Skip to main content

Exoplanets: Criteria for their Habitability and Possible Biospheres

  • Chapter
  • First Online:
Habitability of Other Planets and Satellites

Abstract

The word “habitable” is derived from the classical Latin habitabilis (to inhabit, to dwell). As early as 1853, William Whewell introduced the notion of a planet orbiting in the “temperate zone” where liquid water (an essential requirement for all life on Earth) on the surface is favored. A century later, astronomer Harlow Shapley (1953) discussed climate conditions for planets orbiting in the so-called water belt in the context of understanding Earth’s climate change. In the same year, Hubertus Strughold investigated the Solar System “ecosphere” (1953) as part of a physiological study of survival on Mars. Huang (1960) discussed the requirements a star should fulfill to support life in its so-called Habitable Zone (HZ). Dole (1964) then discussed the “complex life HZ,” the region where a planet has surface temperatures from 0 to 30 ;°C over >10 ;% of its surface, an oxygen (O2)-rich atmosphere and <1.5 Earth’s gravity. Hart (1979a, b) applied a numerical climate model to estimate the width of the HZ for liquid water and showed that runaway climate processes implied a thin HZ extending from 0.95 to 1.01 astronomical units (AU). Schneider and Thompson (1980), however, argued that understanding of complex climate feedbacks (e.g., between atmosphere and glaciation) suggested that such climate estimates are only “order of magnitude.” Kasting et al. (1988) showed that including long-term negative climate feedbacks such as the carbonate-silicate cycle could stabilize a planet’s climate and expand the HZ width calculated by the Hart et al. studies. A key study by Kasting et al. (1993) subsequently investigated the HZ width for a range of main sequence stars. In the modern literature, the HZ is widely studied, including models with, for example, complex climate feedbacks, interactive atmospheric climate-chemistry (e.g., Segura et al., 2003; Grenfell et al., 2007a), radiative effects of clouds (Kitzmann et al., 2011), climate dependence on planetary orbit (e.g., Williams and Pollard, 2003), the effect of 3D planetary properties such as ocean mass and albedo (e.g., Abe et al., 2011), and investigation of climate and evolution (e.g., Selsis et al., 2007; Wordsworth et al., 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

10. References

  • Abe A, Abe-Ouchi A, Sleep NH, Zahnle KJ (2011) Habitable zone limits for dry planets. Astrobiology 11(5):443–460

    Article  PubMed  Google Scholar 

  • Agol E (2011) Transit surveys for Earths in the habitable zones of white dwarfs. Astrophys J 731:L31

    Article  Google Scholar 

  • Bolmont E, Raymond SN, Leconte J (2011) Tidal evolution of planets around brown dwarfs. Astron Astrophys 535:A94

    Article  Google Scholar 

  • Bonfils X, Delfosse X, Udry S, Forveille T, Mayor M et al. The HARPS search for southern extrasolar planets, I. The M dwarf sample. Astron Astrophys 549:A109

    Google Scholar 

  • Borucki WJ, Koch DG, Batalha N, Bryson ST, Caldwell DA et al (2012) Kepler 22b: A 2.4 Earth-radius planet in the habitable zone of a sun-like star. Astrophys J 745(2). doi:10.1088/0044-637X/745/2/120

  • Brandenburg A, Lehto HJ, Lehto KM (2007) Homochirality in an early peptide world. Astrobiology 7:725–732

    Article  PubMed  CAS  Google Scholar 

  • Chapman SA (1930) Theory of upper-atmospheric ozone. Mem R Meteorol Soc 3(26):103–125

    Google Scholar 

  • Chassefière E, Wieler R, Marty B, Leblanc F (2012) The evolution of Venus: present state of knowledge and future exploration. Planet Space Sci 63:15–23

    Article  Google Scholar 

  • Crutzen PJ (1970) The influence of nitrogen oxides on the atmospheric ozone content. Q J R Meteorol Soc 320–325

