Skip to main content

Assembly of Simple Icosahedral Viruses

  • Chapter
  • First Online:
Structure and Physics of Viruses

Part of the book series: Subcellular Biochemistry ((SCBI,volume 68))

Abstract

Icosahedral viruses exhibit elegant pathways of capsid assembly and maturation regulated by symmetry principles. Assembly is a dynamic process driven by consecutive and genetically programmed morphogenetic interactions between protein subunits. The non-symmetric capsid subunits are gathered by hydrophobic contacts and non-covalent interactions in assembly intermediates, which serve as blocks to build a symmetric capsid. In some cases, non-symmetric interactions among intermediates are involved in assembly, highlighting the remarkable capacity of capsid proteins to fold into demanding conformations compatible with a closed protein shell. In this chapter, the morphogenesis of structurally simple icosahedral viruses, including representative members of the parvoviruses, picornaviruses or polyomaviruses as paradigms, is described in some detail. Icosahedral virus assembly may occur in different subcellular compartments and involve a panoplia of cellular and viral factors, chaperones, and protein modifications that, in general, are still poorly characterized. Mechanisms of viral genome encapsidation may imply direct interactions between the genome and the assembly intermediates, or active packaging into a preformed empty capsid. High stability of intermediates and proteolytic cleavages during viral maturation usually contribute to the overall irreversible character of the assembly process. These and other simple icosahedral viruses were pioneer models to understand basic principles of virus assembly, continue to be leading subjects of morphogenetic analyses, and have inspired ongoing studies on the assembly of larger viruses and cellular and synthetic macromolecular complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAP:

assembly-activating protein

AAV:

adeno-associated virus

CBB:

capsid building block

CP:

capsid protein

CPV:

canine parvovirus

DBD:

DNA-binding domains

H1-PV:

parvovirus H1

hr-t:

host range-transforming

FPV:

feline parvovirus

MEV:

mink enteritis virus

MVM:

minute virus of mice

NLM:

nuclear localization motif

NLS:

nuclear localization sequence

NPC:

nuclear pore complex

PPV:

porcine parvovirus

SV40:

simian virus 40

VLP:

virus-like particle

VP:

viral protein

5x:

five-fold axis

3x:

three-fold axis

2x:

two-fold axis.

References and Further Reading

  1. Agbandje-McKenna M, Llamas-Saiz AL, Wang F, Tattersall P, Rossmann MG (1998) Functional implications of the structure of the murine parvovirus, minute virus of mice. Structure 6:1369–1381

    Article  PubMed  CAS  Google Scholar 

  2. Kontou M, Govindasamy L, Nam HJ, Bryant N, Llamas-Saiz AL, Foces-Foces C, Hernando E, Rubio MP, McKenna R, Almendral JM, Agbandje-McKenna M (2005) Structural determinants of tissue tropism and in vivo pathogenicity for the parvovirus minute virus of mice. J Virol 79:10931–10943

    Article  PubMed  CAS  Google Scholar 

  3. Rossmann MG, Arnold E, Erickson JW, Frankenberger EA, Griffith JP, Hecht HJ, Johnson JE, Kamer G, Luo M, Mosser AG, Ruecker RR (1985) Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 307:145–153

    Article  Google Scholar 

  4. Hogle JM, Chow M, Filman DJ (1985) Three-dimensional structure of poliovirus at 2.9 A resolution. Science 229:1358–1365

    Article  PubMed  CAS  Google Scholar 

  5. Liddington RC, Yan Y, Moulai J, Sahli R, Benjamin TL, Harrison SC (1991) Structure of simian virus 40 at 3.8-A resolution. Nature 28:278–284

    Article  Google Scholar 

  6. Natarajan P, Lander GC, Shepherd CM, Reddy VS, Brooks CL III, Johnson JE (2005) Exploring icosahedral virus structures with VIPER. Nat Rev Microbiol 3:809–817

    Article  PubMed  CAS  Google Scholar 

  7. Tsao J, Chapman MS, Agbandje M, Keller W, Smith K, Wu H, Luo M, Smith TJ, Rossmann MG, Compans RW, Parrish CR (1991) The three-dimensional structure of canine parvovirus and its functional implications. Science 251:1456–1464

