Skip to main content

Clean In Situ Subsurface Exploration of Icy Environments in the Solar System

  • Chapter
  • First Online:
Habitability of Other Planets and Satellites

Abstract

To assess the habitability of the icy environments in the solar system, for example, on Mars, Europa, and Enceladus, the scientific analysis of material embedded in or underneath their ice layers is very important. We consider self-steering robotic ice melting probes to be the best method to cleanly access these environments, that is, in compliance with planetary protection standards. The required technologies are currently developed and tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this chapter, we will use the term “water” also for salt water or brine.

  2. 2.

    The reader may forgive this bias, but the IceMole solves many of the discussed challenges in a unique and seminal way, and reliable information about the current development status of other ice melting probes is difficult to obtain.

  3. 3.

    where the Sun is at zenith.

  4. 4.

    “SUSI” is the abbreviation for “Sonde Under Shelf Ice.”

References

  • Aamot H (1967a) Heat transfer and performance analysis of a thermal probe for glaciers. Technical report. CRREL special report 194, Cold Regions Research & Engineering Laboratory, Hanover

    Google Scholar 

  • Aamot H (1967b) Pendulum steering for thermal probes in glaciers. J Glaciol 6:935–939

    Google Scholar 

  • Aamot H (1967c) The Philberth probe for investigating polar ice caps. Technical report. CRREL special report 119, Cold Regions Research & Engineering Laboratory, Hanover

    Google Scholar 

  • Aamot H (1968) Instrumented probes for deep glacial investigations. J Glaciol 7(50):321–328

    Google Scholar 

  • Aamot H (1970a) Development of a vertically stabilized thermal probe for studies in and below ice sheets. J Eng Ind 92(2):263–268

    Article  Google Scholar 

  • Aamot H (1970b) Self-contained thermal probes for remote measurements within an ice sheet. In: International symposium on Antarctic glaciological exploration. Hanover, pp 63–68

    Google Scholar 

  • Abramov O, Spencer J (2009) Endogenic heat from Enceladus’ south polar fractures: new observations, and models of conductive surface heating. Icarus 199(1):189–196

    Article  Google Scholar 

  • Ballou E et al (1978) Chemical interpretation of Viking lander 1 life detection experiment. Nature 271:644–645

    Article  CAS  Google Scholar 

  • Bentley C et al (2009) Ice drilling and coring. In: Bar-Cohen Y, Zacny K (eds) Drilling in extreme environments. Wiley-VCH, Weinheim, pp 221–308

    Chapter  Google Scholar 

  • Bidle K et al (2007) Fossil genes and microbes in the oldest ice on Earth. Proc Natl Acad Sci 104(33):13455–13460

    Article  PubMed  CAS  Google Scholar 

  • Biele J et al (2011) In situ analysis of Europa ices by short-range melting probes. Adv Space Res 48(4):755–763

    Article  CAS  Google Scholar 

  • Brown R et al (2006) Composition and physical properties of Enceladus’ surface. Science 311:1425–1428

    Article  PubMed  CAS  Google Scholar 

  • Cassen P, Reynolds R, Peale S (1979) Is there liquid water on Europa? Geophys Res Lett 6(9):731–734

    Article  Google Scholar 

  • Chyba C, Phillips C (2007) Europa. In: Sullivan W, Baross J (eds) Planets and life. Cambridge University Press, Cambridge, pp 388–423

    Google Scholar 

  • Clifford S et al (2000) The state and future of Mars polar science and exploration. Icarus 144(2):210–242

    Article  PubMed  CAS  Google Scholar 

  • Committee on Planetary Protection Standards for Icy Bodies in the Outer Solar System (2012) Assessment of planetary protection requirements for spacecraft missions to icy solar system bodies. Technical report, National Research Council

    Google Scholar 

  • Cruikshank D et al (2005) A spectroscopic study of the surfaces of Saturn’s large satellites: H2O ice, tholins, and minor constituents. Icarus 175(1):268–283

