Skip to main content

Mechanical Properties of Viruses

  • Chapter
  • First Online:
Structure and Physics of Viruses

Part of the book series: Subcellular Biochemistry ((SCBI,volume 68))

Abstract

Structural biology techniques have greatly contributed to unveil the relationships between structure, properties and functions of viruses. In recent years, classic structural approaches are being complemented by single-molecule techniques such as atomic force microscopy and optical tweezers to study physical properties and functions of viral particles that are not accessible to classic structural techniques. Among these features are mechanical properties such as stiffness, intrinsic elasticity, tensile strength and material fatigue. The field of virus mechanics is contributing to materials science by investigating some physical parameters of “soft” biological matter and biological nano-objects. Virus mechanics studies are also starting to unveil the biological implications of physical properties of viruses. Growing evidence indicate that viruses are subjected to internal and external forces, and that they may have adapted to withstand and even use those forces. This chapter describes what is known on the mechanical properties of virus particles, their structural determinants, and possible biological implications, of which several examples are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Also especially recommended for further reading are references [6, 44, 51, 52, 67] listed above.

Abbreviations

AFM:

Atomic force microscopy

CCMV:

Cowpea chlorotic mottle virus

ds:

Double-stranded

EM:

Electron microscopy

FEA:

Finite-element analysis

FZ:

Force vs. z-piezo displacement

HBV:

Hepatitis B virus

HIV-1:

Human immunodeficiency virus type 1

HSV-1:

Herpes simplex virus type 1

MLV:

Murine leukemia virus

MVM:

Minute virus of mice

NV:

Norovirus (Norwalk virus)

ss:

Single-stranded

vdW:

Van der Waals

References and Further Reading

  1. Shiroguchi K, Kinosita K (2007) Myosin V walks by lever action and brownian motion. Science 316:1208–1212

    Article  PubMed  CAS  Google Scholar 

  2. Moreno-Herrero F, de Jager M, Dekker NH, Kanaar R, Wyman C, Dekker C (2005) Mesoscale conformational changes in the DNA-repair complex Rad50/Mre11/Nbs1 upon binding DNA. Nature 437:440–443

    Article  PubMed  CAS  Google Scholar 

  3. Moody MF (1999) Geometry of phage head construction. J Mol Biol 293:401–433

    Article  PubMed  CAS  Google Scholar 

  4. Cordova A, Deserno M, Gelbart WM, Ben-Shaul A (2003) Osmotic shock and the strength of viral capsids. Biophys J 85:70–74

    Article  PubMed  CAS  Google Scholar 

  5. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  PubMed  Google Scholar 

  6. Ivanovska IL, de Pablo PJ, Ibarra B, Sgalari G, MacKintosh FC, Carrascosa JL, Schmidt CF, Wuite GJL (2004) Bacteriophage capsids: though nanoshells with complex elastic properties. Proc Natl Acad Sci USA 101:7600–7605

    Article  PubMed  CAS  Google Scholar 

  7. Gittes F, Schmidt CF (1998) Thermal noise limitations on micromechanical experiments. Eur Biophys J Biophys Lett 27:75–81

    Article  CAS  Google Scholar 

  8. Rief M, Oesterhelt F, Heymann B, Gaub HE (1997) Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275:1295–1297

    Article  PubMed  CAS  Google Scholar 

  9. Fisher TE, Carrión-Vázquez M, Oberhauser AF, Li H, Marszalek PE, Fernández JM (2000) Single molecule force spectroscopy of modular proteins in the nervous system. Neuron 27:435–446

    Article  PubMed  CAS  Google Scholar 

  10. Svoboda K, Schmidt CF, Schnapp BJ, Block SM (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature 365:721–727

    Article  PubMed  CAS  Google Scholar 

  11. Alcaraz J, Buscemi L, Grabulosa M, Trepat X, Fabry B, Farre R, Navajas D (2003) Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys J 84:2071–2079

    Article  PubMed  CAS  Google Scholar 

  12. de Pablo PJ, Schaap IAT, MacKintosh FC, Schmidt CF (2003) Deformation and collapse of microtubules on the nanometer scale. Phys Rev Lett 91:98101