    Google Scholar 

  • Dole SH (ed) (1964) Habitable planets for man, 1st edn. Blaisdell Publishing Company, New York. ISBN 0-444-00092-5

    Google Scholar 

  • Estupiñan EG, Nicovich JM, Li D, Cunnold DM, Wine PH (2002) Investigation of N2O production from 266 and 532 nm laser flash photolysis of O3/N2/O2 mixtures. J Phys Chem A 106:5880–5890

    Article  Google Scholar 

  • Fast KE, Kostiuk T, Lefevre F, Hewagama T, Livengood TA, Delgado JD, Annen J, Sonnabend G (2009) Comparison of HIPWAC and Mars Express SPICAM observations of ozone on Mars 2006–2008 and variation from 1993 IRHS observations. Icarus 203(1):20–27

    Article  CAS  Google Scholar 

  • Forget F, Pierrehumbert RT (1997) Warming early Mars with CO2 clouds which scatter IR radiation. Science 278:1273–1276

    Article  PubMed  CAS  Google Scholar 

  • Formisano V, Atreya S, Encrenaz T, Ignatiev N, Giuranna M (2004) Detection of methane in the atmosphere of Mars. Science 306(5702):1758–1761

    Article  PubMed  CAS  Google Scholar 

  • Goldblatt C, Matthews AJ, Claire MW, Lenton TM, Watson AJ, Zahnle KJ (2009) Nitrogen enhanced greenhouse warming on early Earth. Nature Geosci 8:91–96

    Google Scholar 

  • Gough DO (1981) Solar interior structure and luminosity variations. Sol Phys 74:21–34

    Article  CAS  Google Scholar 

  • Grenfell JL, Stracke B, von Paris P, Patzer ABC, Titz R, Segura A, Rauer H (2007a) The response of atmospheric chemistry on Earth-like planets around F, G and K stars to small variations in orbital distance. Planet Space Sci 55:661–671

    Article  CAS  Google Scholar 

  • Grenfell JL, Griessmeier J-M, Patzer B, Rauer H, Segura A, Stadelmann A, Stracke B, Titz R, von Paris P (2007b) Biomarker response to galactic cosmic ray-induced NOx and the methane greenhouse effect in the atmosphere of an Earth-like planet orbiting an M-dwarf star. Astrobiology 7:1. doi:10.1089/ast.2006.0129

    Article  Google Scholar 

  • Grenfell JL, Gebauer S, von Paris P, Godolt M, Hedelt P, Patzer ABC, Stracke B, Rauer H (2011) Sensitivity of biomarkers to changes in chemical emissions in Earth’s Proterozoic atmosphere. Icarus 211:81–88

    Article  CAS  Google Scholar 

  • Haagen-Smit AJ (1952) Chemistry and physiology of Los Angeles Smog. Ind Eng Chem 44:1342–1346

    Article  CAS  Google Scholar 

  • Haghighipour N (ed) (2010) Planets in binary star systems, 1st edn. Springer, Dordrecht/London. ISBN 978-90-481-8686-0

    Google Scholar 

  • Hart MH (1979a) The evolution of the atmosphere of the Earth. Icarus 33:23–39

    Article  Google Scholar 

  • Hart MH (1979b) Habitable zones around main sequence stars. Icarus 37:351

    Article  Google Scholar 

  • Huang SS (1960) Life outside the solar system. Sci Am 202:55–63

    Article  Google Scholar 

  • IPCC (2001) International Panel on Climate Change (IPCC) Third Assessment Report (TAR), Climate change 2001

    Google Scholar 

  • Irwin LN, Schulze-Makuch D (2011) Cosmic biology, Springer praxis books. Springer, New York, pp 153–172

    Book  Google Scholar 

  • Joshi M (2003) Climate model studies of synchronously rotating planets. Astrobiology 3(2):415–427