    Article  CAS  Google Scholar 

  • Dachwald B et al (2011) Development of a novel subsurface ice probe and testing of the first prototype on the Morteratsch glacier. In: Geophysical research abstracts, vol 13. EGU2011- 4943

    Google Scholar 

  • D’Elia T, Veerapaneni R, Rogers S (2008) Isolation of microbes from Lake Vostok accretion ice. Appl Environ Microbiol 74(15):4962–4965

    Article  PubMed  Google Scholar 

  • Deming J, Eicken H (2007) Life in ice. In: Sullivan W, Baross J (eds) Planets and life. Cambridge University Press, Cambridge, pp 292–312

    Google Scholar 

  • Di Pippo S et al (1999) The exploitation of Europa ice and water basins: an assessment on required technological developments, on system design approaches and on relevant expected benefits to space and Earth based activities. Planet Space Sci 47(6–7):921–933

    Article  Google Scholar 

  • Engelhardt M (2006) Investigation of decontamination procedures for application on melting probes according to present planetary protection rules. Science thesis, University of Aachen

    Google Scholar 

  • Engelhardt H et al (1990) Physical conditions at the base of a fast moving Antarctic ice stream. Science 248:57–59

    Article  PubMed  CAS  Google Scholar 

  • Fishbaugh K, Head J (2001) Comparison of the north and south polar caps of Mars: new observations from MOLA data and discussion of some outstanding questions. Icarus 154(1):145–161

    Article  CAS  Google Scholar 

  • Greenberg R (ed) (2005) Europa – the ocean moon: search for an Alien biosphere. Springer, Berlin, Heidelberg, New York (in association with Praxis Publishing Chichester, UK)

    Google Scholar 

  • Greenberg R, Geissler P (2002) Invited review. Europa’s dynamic icy crust. Meteorit Planet Sci 37:1685–1711

    Article  CAS  Google Scholar 

  • Greenberg R et al (1999) Chaos on Europa. Icarus 141(2):263–286

    Article  Google Scholar 

  • Hansen B, Kersten L (1984) An in-situ sampling thermal probe. In: Holdsworth G et al (eds) Ice drilling technology. CRREL special report, pp 84–34

    Google Scholar 

  • Hendrix A, Hansen C, Holsclaw G (2010) The ultraviolet reflectance of Enceladus: implications for surface composition. Icarus 206(2):608–617

    Article  CAS  Google Scholar 

  • Ice Drilling Design and Operations Group in collaboration with the Ice Drilling Program Office (2011) Long range drilling technology plan. Technical report, National Science Foundation

    Google Scholar 

  • Ingersoll A, Pankine A (2010) Subsurface heat transfer on Enceladus: conditions under which melting occurs. Icarus 206(2):594–607

    Article  CAS  Google Scholar 

  • Jakosky B, Westall F, Brack A (2007) Mars. In: Sullivan W, Baross J (eds) Planets and life. Cambridge University Press, Cambridge, pp 357–387

    Google Scholar 

  • Kargel J (2006) Enceladus: cosmic gymnast, volatile miniworld. Science 311:1389–1391

    Article  PubMed  CAS  Google Scholar 

  • Karl D et al (1999) Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286:2144–2147

    Article  PubMed  CAS  Google Scholar 

  • Kasser P (1960) Ein leichter thermischer Eisbohrer als Hilfsgert zur Installation von Ablationsstangen auf Gletschern. Geoflsica Pura e Applicata 45(1):97–114

    Article  Google Scholar 

  • Kaufmann E et al (2009) Melting and sublimation of planetary ices under low pressure conditions: laboratory experiments with a melting probe prototype. Earth Moon Planet 105(1):11–29

    Article  CAS  Google Scholar 

  • Kelty J (1995) An in situ sampling thermal probe for studying global ice sheets. Ph.D. thesis, University of Nebraska