    Article  Google Scholar 

  13. Smith DE, Tans SJ, Smith SB, Grimes S, Anderson DL, Bustamante C (2001) The bacteriophage φ29 portal motor can package DNA against a large internal force. Nature 413:748–752

    Article  PubMed  CAS  Google Scholar 

  14. Ortega-Esteban A, Horcas I, Hernando-Pérez M, Ares P, Pérez-Berná AJ, San Martín C, Carrascosa JL, de Pablo PJ, Gómez-Herrero J (2012) Minimizing tip-sample forces in jumping mode atomic force microscopy in liquid. Ultramicroscopy 114:56–61

    Article  PubMed  CAS  Google Scholar 

  15. Horcas I, Fernandez R, Gomez-Rodriguez JM, Colchero J, Gomez-Herrero J, Baro AM (2007) WSXMa software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78:013705

    Article  PubMed  CAS  Google Scholar 

  16. Sader JE, Chon JWM, Mulvaney P (1999) Calibration of rectangular atomic force microscope cantilevers. Rev Sci Instrum 70:3967–3969

    Article  CAS  Google Scholar 

  17. de Pablo PJ, Gomez-Navarro C, Martinez MT, Benito AM, Maser WK, Colchero J, Gomez-Herrero J, Baro AM (2002) Performing current versus voltage measurements of single-walled carbon nanotubes using scanning force microscopy. Appl Phys Lett 80:1462–1464

    Article  Google Scholar 

  18. Landau LD, Lifshizt E (1986) Theory of elasticity. Pergamon, London

    Google Scholar 

  19. Basak S, Raman A (2007) Dynamics of tapping mode atomic force microscopy in liquids: theory and experiments. Appl Phys Lett 91:064107, 064107-3

    Article  Google Scholar 

  20. Israelachvili J (2002) Intermolecular and surface forces. Academic Press, London

    Google Scholar 

  21. Klug WS, Bruinsma RF, Michel JP, Knobler CM, Ivanovska IL, Schmidt CF, Wuite GJL (2006) Failure of viral shells. Phys Rev Lett 97:228101

    Article  PubMed  Google Scholar 

  22. Vliegenthart GA, Gompper G (2006) Mechanical deformation of spherical viruses with icosahedral symmetry. Biophys J 91:834–841

    Article  PubMed  CAS  Google Scholar 

  23. Zink M, Grubmuller H (2009) Mechanical properties of the icosahedral shell of southern bean mosaic virusa molecular dynamics study. Biophys J 96:1350–1363

    Article  PubMed  CAS  Google Scholar 

  24. Ivanovska IL, Miranda R, Carrascosa JL, Wuite GJL, Schmidt CF (2011) Discrete fracture patterns of virus shells reveal mechanical building blocks. Proc Natl Acad Sci USA 108:12611–12616

    Article  PubMed  CAS  Google Scholar 

  25. Sokolnikoff IS (1983) Mathematical theory of elasticity. Kriger Pub Co, Florida

    Google Scholar 

  26. Greaves GN, Greer AL, Lakes RS, Rouxel T (2011) Poisson’s ratio and modern materials. Nat Mater 10:823–837

    Article  PubMed  CAS  Google Scholar 

  27. Helfer E, Harlepp S, Bourdieu L, Robert J, MacKintosh FC, Chatenay D (2001) Buckling of actin-coated membranes under application of a local force. Phys Rev Lett 87:088103

    Article  PubMed  CAS  Google Scholar 

  28. Niordson FI (1985) Shell theory. North Holland, Amsterdam

    Google Scholar 

  29. Hutton DV (2004) Fundamentals on finite element analysis. McGraw Hill, New York

    Google Scholar 

  30. Carrasco C, Carreira A, Schaap IAT, Serena PA, Gomez-Herrero J, Mateu MG, de Pablo PJ (2006) DNA-mediated anisotropic mechanical reinforcement of a virus. Proc Natl Acad Sci USA 103:13706–13711

