann MG (2011) Three-dimensional structure and function of the Paramecium bursaria chlorella virus capsid. Proc Natl Acad Sci U S A 108:14837–14842

    Article  PubMed  CAS  Google Scholar 

  49. Yan X, Chipman PR, Castberg T, Bratbak G, Baker TS (2005) The marine algal virus PpV01 has an icosahedral capsid with T = 219 quasisymmetry. J Virol 79:9236–9243

    Article  PubMed  CAS  Google Scholar 

  50. Xiao C, Kuznetsov YG, Sun S, Hafenstein SL, Kostyuchenko VA, Chipman PR, Suzan-Monti M, Raoult D, McPherson A, Rossmann MG (2009) Structural studies of the giant mimivirus. PLoS Biol 7:e92

    Article  PubMed  Google Scholar 

  51. Tao Y, Olson NH, Xu W, Anderson DL, Rossmann MG, Baker TS (1998) Assembly of a tailed bacterial virus and its genome release studied in three dimensions. Cell 95:431–437

    Article  PubMed  CAS  Google Scholar 

  52. Fokine A, Chipman PR, Leiman PG, Mesyanzhinov VV, Rao VB, Rossmann MG (2004) Molecular architecture of the prolate head of bacteriophage T4. Proc Natl Acad Sci U S A 101:6003–6008

    Article  PubMed  CAS  Google Scholar 

  53. Luque A, Reguera D (2010) The structure of elongated viral capsids. Biophys J 98:2993–3003

    Article  PubMed  CAS  Google Scholar 

  54. Stubbs G, Kendall A (2012) Helical viruses. Adv Exp Med Biol 726:631–658

    Article  PubMed  CAS  Google Scholar 

  55. Zhang R, Hryc CF, Cong Y, Liu X, Jakana J, Gorchakov R, Baker ML, Weaver SC, Chiu W (2011) 4.4 A cryo-EM structure of an enveloped alphavirus Venezuelan equine encephalitis virus. EMBO J 30:3854–3863

    Article  PubMed  CAS  Google Scholar 

  56. Mukhopadhyay S, Kuhn RJ, Rossmann MG (2005) A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3:13–22

    Article  PubMed  CAS  Google Scholar 

  57. Ganser-Pornillos BK, Yeager M, Pornillos O (2012) Assembly and architecture of HIV. Adv Exp Med Biol 726:441–465

    Article  PubMed  CAS  Google Scholar 

  58. Castón JR, Trus BL, Booy FP, Wickner RB, Wall JS, Steven AC (1997) Structure of L-A virus: a specialized compartment for the transcription and replication of double-stranded RNA. J Cell Biol 138:975–985

    Article  PubMed  Google Scholar 

  59. Luque D, Gonzalez JM, Gomez-Blanco J, Marabini R, Chichon J, Mena I, Angulo I, Carrascosa JL, Verdaguer N, Trus BL, Barcena J, Caston JR (2012) Epitope insertion at the N-terminal molecular switch of the rabbit hemorrhagic disease virus T = 3 capsid protein leads to larger T = 4 capsids. J Virol 86:6470–6480

    Article  PubMed  CAS  Google Scholar 

  60. Castón JR, Martínez-Torrecuadrada JL, Maraver A, Lombardo E, Rodríguez JF, Casal JI, Carrascosa JL (2001) C terminus of infectious bursal disease virus major capsid protein VP2 is involved in definition of the T number for capsid assembly. J Virol 75:10815–10828

    Article  PubMed  Google Scholar 

  61. Agirrezabala X, Martin-Benito J, Caston JR, Miranda R, Valpuesta JM, Carrascosa JL (2005) Maturation of phage T7 involves structural modification of both shell and inner core components. EMBO J 24:3820–3829

    Article  PubMed  CAS  Google Scholar 

  62. Jose J, Snyder JE, Kuhn RJ (2009) A structural and functional perspective of alphavirus replication and assembly. Future Microbiol 4:837–856

    Article  PubMed  CAS  Google Scholar 

  63. Buck CB, Trus BL (2012) The papillomavirus virion: a machine built to hide molecular Achilles’ heels. Adv Exp Med Biol 726:403–422

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Chiu W, Burnnett RM, Garcea RL (eds) (1997) Structural virology of viruses. Oxford University Press, New York

    Google Scholar 

  • Chiu W, Johnson JE (eds) (2003) Virus structure. Advances in protein chemistry, vol 64. Academic Press, Amsterdam

    Google Scholar 

  • Mahy BWJ, van Regenmortel MHV (eds) (2008) Encyclopedia of virology. Elsevier, Amsterdam

    Google Scholar 

  • Patton JT (ed) (2008) Segmented double-stranded RNA viruses, structure and molecular biology. Caister Academic Press, Norfolk

    Google Scholar 

  • Rossmann MG, Rao VB (eds) (2012) Viral molecular machines. Adv Exp Med Biol, vol 726. Springer, New York

    Google Scholar 

Download references

Acknowledgements

We thank Daniel Luque for preparing several figures used in this chapter and Catherine Mark for editorial help. This work was supported by grants BFU2011-25902 (to JRC) and BFU2011-29038 (to JLC) from the Spanish Ministry of Science and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José R. Castón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Castón, J.R., Carrascosa, J.L. (2013). The Basic Architecture of Viruses. In: Mateu, M. (eds) Structure and Physics of Viruses. Subcellular Biochemistry, vol 68. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6552-8_2

Download citation

Publish with us

Policies and ethics