    Article  PubMed  CAS  Google Scholar 

  8. Xie Q, Bu W, Bhatia S, Hare J, Somasundaram T, Azzi A, Chapman MS (2002) The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc Natl Acad Sci U S A 99:10405–10410

    Article  PubMed  CAS  Google Scholar 

  9. Gurda BL, Parent KN, Bladek H, Sinkovits RS, DiMattia MA, Rence C, Castro A, McKenna R, Olson N, Brown K, Baker TS, Agbandje-McKenna M (2010) Human bocavirus capsid structure: insights into the structural repertoire of the parvoviridae. J Virol 84:5880–5889

    Article  PubMed  CAS  Google Scholar 

  10. Kaufmann B, Simpson AA, Rossmann MG (2004) The structure of human parvovirus B19. Proc Natl Acad Sci U S A 101:11628–11633

    Article  PubMed  CAS  Google Scholar 

  11. Racaniello VR (2001) Picornaviridae: the viruses and their replication. In: Knipe D, Howley P (eds) Fields virology. Lippincot Williams & Sons, New York, pp 685–722

    Google Scholar 

  12. Tullis GE, Lisa RB, Pintel DJ (1993) The minor capsid protein VP1 of the autonomous parvovirus minute virus of mice is dispensable for encapsidation of progeny single-stranded DNA but is required for infectivity. J Virol 67:131–141

    PubMed  CAS  Google Scholar 

  13. Zadori Z, Szelei J, Lacoste MC, Li Y, Gariepy S, Raymond P, Allaire M, Nabi IR, Tijssen P (2001) A viral phospholipase A2 is required for parvovirus infectivity. Dev Cell 1:291–302

    Article  PubMed  CAS  Google Scholar 

  14. Lombardo E, Ramírez JC, García J, Almendral JM (2002) Complementary roles of multiple nuclear targeting signals in the capsid proteins of the parvovirus minute virus of mice during assembly and onset of infection. J Virol 76:7049–7059

    Article  PubMed  CAS  Google Scholar 

  15. Lombardo E, Ramirez JC, Agbandje-McKenna M, Almendral JM (2000) A beta-stranded motif drives capsid protein oligomers of the parvovirus minute virus of mice into the nucleus for viral assembly. J Virol 74:3804–3814

    Article  PubMed  CAS  Google Scholar 

  16. Riolobos L, Reguera J, Mateu MG, Almendral JM (2006) Nuclear transport of trimeric assembly intermediates exerts a morphogenetic control on the icosahedral parvovirus capsid. J Mol Biol 357:1026–1038

    Article  PubMed  CAS  Google Scholar 

  17. Chen XS, Stehle T, Harrison SC (1998) Interaction of polyomavirus internal protein VP2 with the major capsid protein VP1 and implications for participation of VP2 in viral entry. EMBO J 17:3233–3240

    Article  PubMed  CAS  Google Scholar 

  18. Reguera J, Carreira A, Riolobos L, Almendral JM, Mateu MG (2004) Role of interfacial amino acid residues in assembly, stability, and conformation of a spherical virus capsid. Proc Natl Acad Sci USA 101:2724–2729

    Article  PubMed  CAS  Google Scholar 

  19. Li PP, Nakanishi A, Clark SW, Kasamatsu H (2002) Formation of transitory intrachain and interchain disulfide bonds accompanies the folding and oligomerization of simian virus 40 Vp1 in the cytoplasm. Proc Natl Acad Sci USA 99:1353–1358

    Article  PubMed  CAS  Google Scholar 

  20. Raices M, D’Angelo MA (2012) Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions. Nat Rev Mol Cell Biol 13:687–699

    Article  PubMed  CAS  Google Scholar 

  21. Robbins J, Dilworth SM, Laskey RA, Dingwall C (1991) Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64:615–623

    Article  PubMed  CAS  Google Scholar 

  22. Mattaj IW, Englmeier L (1998) Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 67:265–306

    Article  PubMed  CAS  Google Scholar 

  23. Chang D, Haynes JI, Brady JN, Cosigli RA (1992) Identification of a nuclear localization sequence in the polyomavirus capsid protein VP2. Virology 191:978–983

