Skip to main content

Bio-Relevant Microscopic Liquid Subsurface Water in Planetary Surfaces?

  • Chapter
  • First Online:
  • 2069 Accesses

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 28))

Abstract

A liquid is per definitionem able to flow and to continually deform under an applied force. This implies internal mobility, which is understood in terms of an organized relative motion of units like atoms, molecules or local (internally ordered) domains of them. It is this internal mobility, which makes liquids able to support internal transport of matter down to the atomic and molecular level. Life requires transport processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

10. References

  • Ackler HD, French RH, Chiang YM (1996) Comparisons of Hamaker constants for ceramic systems with intervening vacuum or water: from force laws and physical properties. J Colloid Interface Sci 179:460–469

    Article  CAS  Google Scholar 

  • Alabarse FG, Haines J, Cambon O, Levelut C, Bourgogne D, Haidoux A, Granier D, Coasne B (2012) Freezing of water confined at the nanoscale. Phys Rev Lett 109:035701. doi:10.1103/PhysRevLett.109.035701

    Article  PubMed  CAS  Google Scholar 

  • Alba-Simionesco C, Coasne B, Dosseh G, Dudziak G, Gubbins KE, Radhakrishnan R, Sliwinska-Bartkowiak M (2006) Effects of confinement on freezing and melting. J Phys Condens Matter 18:R15. doi:10.1088/0953-8984/18/6/R01

    Article  PubMed  CAS  Google Scholar 

  • Atkins PW (ed) (1998) Physical chemistry, 6th edn. Oxford University Press, Oxford. ISBN 0-19-850101-3

    Google Scholar 

  • Brass GW (1980) The stability of brines on Mars. Icarus 42:20–28

    Article  CAS  Google Scholar 

  • Chaplin MF (2000) A proposal for the structuring of water. Biophys Chem 83(3):211–221

    Article  PubMed  CAS  Google Scholar 

  • Chevrier VF, Altheide TS (2008) Low temperature aqueous ferric sulfate solutions on the surface of Mars. Geophys Res Lett 35:L22101. doi:10.1029/2008GLO35489

    Article  Google Scholar 

  • Chevrier VF et al (2009) Stability of perchlorate hydrates and their liquid solutions at the Phoenix landing site, Mars. Geophys Res Lett 36:LXXXXX. doi:10.1029/2009GL037497

    Google Scholar 

  • Dash JG, Rempel AW, Wettlaufer JS (2006) The physics of premelted ice and its geophysical consequences. Rev Mod Phys 78(3):698–741

    Article  Google Scholar 

  • Davila AF, Duport LG, Melchiorri R, Jänchen J, Valea S, De los Rios A, Fairén AG, Möhlmann D, McKay CP, Ascasco CP, Wierzchos J (2010) Hygroscopic salts and the potential for life on Mars. Astrobiology 10(6):617–628

    Article  PubMed  CAS  Google Scholar 

  • Engemann SC (ed) (2005) Premelting at the ice-SiO2-interface, Dissertationsschrift, University of Stuttgart. Stuttgart, Germany

    Google Scholar 

  • Furukawa Y (1997) Faszination der Schneekristalle – wie ihre bezaubernden Formen entstehen. Chemie unserer Zeit 31:58–65

    Article  CAS  Google Scholar 

  • HansenGoos H, Wettlaufer JS (2010) Theory of ice premelting in porous media. Phys Rev E 81:031604

    Article  Google Scholar 

  • Jensen TR et al (2003) Water in contact with extended hydrophobic surfaces: direct evidence of weak dewetting. Phys Rev Lett 90:086101

    Article  PubMed  Google Scholar 

  • Kell GS (1975) Density, thermal expansivity, and compressibility of liquid water from 0°C to 150°C: corrections and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale. J Chem Eng Data 20(1):97–105

    Article  CAS  Google Scholar 

  • Linke WF, Seidell A (1965) Solubilities of inorganic and metal-organic compounds. American Chemical Society, Washington, DC

    Google Scholar 

  • Liu Z, Muldrew K, Wan RG, Elliott JAW (2003) Measurement of freezing point depression of water in glass capillaries and the associated ice front shape. Phys Rev E 67:62710–62722