    Article  PubMed  CAS  Google Scholar 

  31. Carrasco C, Luque A, Hernando-Pérez M, Miranda R, Carrascosa JL, Serena PA, de Ridder M, Raman A, Gómez-Herrero J, Schaap IAT, Reguera D, de Pablo PJ (2011) Built-in mechanical stress in viral shells. Biophys J 100:1100–1108

    Article  PubMed  CAS  Google Scholar 

  32. Schijve J (2009) Fatigue of structures and materials. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  33. Ortega-Esteban A, Pérez-Berná AJ, Menéndez-Conejero R, Flint SJ, San Martín C, de Pablo PJ (2013) Monitoring dynamics of human adenovirus disassembly induced by mechanical fatigue. Sci Rep 3:1434

    Google Scholar 

  34. Hernando-Pérez M, Miranda R, Aznar M, Carrascosa JL, Schaap IAT, Reguera D, de Pablo PJ (2012) Direct measurement of phage φ29 stiffness provides evidence of internal pressure. Small 8:2366–2370

    Article  PubMed  Google Scholar 

  35. Tao YZ, Olson NH, Xu W, Anderson DL, Rossmann MG, Baker TS (1998) Assembly of a tailed bacterial virus and its genome release studied in three dimensions. Cell 95:431–437

    Article  PubMed  CAS  Google Scholar 

  36. Roos WH, Radtke K, Kniesmeijer E, Geertsema H, Sodeik B, Wuite GJL (2009) Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids. Proc Natl Acad Sci USA 106:9673–9678

    Article  PubMed  CAS  Google Scholar 

  37. Gonzalez-Huici V, Salas M, Hermoso JM (2004) The push-pull mechanism of bacteriophage φ29 DNA injection. Mol Microbiol 52:529–540

    Article  PubMed  CAS  Google Scholar 

  38. Podgornik R, Leforestier A, Siber A, Livolant F (2011) Protein-DNA interactions determine the shapes of DNA toroids condensed in virus capsids. Biophys J 100:2209–2216

    Article  PubMed  Google Scholar 

  39. Purohit PK, Kondev J, Phillips R (2003) Mechanics of DNA packaging in viruses. Proc Natl Acad Sci USA 100:3173–3178

    Article  PubMed  CAS  Google Scholar 

  40. Zandi R, van der Schoot P, Reguera D, Kegel W, Reiss H (2006) Classical nucleation theory of virus capsids. Biophys J 90:1939–1948

    Article  PubMed  CAS  Google Scholar 

  41. Choi KH, Morais MC, Anderson DL, Rossman MG (2006) Determinants of bacteriophage φ29 head morphology. Structure 14:1723–1727

    Article  PubMed  CAS  Google Scholar 

  42. Dokland T (1999) Scaffolding proteins and their role in viral assembly. Cell Mol Life Sci 56:580–603

    Article  PubMed  CAS  Google Scholar 

  43. Zlotnick A (2003) Are weak protein-protein interactions the general rule in capsid assembly? Virology 315:269–274

    Article  PubMed  CAS  Google Scholar 

  44. Mateu MG (2012) Mechanical properties of viruses analyzed by atomic force microscopy: a virological perspective. Virus Res 168:1–22

    Article  PubMed  CAS  Google Scholar 

  45. Carrillo-Tripp M, Sheperd CM, Borelli IA, Sangita V, Lander G, Natarajan P, Johnson JE, Brooks CL III, Reddy VS (2009) VIPERdb2an enhanced and web API enabled relational database for structural virology. Nucleic Acid Res 37:D436–D442

    Article  PubMed  CAS  Google Scholar 

  46. Carrasco C, Castellanos M, de Pablo PJ, Mateu MG (2008) Manipulation of the mechanical properties of a virus by protein engineering. Proc Natl Acad Sci USA 105:4150–4155

    Article  PubMed  CAS  Google Scholar 

  47. Roos WH, Gertsman I, May ER, Brooks CL III, Johnson JE, Wuite GJL (2012) Mechanics of bacteriophage maturation. Proc Natl Acad Sci USA 109:2342–2347