    Google Scholar 

  • Kömle N, Kargl G, Steller M (2002) Melting probes as a means to explore planetary glaciers and ice caps. In: Proceedings of the first European workshop on Exo-Astrobiology, pp 305–308, eSA SP-518

    Google Scholar 

  • Lebreton J-P et al (2005) An overview of the descent and landing of the Huygens probe on Titan. Nature 438:758–764

    Article  PubMed  CAS  Google Scholar 

  • Lorenz R et al (2011) Analog environments for a Europa lander mission. Adv Space Res 48(4):689–696

    Article  Google Scholar 

  • Mann A (2010) The IceMole cometh. Nature News

    Google Scholar 

  • Marion G et al (2002) The search for life on Europa: limiting environmental factors, potential habitats, and earth analogues. Astrobiology 3(4):785–811

    Article  Google Scholar 

  • Matsumoto G (1993) Geochemical features of the McMurdo dry valley lakes, Antarctica. In: Green W, Friedmann E (eds) Physical and biogeochemical processes in Antarctic lakes, vol 59, Antarctic research series. American Geophysical Union, Washington, DC, pp 95–118

    Chapter  Google Scholar 

  • McKay C et al (2008) Hypothesis paper: the possible origin and persistence of life on Enceladus and detection of biomarkers in the plume. Astrobiology 8(5):909–919

    Article  PubMed  CAS  Google Scholar 

  • Mikucki J, Priscu J (2007) Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor glacier, Antarctica. Appl Environ Microbiol 73(12):4029–4039

    Article  PubMed  CAS  Google Scholar 

  • Mikucki J et al (2009) A contemporary microbially maintained subglacial ferrous “ocean”. Science 324:397–400

    Article  PubMed  CAS  Google Scholar 

  • O’Brien D, Geissler P, Greenberg R (2000) Tidal heat in Europa: ice thickness and the plausibility of melt-through. In: AAS/Division for Planetary Sciences meeting abstracts #32, vol 32 of Bulletin of the American Astronomical Society, p 1066

    Google Scholar 

  • Ojakangas G, Stevenson D (1989) Thermal state of an ice shell on Europa. Icarus 81(1):220–241

    Article  CAS  Google Scholar 

  • Pappalardo R et al (1998) Geological evidence for solid-state convection in Europa’s ice shell. Nature 391:365–368

    Article  PubMed  CAS  Google Scholar 

  • Pappalardo R, McKinnon W, Khurana K (eds) (2009) Europa. The University of Arizona Press, Tucson

    Google Scholar 

  • Parkinson C et al (2007) Enceladus: Cassini observations and implications for the search for life (research note). Astron Astrophys 463(1):353–357

    Article  CAS  Google Scholar 

  • Patthoff D, Kattenhorn S (2011) A fracture history on Enceladus provides evidence for a global ocean. Geophys Res Lett 38:18

    Article  Google Scholar 

  • Philberth K (1962) Une méthode pour mesurer les témperatures à l’intérieur d’un inlandsis. C R Hebd Séances de l’Acad Sci (Paris) Tom 254(22):3881–3883

    Google Scholar 

  • Porco C et al (2006) Cassini observes the active south pole of Enceladus. Science 311:1393–1401

    Article  PubMed  CAS  Google Scholar 

  • Postberg F et al (2011) A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474:620–622

    Article  PubMed  CAS  Google Scholar 

  • Price P (2000) A habitat for psychrophiles in deep Antarctic ice. Proc Natl Acad Sci 97(3):1247–1251

    Article  PubMed  CAS  Google Scholar 

  • Priscu J, Christner B (2004) Earth’s icy biosphere. In: Bull A (ed) Microbial diversity and prospecting. ASM Press, Washington, DC, pp 130–145

    Google Scholar 

  • Priscu J et al (1999) Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286:2141–2144

    Article  PubMed  CAS  Google Scholar 

  • Ross M, Schubert G (1987) Tidal heating in an internal ocean model of Europa. Nature 325:133–134