    Article  Google Scholar 

  • Marti J, Mauersberger K (1993) A survey and new measurements of ice water vapor pressure at temperatures between 170 and 250 K. Geophs Res Lett 20:363–366

    Article  Google Scholar 

  • Mikhail RS, Robens E (1983) In: John Wiley & Sons (ed) Microstructure and thermal analysis of solid surfaces. Wiley, Chichester

    Google Scholar 

  • Möhlmann D (2004) Water in the upper martian surface at mid- and low- latitudes: presence, state and consequences. Icarus 168:318–323

    Article  Google Scholar 

  • Möhlmann D (2008) The influence of van der Waals forces on the state of water in the shallow surface of Mars. Icarus 135:131–139

    Article  Google Scholar 

  • Möhlmann D (2009) Are nanometric films of liquid undercooled interfacial water bio-relevant? Cryobiology 58:256–261

    Article  PubMed  Google Scholar 

  • Möhlmann D (2012) Widen the belt of habitability! Origins of Life and Evolution of Biospheres, 42(2–3), 93–100. Springer. doi:10.1007/s11084-012-9278-1. ISSN 0169–6149

  • Möhlmann D, Thomsen K (2011) Properties of cryobrines on Mars. Icarus 212:123–130

    Article  Google Scholar 

  • Murray FW (1967) On the computation of saturation water pressure. J Appl Meteorol 6:201–204

    Article  Google Scholar 

  • Petrenko VF, Whitworth RW (eds) (1999) Physics of ice. Oxford University Press, New York. ISBN 0 19 851895 1

    Google Scholar 

  • Price BT (2000) A habitat for psychrophiles in deep antarctic ice. Proc Natl Acad Sci USA 97(3):1247–1251

    Article  PubMed  CAS  Google Scholar 

  • Rempel AW, Wettlaufer JS, Worster MG (2001) Interfacial premelting and the thermomolecular force: thermodynamic buoyancy. Phys Rev Lett 87(8):88501–88504

    Article  CAS  Google Scholar 

  • Streitz R et al (2003) Nanobubbles and their precursor layer at the interface of water against a hydrophobic substrate. Langmuir 19:2409

    Article  Google Scholar 

  • Urquidi J, Cho CH, Singh S, Robinson GW (1999) Temperature and pressure effects on the structure of liquid water. J Mol Struct 485–486:363–371

    Article  Google Scholar 

  • Usdowski E, Dietzel M (eds) (1998) Atlas and data of solid-solution equilibria of marine evaporites. Springer, New York

    Google Scholar 

  • van Oss CJ, Giese RF, Wentzek R, Norris J, Chuvilin EM (1992) Surface tension parameters of ice obtained from contact angle data and from positive and negative particle adhesion to advancing freezing fronts. J Adhes Sci Technol 6(14):503–516

    Google Scholar 

  • Webber B, Dore J (2004) Structural and dynamic studies of water in mesoporous silicas using neutron scattering and nuclear magnetic resonance. Invited article, IoP: J Phys Condens Matter – Special Issue: Water Confin Geom 16:S5449–S5470. PII: S0953-8984(04)78970-5

    Google Scholar 

  • Voskresenskaya NK, Yanat’eva OK (1936) Izv Sektora Fiz-Khim Anal, Akad Nauk SSSR 9:291–293

    CAS  Google Scholar 

  • Wiggins P (1997) Hydrophobic hydration, hydrophobic forces and protein folding. Phys A 238:113–128

    Article  CAS  Google Scholar 

  • Wiggins P (2008) Life depends upon two Kinds of water. PLoS One 3(1):e1406

    Article  PubMed  Google Scholar 

  • Wiggins P (2009) Enzymes and surface water. Water 1:42–51

    Google Scholar 

Download references

9. Acknowledgements

I wish to thank three unknown reviewers for their valuable comments to improve the manuscript. This research has been supported by the Helmholtz Association through the research alliance “Planetary Evolution and Life”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diedrich Möhlmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Möhlmann, D. (2013). Bio-Relevant Microscopic Liquid Subsurface Water in Planetary Surfaces?. In: de Vera, JP., Seckbach, J. (eds) Habitability of Other Planets and Satellites. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6546-7_6

Download citation

Publish with us

Policies and ethics