    Article  PubMed  CAS  Google Scholar 

  48. Castellanos M, Pérez R, Carrasco C, Hernando-Pérez M, Gómez-Herrero J, de Pablo PJ, Mateu MG (2012) Mechanical elasticity as a physical signature of conformational dynamics in a virus particle. Proc Natl Acad Sci USA 109:12028–12033

    Article  PubMed  CAS  Google Scholar 

  49. Roos WH, Ivanovska IL, Evilevitch A, Wuite GJL (2007) Viral capsids: mechanical characteristics, genome packaging and delivery mechanisms. Cell Mol Life Sci 64:1484–1497

    Article  PubMed  CAS  Google Scholar 

  50. Wilts BD, Schaap IAT, Young M, Douglas T, Knobler CM, Schmidt CF (2010) Swelling and softening of the CCMV plant virus capsid in response to pH shifts. Biophys J 98:656a

    Article  Google Scholar 

  51. Roos WH, Wuite GJL (2009) Nanoindentation studies reveal material properties of viruses. Adv Mater 21:1187–1192

    Article  CAS  Google Scholar 

  52. Roos WH, Bruinsma R, Wuite GJL (2010) Physical Virology. Nature Phys 6:733–743

    Article  CAS  Google Scholar 

  53. Zandi R, Reguera D (2005) Mechanical properties of viral capsids. Phys Rev E 72:021917

    Article  Google Scholar 

  54. Baclayon M, Shoemaker GK, Uetrecht C, Crawford SE, Estes MK, Prasad BVV, Heck AJR, Wuite GJL, Roos WH (2011) Prestress strengthens the shell of Norwalk virus nanoparticles. Nano Lett 11:4865–4869

    Article  PubMed  CAS  Google Scholar 

  55. Michel JP, Ivanovska IL, Gibbons MM, Klug WS, Knobler CM, Wuite GJL, Schmidt CF (2006) Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proc Natl Acad Sci USA 103:6184–6189

    Article  PubMed  CAS  Google Scholar 

  56. Cuellar JL, Meinhoevel F, Hoehne M, Donath E (2010) Size and mechanical stability of norovirus capsids depend on pH: a nanoindentation study. J Gen Virol 91:2449–2456

    Article  PubMed  CAS  Google Scholar 

  57. Castellanos M, Pérez R, Carrillo PJP, de Pablo PJ, Mateu MG (2012) Mechanical disassembly of single virus particles reveals kinetic intermediates predicted by theory. Biophys J 102:2615–2624

    Article  PubMed  CAS  Google Scholar 

  58. Reddy VS, Johnson JE (2005) Structure-derived insights into virus assembly. Adv Virus Res 64:45–68

    Article  PubMed  CAS  Google Scholar 

  59. Singh S, Zlotnick A (2003) Observed hysteresis of virus capsid disassembly is implicit in kinetic models of assembly. J Biol Chem 278:18249–18255

    Article  PubMed  CAS  Google Scholar 

  60. Rapaport DC (2008) Role of reversibility in viral capsid growth: a paradigm for self-assembly. Phys Rev Lett 101:1861012008

    Google Scholar 

  61. Ivanovska I, Wuite G, Jonsson B, Evilevitch A (2007) Internal DNA pressure modifies stability of WT phage. Proc Natl Acad Sci USA 104:9603–9608

    Article  PubMed  CAS  Google Scholar 

  62. Evilevitch A, Roos WH, Ivanovska IL, Jeembaeva M, Jönsson B, Wuite GJL (2011) Effects of salt on internal DNA pressure and mechanical properties of phage capsids. J Mol Biol 405:18–23

    Article  PubMed  CAS  Google Scholar 

  63. Eghiaian F, Schaap IA, Skehel JJ, Veigel C, des Georges A (2009) The influenza virus mechanical properties are dominated by its lipid envelope. Biophys J 96:15a

    Article  Google Scholar 

  64. Li S, Eghiaian F, Sieben C, Herrmann A, Schaap IA (2011) Bending and puncturing the influenza virus envelope. Biophys J 100:637–645

