Skip to main content

Experimental Simulations of Possible Origins of Life: Conceptual and Practical Issues

  • Chapter
  • First Online:
Habitability of Other Planets and Satellites

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 28))

Abstract

The search for habitable planets and moons includes the search for locations where conditions are or were favorable for the origin of life. The geochemical and geophysical conditions that prevailed on Earth and Mars ∼4 billion years ago are approximately known and can be reasonably simulated in laboratory experiments. Such experiments may reveal general principles of chemical evolution that can be transferred to prebiotic chemical processes on other planets and moons. We discuss some concepts that may be useful in assessing the prebiotic plausibility of simulation experiments. One of these concepts is the clear distinction between primordial-soup (or “spontaneous”) and protometabolic abiotic synthesis of organic molecules. We also suggest that some well-established principles of evolutionary biology, such as intensification of function and cooption/preadaptation, can be beneficially applied to chemical evolution. Finally, technical aspects of simulation experiments are briefly discussed. Some examples are given of how prebiotic conditions are translated into experimental design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

5. References

  • Adams FC, Spergel DN (2005) Lithopanspermia in star-forming clusters. Astrobiology 5:497–514

    Article  PubMed  Google Scholar 

  • Brack A (2004) The chemistry of life’s origins. In: Seckbach J (ed) Origins: genesis, evolution and diversity of life. Kluwer Academic Publishers, Dordrecht, pp 59–73

    Google Scholar 

  • Brack A (2006) Clay minerals and the origin of life. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science. Elsevier, Amsterdam, pp 379–391

    Chapter  Google Scholar 

  • Cairns-Smith AG (1982) Genetic takeover and the mineral origins of life. Cambridge University Press, Cambridge, pp 93–99

    Google Scholar 

  • Cairns-Smith AG (1985) Seven clues to the origin of life. Cambridge University Press, Cambridge, pp 58–64

    Google Scholar 

  • Chyba CF, Phillips CB (2007) Europa. In: Sullivan WT III, Baross JA (eds) Planets and life: the emerging science of astrobiology. Cambridge University Press, Cambridge, pp 388–423

    Google Scholar 

  • Cleaves HJ, Chalmers JH, Lazcano A, Miller SL, Bada JL (2008) Prebiotic organic synthesis in neutral planetary atmospheres. In: Zaikowski L, Friedrich JM (eds) Chemical evolution across space & time. American Chemical Society, Washington, DC, pp 282–292

    Chapter  Google Scholar 

  • Dalai P, Strasdeit H (2010) The influence of various clay matrices on the thermal behavior of glycine. Orig Life Evol Biosph 40:520–521

    Google Scholar 

  • Dalko PI, Moisan L (2004) In the golden age of organocatalysis. Angew Chem Int Ed 43:5138–5175

    Article  CAS  Google Scholar 

  • Darwin C (1871) Letter to J. D. Hooker, 1 Feb 1871. See: http://www.darwinproject.ac.uk/entry-7471

  • Deamer DW, Fleischaker GR (1994) Origins of life: the central concepts. Jones and Bartlett, Boston, pp 137–155

    Google Scholar 

  • Deamer D, Weber AL (2010) Bioenergetics and life’s origins. Cold Spring Harb Perspect Biol 2:a004929

    Article  PubMed  Google Scholar 

  • de Duve C (1991) Blueprint for a cell: the nature and origin of life. Neil Patterson Publishers, Burlington, 112

    Google Scholar 

  • de Vera J-P, Möhlmann D, Butina F, Lorek A, Wernecke R, Ott S (2010) Survival potential and photosynthetic activity of lichens under Mars-like conditions: a laboratory study. Astrobiology 10:215–227

    Article  PubMed  Google Scholar 

  • Dyson FJ (1982) A model for the origin of life. J Mol Evol 18:344–350

    Article  PubMed  CAS  Google Scholar 

  • Dyson F (1999) Origins of life, 2nd edn. Cambridge University Press, Cambridge, pp 48–71

    Book  Google Scholar 

  • Ferris JP, Hill AR Jr, Liu R, Orgel LE (1996) Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381:59–61

    Article  PubMed  CAS  Google Scholar 

  • Futuyma DJ (1998) Evolutionary biology, 3rd ed. Sinauer Associates, Sunderland, pp 110f and 677–702

    Google Scholar 

  • Gladman BJ, Burns JA, Duncan M, Lee P, Levison HF (1996) The exchange of impact ejecta between terrestrial planets. Science 271:1387–1392

    Article  CAS  Google Scholar 

  • Haldane JBS (1929) The origin of life. Rationalist annual. Reproduced in Bernal JD (1967) The origin of life. Weidenfeld and Nicolson, London, pp 242–249. The paper can also be found in Deamer DW, Fleischaker GR (1994) Origins of life: the central concepts. Jones and Bartlett, Boston, pp 73–81