    Article  PubMed  CAS  Google Scholar 

  24. Moreland RB, Garcea RL (1991) Characterization of a nuclear localization sequence in the polyomavirus capsid protein VP1. Virology 185:513–518

    Article  PubMed  CAS  Google Scholar 

  25. Ishii N, Minami N, Chen EY, Medina AL, Chico MM, Kasamatsu H (1996) Analysis of a nuclear localization signal of simian virus 40 major capsid protein Vp1. J Virol 70:1317–1322

    PubMed  CAS  Google Scholar 

  26. Ishii N, Nakanishi A, Yamada M, Macalalad MH, Kasamatsu H (1994) Functional complementation of nuclear targeting-detective mutants of simian virus 40 structural proteins. J Virol 68:8209–8216

    PubMed  CAS  Google Scholar 

  27. Vihinen-Ranta M, Wang D, Weichert WS, Parrish CR (2002) The VP1 N-terminal sequence of canine parvovirus affects nuclear transport of capsids and efficient cell infection. J Virol 76:1884–1891

    Article  PubMed  CAS  Google Scholar 

  28. Grieger JC, Snowdy S, Samulski RJ (2006) Separate basic region motifs within the adeno-associated virus capsid proteins are essential for infectivity and assembly. J Virol 80:5199–5210

    Article  PubMed  CAS  Google Scholar 

  29. Johnson JE (1996) Functional implications of protein-protein interactions in incosahedral viruses. Proc Natl Acad Sci USA 93:27–33

    Article  PubMed  CAS  Google Scholar 

  30. Hogle JM (2002) Poliovirus cell entry: common structural themes in viral cell entry. Annu Rev Microbiol 56:677–702

    Article  PubMed  CAS  Google Scholar 

  31. Sonntag F, Schmidt K, Kleinschmidt JA (2010) A viral assembly factor promotes AAV2 capsid formation in the nucleolus. Proc Natl Acad Sci U S A 107:10220–10225

    Article  PubMed  CAS  Google Scholar 

  32. Riolobos L, Valle N, Hernando E, Maroto B, Kann M, Almendral JM (2010) Viral oncolysis that targets Raf-1 signaling control of nuclear transport. J Virol 84:2090–2099

    Article  PubMed  CAS  Google Scholar 

  33. Caspar DLD, Klug A (1962) Physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol XXVII:1–24

    Article  Google Scholar 

  34. Salunke DM, Caspar DL, Garcea RL (1986) Self-assembly of purified polyomavirus capsid protein VP1. Cell 46:895–904

    Article  PubMed  CAS  Google Scholar 

  35. Hernando E, Llamas-Saiz AL, Foces-Foces C, McKenna R, Portman L, Agbandje-McKenna M, Almendral JM (2000) Biochemical and physical characterization of parvovirus minute virus of mice virus-like particles. Virology 267:299–309

    Article  PubMed  CAS  Google Scholar 

  36. Yuan W, Parrish CR (2001) Canine parvovirus capsid assembly and differences in mammalian and insect cells. Virology 279:546–557

    Article  PubMed  CAS  Google Scholar 

  37. Maroto B, Ramírez JC, Almendral JM (2000) Phosphorylation status of the parvovirus minute virus of mice particle: mapping and biological relevance of the major phosphorylation sites. J Virol 74:10892–10902

    Article  PubMed  CAS  Google Scholar 

  38. Garcea R, Benjamin T-L (1983) Host range of trasnforming gene of polyoma virus plays a role in virus assembly. Proc Natl Acad Sci USA 80:3613–3617

    Article  PubMed  CAS  Google Scholar 

  39. Garcea RL, Ballmer-Hofer K, Benjamin TL (1985) Virion assembly defect of polyomavirus hr-t mutants: underphosphorylation of major capsid protein VP1 before viral DNA encapsidation. J Virol 54:311–316

    PubMed  CAS  Google Scholar 

  40. Naumer M, Sonntag F, Schmidt K, Nieto K, Panke C, Davey NE, Popa-Wagner R, Kleinschmid JA (2012) Properties of the AAV assembly activating protein AAP. J Virol 86:13038–13048