    Article  Google Scholar 

  • Rummel J (2001) Planetary exploration in the time of astrobiology: protecting against biological contamination. Proc Natl Acad Sci 98(5):2128–2131

    Article  PubMed  CAS  Google Scholar 

  • Rummel J et al (2002) COSPAR’s planetary protection policy: a consolidated draft. Adv Space Res 30(6):1567–1571

    Article  Google Scholar 

  • Shreve R (1962) Theory of performance of isothermal solid-nose hot-points boring in temperate ice. J Glaciol 4(32):151–160

    Google Scholar 

  • Siegert M (2000) Antarctic subglacial lakes. Earth Sci Rev 50(1–2):29–50

    Article  Google Scholar 

  • Siegert M et al (2001) Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature 414:603–609

    Article  PubMed  CAS  Google Scholar 

  • Siegert M et al (2005) A revised inventory of Antarctic subglacial lakes. Antarct Sci 17(3):453–460

    Article  Google Scholar 

  • Spencer J et al (2006) Cassini encounters Enceladus: background and the discovery of a south polar hot spot. Science 311:1401–1405

    Article  PubMed  CAS  Google Scholar 

  • Spohn T, Schubert G (2003) Oceans in the icy Galilean satellites of Jupiter? Icarus 161(2):456–467

    Article  CAS  Google Scholar 

  • Squyres S et al (1983) Liquid water and active resurfacing on Europa. Nature 301:225–226

    Article  CAS  Google Scholar 

  • Tobie G, Cadek O, Sotin C (2008) Solid tidal friction above a liquid water reservoir as the origin of the south pole hotspot on Enceladus. Icarus 196(2):642–652

    Article  CAS  Google Scholar 

  • Tokano T (ed) (2005) Water on mars and life. Springer, Berlin

    Google Scholar 

  • Treffer M et al (2006) Preliminary studies concerning subsurface probes for the exploration of icy planetary bodies. Planet Space Sci 54(6):621–634

    Article  Google Scholar 

  • Tüg H (2003) Rechnergesteuerte Schmelzsonde zur Ermittlung unterschiedlicher Messparameter im Eisbereich. Patentschrift DE 101 64 648 C 1, Deutsches Patentamt, 6 Feb 2003

    Google Scholar 

  • Ulamec S et al (2005) A melting probe with applications on Mars, Europa and Antarctica. In: 56th international astronautical congress. IAC-A1.7.08, Fukuoka, Japan 17–21 October 2005

    Google Scholar 

  • Ulamec S et al (2007) Access to glacial and subglacial environments in the Solar System by melting probe technology. Rev Environ Sci Biotechnol 6(1):71–94

    CAS  Google Scholar 

  • Waite J et al (2009) Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature 460:487–490

    Article  CAS  Google Scholar 

  • Zacny K et al (2009) Extraterrestrial drilling and excavation. In: Bar-Cohen Y, Zacny K (eds) Drilling in extreme environments. Wiley-VCH, Hoboken, Weinheim, pp 347–557

    Chapter  Google Scholar 

  • Zarnecki J et al (2005) A soft solid surface on Titan as revealed by the Huygens Surface Science Package. Nature 438:792–795

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman W, Bonitz R, Feldman J (2001a) Cryobot: an ice penetrating robotic vehicle for Mars and Europa. In: Proceedings of the IEEE aerospace conference 2001. Big Sky, pp 1/311–1/323

    Google Scholar 

  • Zimmermann W et al (2001b) A radioisotope powered cryobot for penetrating the Europan ice shell. In: Space technology and application international forum 2001 (STAIF-2001), New Mexico, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Dachwald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dachwald, B., Ulamec, S., Biele, J. (2013). Clean In Situ Subsurface Exploration of Icy Environments in the Solar System. In: de Vera, JP., Seckbach, J. (eds) Habitability of Other Planets and Satellites. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6546-7_20

Download citation

Publish with us

Policies and ethics