    Google Scholar 

  • Hall BK, Hallgrimsson B (2008) Strickberger’s evolution, 4th edn. Jones and Bartlett, Sudbury, pp 457–462

    Google Scholar 

  • Horneck G (2003) Could life travel across interplanetary space? Panspermia revisited. In: Rothschild LJ, Lister AM (eds) Evolution on planet earth: the impact of the physical environment. Academic Press, London, pp 109–127

    Chapter  Google Scholar 

  • Hutchison R (2004) Meteorites: a petrologic, chemical and isotopic synthesis. Cambridge University Press, Cambridge, pp 305–320

    Google Scholar 

  • Imai E-I, Honda H, Hatori K, Matsuno K (1999) Autocatalytic synthesis of oligoglycine in a simulated submarine hydrothermal system. Orig Life Evol Biosph 29:249–259

    Article  PubMed  CAS  Google Scholar 

  • Jacob F (1977) Evolution and tinkering. Science 196:1161–1166

    Article  PubMed  CAS  Google Scholar 

  • Kasting JF (1993) Earth’s early atmosphere. Science 259:920–926

    Article  PubMed  CAS  Google Scholar 

  • Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, New York, pp 287–341

    Google Scholar 

  • Klabunovskii EI (2012) Homochirality and its significance for biosphere and the origin of life theory. Russ J Org Chem 48:881–901

    Article  CAS  Google Scholar 

  • Larkum AWD (2006) The evolution of chlorophylls and photosynthesis. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Springer, Dordrecht, pp 261–282

    Chapter  Google Scholar 

  • Leman L, Orgel L, Ghadiri MR (2004) Carbonyl sulfide–mediated prebiotic formation of peptides. Science 306:283–286

    Article  PubMed  CAS  Google Scholar 

  • Levy M, Miller SL, Brinton K, Bada JL (2000) Prebiotic synthesis of adenine and amino acids under Europa-like conditions. Icarus 145:609–613

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Russell MJ (2003) On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc Lond B 358:59–85

    Article  CAS  Google Scholar 

  • Mason NJ (2009) Europlanet: international facilities for planetary scientists. Astron Geophys 50:3.32–3.33

    Article  Google Scholar 

  • Mayr E (1976) Evolution and the diversity of life. Belknap Press of Harvard University Press, Cambridge, MA, pp 88–113

    Google Scholar 

  • McSween HY Jr (1994) What we have learned about Mars from SNC meteorites. Meteoritics 29:757–779

    Article  CAS  Google Scholar 

  • Meierhenrich UJ, Filippi J-J, Meinert C, Vierling P, Dworkin JP (2010) On the origin of primitive cells: from nutrient intake to elongation of encapsulated nucleotides. Angew Chem Int Ed 49:3738–3750

    Article  CAS  Google Scholar 

  • Melosh HJ (2003) Exchange of meteorites (and life?) between stellar systems. Astrobiology 3:207–215

    Article  PubMed  CAS  Google Scholar 

  • Mileikowsky C, Cucinotta FA, Wilson JW, Gladman B, Horneck G, Lindegren L, Melosh J, Rickman H, Valtonen M, Zheng JQ (2000) Natural transfer of viable microbes in space. Icarus 145:391–427

    Article  PubMed  CAS  Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive Earth conditions. Science 117:528–529

    Article  PubMed  CAS  Google Scholar 

  • Miller SL (1955) Production of some organic compounds under possible primitive Earth conditions. J Am Chem Soc 77:2351–2361

    Article  CAS  Google Scholar 

  • Morowitz HJ, Heinz B, Deamer DW (1988) The chemical logic of a minimum protocell. Orig Life Evol Biosph 18:281–287

    Article  PubMed  CAS  Google Scholar 

  • National Academy of Sciences (1999) Science and creationism: a view from the National Academy of Sciences, 2nd edn. National Academy Press, Washington, DC

    Google Scholar 

  • Negron-Mendoza A, Ramos-Bernal S (2004) The role of clays in the origin of life. In: Seckbach J (ed) Origins: genesis, evolution and diversity of life. Kluwer Academic Publishers, Dordrecht, pp 181–194

    Google Scholar 

  • Nelson KE, Levy M, Miller SL (2000) Peptide nucleic acids rather than RNA may have been the first genetic molecule. Proc Natl Acad Sci USA 97:3868–3871

    Article  PubMed  CAS  Google Scholar 

  • Oparin AI (1924) Proiskhozhdenie Zhizny. Izd. Moskovshii Rabochii, Moscow. English translation in Bernal JD (1967) The origin of life. Weidenfeld and Nicolson, London, pp 199–234. A reprint of the English translation can be found in Deamer DW, Fleischaker GR (1994) Origins of life: the central concepts. Jones and Bartlett, Boston, pp 31–71

    Google Scholar 

  • Pizzarello S, Weber AL (2004) Prebiotic amino acids as asymmetric catalysts. Science 303:1151