    Article  PubMed  Google Scholar 

  • Joshi MM, Haberle RM (2012) Suppression of the water ice and snow albedo feedback on planets orbiting red dwarf stars and subsequent widening of the habitable zone. Astrobiology 12(1):3–8

    Article  PubMed  CAS  Google Scholar 

  • Kaltenegger L, Sasselov D (2011) Exploring the habitable zone for Kepler planetary candidates. Astrophys J Lett 736:L25. doi:10.1088/2041-8205/736/2/L25

    Article  Google Scholar 

  • Kaltenegger L, Traub WA, Jucks KW (2007) Spectral evolution of an Earth-like planet. Astrophys J 658:598–616

    Article  CAS  Google Scholar 

  • Kaltenegger L, Segura A, Mohanty S (2011) Model spectral of the first potentially-habitable Super-Earth. Astrophys J 733:1–12

    Article  Google Scholar 

  • Kasting JF, Toon OB, Pollack JB (1988) How climate evolved on the terrestrial planets. Sci Am 256:90–97

    Article  PubMed  CAS  Google Scholar 

  • Kasting JF, Whitmire DP, Reynolds RT (1993) Habitable zones around main sequence stars. Icarus 101:108

    Article  PubMed  CAS  Google Scholar 

  • Keller CU, Stam DM (2012) Planetary science: in search of biosignatures. Nature 483:38–39

    Article  PubMed  CAS  Google Scholar 

  • Keppler F, Harper DB, Röckmann T, Moore RM, Hamilton JTG (2005) New insight into the atmospheric chloromethane budget gained using stable carbon isotope ratios. Atmos Chem Phys 5:2403–2411

    Article  CAS  Google Scholar 

  • Kite E, Gaidos E, Manga M (2011) Climate instability on tidally-locked exoplanets. Astrophys J 743(1):1–12

    Article  Google Scholar 

  • Kitzmann D, Patzer ABC, von Paris P, Godolt M, Stracke B, Gebauer S, Grenfell JL, Rauer H (2010) Clouds in the atmospheres of extrasolar planets. I. Climatic effects of multi-layered clouds for Earth-like planets and implications for habitable zones. Astron Astrophys 511:A66

    Article  Google Scholar 

  • Kitzmann D, Patzer ABC, von Paris P, Godolt M, Rauer H (2011) Clouds in the atmospheres of extrasolar planets. III. Impact of low and high-level clouds on the reflection spectra of Earth-like planets. Astron Astrophys 534. doi:10.105/0004-6361/201117375

  • Kleidon A (2012) How does the Earth system generate and maintain thermodynamic equilibrium and what does it imply for the future of the planet? Philos Trans R Soc A 370(1962):1012–1040

    Article  CAS  Google Scholar 

  • Lammer H, Selsis F, Penz T, Amestorfer UV, Lichtenegger HIM, Kolb C, Ribas I (2005) Chapter 2: Atmospheric evolution and the history of water on Mars. In: Tokano T (ed) Water on Mars and life. Springer, Berlin

    Google Scholar 

  • Lammer H et al (2009) What makes a planet habitable? Astron Astrophys Rev 17:181–249. doi:10.1007/s00159-009-0019-z

    Article  Google Scholar 

  • Lorenz RD, Lunine JD, McKay CP (1997) Titan under a red giant sun: a new kind of “habitable” moon. Geophys Res Lett 24(22):2905–2908

    Article  PubMed  CAS  Google Scholar 

  • Lovelock J (1965) A physical basis for life detection experiments. Nature 207:568–570

    Article  PubMed  CAS  Google Scholar 

  • Mayor M, Bonfils X, Forveille T et al (2009) GJ581 radial velocity curve. Astron Astrophys 507:487

    Article  Google Scholar 

  • Montmessin F, Bertaux J-L, Lefevre F, Marcq E, Belyaev D, Gerard J-C, Korablev O, Fedorova A, Sarago V, Vandaele AC (2011) A layer of ozone detected in the nightside upper atmosphere of Venus. Icarus 216(1):82–85