    Article  PubMed  CAS  Google Scholar 

  41. Erickson KD, Bouchet-Marquis C, Heiser K, Szomolanyi-Tsuda E, Mishra R, Lamothe B, Hoenger A, Garcea RL (2012) Virion assembly factories in the nucleus of polyomavirus-infected cells. PLoS Pathog 8:1–15

    Article  Google Scholar 

  42. Li PP, Nakanishi A, Shum D, Sun PC, Salazar AM, Fernandez CF, Chan S-W, Kasamatsu H (2001) Simian virus 40 VP1 DNA-binding domain is functionally separable form the overlapping nuclear localization signal and is required for effective virion formation and full viability. J Virol 75:7321–7329

    Article  PubMed  CAS  Google Scholar 

  43. King JA, Dubielzig R, Grimm SW, Kleinschmidt JA (2001) DNA helicase-mediated packaging of adeno-associated virus type 2 genomes into preformed capsids. EMBO J 20:3282–3291

    Article  PubMed  CAS  Google Scholar 

  44. Plevka P, Hafenstein S, Li L, D’Abramo A, Cotmore SF, Rossmann MG, Tattersall P (2011) Structure of a packaging-defective mutant of minute virus of mice indicates that the genome is packaged via a pore at a 5-fold axis. J Virol 85:4822–4827

    Article  PubMed  CAS  Google Scholar 

  45. Li M, Garcea RL (1994) Identification of threonine phosphorylation sites on the polymavirus major capsid protein VP-1: relationship to the activity of middle T antigen. J Virol 68:320–327

    PubMed  CAS  Google Scholar 

Further Reading

  • Carrasco L, Almendral JM (eds) (2006) Virus patógenos. Hélice and Fundación BBVA, Madrid

    Google Scholar 

  • Flint SJ, Enquist LW, Racaniello VR, Skalka AM (2009) Principles of virology, 3rd edn. ASM Press, Washington, DC

    Google Scholar 

  • Kerr JK, Cotmore SF, Bloom ME, Linden RM, Parrish CR (eds) (2006) Parvoviruses. Hodder Arnold, London

    Google Scholar 

  • Harrison SC (2006) Principles of virus structure. In: Knipe DM, Howley PM (eds in chief) Fields virology, 5th edn. Lipincott Williams and Wilkins, Philadelphia, p 59–98

    Google Scholar 

  • Reddy VS, Johnson JE (2005) Structure-derived insights into virus assembly. Adv Virus Res 64:45–68

    Article  PubMed  CAS  Google Scholar 

  • Zlotnick A, Fane BA (1997) Mechanisms of icosahedral virus assembly. In: Agbandje-McKenna M, McKenna R (eds) Structural biology. RSC Publishing, Cambridge, pp 180–202

    Google Scholar 

Download references

Acknowledgements

I gratefully acknowledge the collaborative work of Mavis Agbandje-Mckenna (University of Florida) on solving parvovirus MVMp capsid structure to atomic resolution, of Mauricio G. Mateu (CBMSO, Universidad Autónoma de Madrid) on MVM assembly, and of Thomas L. Benjamin (Harvard Medical School, Massachussets) on aspects related to Polyomavirus assembly. The many inspiring conversations along the years with regular participants to the “Virus Assembly” FASEB meeting (Vermont Academy, USA), in particular with Peter Tattersall (Yale University, Connecticut), are also deeply acknowledged. This review stands from the experience gained by the author on Parvovirus assembly thanks to the enthusiastic work of Eva Hernando, Eleuterio Lombardo, Beatriz Maroto, Juan C. Ramírez, Laura Riolobos, and Noelia Valle. Support on figures design by Jon Gil-Ranedo and Jorge Sánchez is also acknowledged. Research in JM Almendral’s laboratory is currently supported by grant SAF 2011-29403 from the Spanish Ministerio de Ciencia e Innovación.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Almendral .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Almendral, J.M. (2013). Assembly of Simple Icosahedral Viruses. In: Mateu, M. (eds) Structure and Physics of Viruses. Subcellular Biochemistry, vol 68. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6552-8_10

Download citation

Publish with us

Policies and ethics