    Article  PubMed  CAS  Google Scholar 

  • Pohorille A (2009) Early ancestors of existing cells. In: Rasmussen S, Bedau MA, Chen L, Deamer D, Krakauer DC, Packard NH, Stadler PF (eds) Protocells: bridging nonliving and living matter. MIT Press, Cambridge, MA, pp 563–581

    Google Scholar 

  • Pohorille A, Deamer D (2009) Self-assembly and function of primitive cell membranes. Res Microbiol 160:449–456

    Article  PubMed  CAS  Google Scholar 

  • Ponnamperuma C, Shimoyama A, Friebele E (1982) Clay and the origin of life. Orig Life 12:9–40

    Article  PubMed  CAS  Google Scholar 

  • Prum RO, Brush AH (2002) The evolutionary origin and diversification of feathers. Q Rev Biol 77:261–295

    Article  PubMed  Google Scholar 

  • Ridley M (2004) Evolution, 3rd ed. Blackwell, Malden, pp 255–291 and 427–430

    Google Scholar 

  • Rode BM (1999) Peptides and the origin of life. Peptides 20:773–786

    Article  PubMed  CAS  Google Scholar 

  • Saur J, Neubauer FM, Glassmeier K-H (2010) Induced magnetic fields in solar system bodies. Space Sci Rev 152:391–421

    Article  CAS  Google Scholar 

  • Schlesinger G, Miller SL (1983) Prebiotic synthesis in atmospheres containing CH4, CO, and CO2 – I. Amino acids. J Mol Evol 19:376–382

    Article  PubMed  CAS  Google Scholar 

  • Schmitt-Kopplin P, Gabelica Z, Gougeon RD, Fekete A, Kanawati B, Harir M, Gebefuegi I, Eckel G, Hertkorn N (2010) High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc Natl Acad Sci USA 107:2763–2768

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Makuch D, Irwin LN (2008) Life in the universe: expectations and constraints, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Segré D, Lancet D (2000) Composing life. EMBO Rep 1:217–222

    Article  PubMed  Google Scholar 

  • Segré D, Ben-Eli D, Lancet D (2000) Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc Natl Acad Sci USA 97:4112–4117

    Article  PubMed  Google Scholar 

  • Shapiro R (2006) Small molecule interactions were central to the origin of life. Q Rev Biol 81:105–125

    Article  PubMed  Google Scholar 

  • Shapiro R (2007) Origin of life: the crucial issues. In: Sullivan WT III, Baross JA (eds) Planets and life: the emerging science of astrobiology. Cambridge University Press, Cambridge, pp 132–153

    Google Scholar 

  • Shapiro R (2008) In: Brockman J (ed) Life: what a concept! Edge Foundation, New York, pp 84–112. Freely available under: http://www.edge.org/documents/life/Life.pdf

  • Shriver DF, Drezdzon MA (1986) The manipulation of air-sensitive compounds, 2nd edn. Wiley, New York

    Google Scholar 

  • Sohl F, Choukroun M, Kargel J, Kimura J, Pappalardo R, Vance S, Zolotov M (2010) Subsurface water oceans on icy satellites: chemical composition and exchange processes. Space Sci Rev 153:485–510

    Article  CAS  Google Scholar 

  • Strasdeit H (2010) Chemical evolution and early Earth’s and Mars’ environmental conditions. Palaeodiversity 3(Suppl):107–116. Freely available under: http://www.palaeodiversity.org/pdf/03Suppl/Supplement_Strasdeit.pdf

    Google Scholar 

  • Valtonen M, Nurmi P, Zheng J-Q, Cucinotta FA, Wilson JW, Horneck G, Lindegren L, Melosh J, Rickman H, Mileikowsky C (2009) Natural transfer of viable microbes in space from planets in extra-solar systems to a planet in our solar system and vice versa. Astrophys J 690:210–215

    Article  CAS  Google Scholar 

  • Voet D, Voet JG (2011) Biochemistry, 4th ed. Wiley, Hoboken, pp 32 and 839

    Google Scholar 

  • Wächtershäuser G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52:452–484

    PubMed  Google Scholar 

  • Wächtershäuser G (1992) Groundworks for an evolutionary biochemistry: the iron–sulfur world. Prog Biophys Mol Biol 58:85–201

    Article  PubMed  Google Scholar 

  • Ward MD (ed) (2004) Applications of coordination chemistry. In: McCleverty JA, Meyer TJ (eds) Comprehensive coordination chemistry II, vol 9. Elsevier, Oxford

    Google Scholar 

  • Woese C (1998) The universal ancestor. Proc Natl Acad Sci USA 95:6854–6859

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Strasdeit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Strasdeit, H., Fox, S. (2013). Experimental Simulations of Possible Origins of Life: Conceptual and Practical Issues. In: de Vera, JP., Seckbach, J. (eds) Habitability of Other Planets and Satellites. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6546-7_8

Download citation

Publish with us

Policies and ethics