    Article  PubMed  CAS  Google Scholar 

  65. Kol N, Gladnikoff M, Barlam D, Shneck RZ, Rein A, Rousso I (2006) Mechanical properties of murine leukemia virus particles: effect of maturation. Biophys J 91:767–774

    Article  PubMed  CAS  Google Scholar 

  66. Kol N, Shi Y, Tsvitov M, Barlam D, Shneck RZ, Kay MS, Rousso I (2007) A stiffness switch in human immunodeficiency virus. Biophys J 92:1777–1783

    Article  PubMed  CAS  Google Scholar 

  67. Gelbart WM, Knobler CM (2009) Pressurized viruses. Science 323:1682–1683

    Article  PubMed  CAS  Google Scholar 

  68. Reguera J, Grueso E, Carreira A, Sánchez-Martínez C, Almendral JM, Mateu MG (2005) Functional relevance of amino acid residues involved in interactions with ordered nucleic acid in a spherical virus. J Biol Chem 280:17969–17977

    Article  PubMed  CAS  Google Scholar 

  69. Reguera J, Carreira A, Riolobos L, Almendral JM, Mateu MG (2004) Role of interfacial amino acid residues in assembly, stability, and conformation of a spherical virus capsid. Proc Natl Acad Sci USA 101:2724–2729

    Article  PubMed  CAS  Google Scholar 

  70. Mateu MG (2011) Virus engineering: functionalization and stabilization. Prot Eng Des Sel 24:53–63

    Article  CAS  Google Scholar 

  71. Johnson JE (2003) Virus particle dynamics. Adv Protein Chem 64:197–218

    Article  PubMed  CAS  Google Scholar 

  72. Lander GC, Evilevitch A, Jeembaeva M, Potter CS, Carragher B, Johnson JE (2008) Bacteriophage lambda stabilization by auxiliary protein gpD: timing, location and mechanism of attachment determined by cryo-EM. Structure 16:1339–1406

    Article  Google Scholar 

  73. Falvo MR, Washburn S, Superfine R, Finch M, Brooks FP Jr, Chi V, Taylor RM II (1997) Manipulation of individual viruses: friction and mechanical properties. Biophys J 72:1396–1403

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Stockley PG, Twarock R (eds) (2010) Emerging topics in physical virology. Imperial College Press, London

    Google Scholar 

  • Roos WH (2011) How to perform a nanoindentation experiment on a virus. In: Peterman EJG, Wuite GJL (eds) Single molecule analysismethods and protocols, vol 783, Methods Mol Biol. Humana Press, Totowa, pp 251–264

    Chapter  Google Scholar 

  • Kurland NE, Drira Z, Yadavalli VK (2012) Measurement of nanomechanical properties of biomolecules using atomic force microscopy. Micron 43:116–128

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge J.L. Carrascosa, J. Gómez-Herrero, D. Reguera, C. San Martín and N. Verdaguer for collaboration on virus mechanics, advice and fruitful discussions; C. Carrasco, P.J.P. Carrillo, M. Castellanos, M. Hernando-Pérez, A. Llauró, A. Ortega-Esteban and R. Pérez for excellent work on virus mechanics; M.A. Fuertes and A. Rodríguez-Huete for great experimental assistance. M.A.F. kindly provided Fig. 18.6. Work in P.J.P.’s laboratory is funded by the Spanish Government (grants PIB2010US-00233 and FIS2011-29493). Work in M.G.M.’s laboratory is funded by the Spanish Government (grants BIO2009-10092 and BIO2012-37649) and Comunidad de Madrid (S-2009/MAT/1467), and by an institutional grant from Fundación Ramón Areces. M.G.M. is an associate member of the Institute for Biocomputation and Physics of Complex Systems, Zaragoza, Spain.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pedro J. de Pablo or Mauricio G. Mateu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

de Pablo, P.J., Mateu, M.G. (2013). Mechanical Properties of Viruses. In: Mateu, M. (eds) Structure and Physics of Viruses. Subcellular Biochemistry, vol 68. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6552-8_18

Download citation

Publish with us

Policies and ethics