    Article  CAS  Google Scholar 

  • Mumma MJ, Villanueva GL, Novak RE, Hewagama T, Bonev BP, Disanti MA, Mandell AM, Smith MD (2009) Strong release of methane on Mars in Northern Summer 2003. Science 323:1041–1045

    Article  PubMed  CAS  Google Scholar 

  • Neubauer D, Vrtala A, Leitner JJ, Ferneis MG, Hitzenberger R (2011) Development of a model to compute the extension of life supporting zones for Earth-like exoplanets. Orig Life Evol Biosph 41(6):545–552

    Article  PubMed  CAS  Google Scholar 

  • Ohkouchi N, Tayasu I, Koba K (eds) (2010) Earth, life and isotopes. Kyoto University Press, Kyoto

    Google Scholar 

  • Pavlov AA et al (2003) Methane-rich proterozoic atmosphere? Geology 31:87–90

    Article  CAS  Google Scholar 

  • Pepe F, Lovis C, Segransan D, Benz W, Bouchy F, Dumusque X, Mayor M, Queloz D, Santons NC, Udry S (2011) The HARPS search for Earth-like planets in the habitable zone. I. Very low-mass planets around HD20794, HD85512, and HD192310. Astron Astrophys 534:A58

    Article  Google Scholar 

  • Pierrehumbert R, Gaidos S (2011) Hydrogen greenhouse planets beyond the habitable zone. Astrophys J 734:L13

    Article  Google Scholar 

  • Quarles B, Musielak ZE, Cuntz M (2012) Habitability of Earth-mass planets and moons in the Kepler-16 system. Astrophys J 750:1

    Article  Google Scholar 

  • Rauer H, Gebauer S, von Paris P, Cabrera J, Godolt M, Grenfell JL, Belu A, Selsis F, Hedelt P, Schreier F (2011) Potential biosignatures in super-Earth atmospheres I. Spectral appearance of super-Earths around M-dwarfs. Astron Astrophys 529:A8

    Article  Google Scholar 

  • Sagan C, Salpeter EE (1976) Particles, environments and possible ecologies in the Jovian atmosphere. Astrophys J Suppl 32:737

    Article  CAS  Google Scholar 

  • Sagan C, Thompson WR, Carlson R, Gurnett D, Hord C (1993) A search for life from Earth on the Galileo spacecraft. Nature 365(6448):715–721

    Article  PubMed  CAS  Google Scholar 

  • Scalo J, Kaltenegger L, Segura A, Fridlund M, Ribas I et al (2007) A re-appraisal of the habitability of planets around M-dwarf stars. Astrobiology 7:30–65

    Article  PubMed  Google Scholar 

  • Schneider S, Thompson SL (1980) Cosmic conclusions from climatic models: can they be justified? Icarus 41(3):456–469

    Article  Google Scholar 

  • Schulze-Makuch D, Irwin LN, Guan H (2002) Search parameters for the remote detection of extraterrestrial life. Planet Space Sci 50:675–683

    Article  CAS  Google Scholar 

  • Seager S, Turner EL, Schafer J, Ford EB (2005) Vegetation’s red edge: a possible spectroscopic biosignature of extraterrestrial planets. Astrobiology 5(3):372–390

    Article  PubMed  CAS  Google Scholar 

  • Segura A, Krelove K, Kasting JF, Sommerlatt D, Meadows V, Crisp D, Cohen M, Mlawer E (2003) Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars. Astrobiology 3:689–708

    Article  PubMed  CAS  Google Scholar 

  • Segura A, Kasting JF, Meadows V, Cohen M, Scalo J, Crisp D, Butler RAH, Tinetti G (2005) Biosignatures from Earth-like planets around M-dwarfs. Astrobiology 5(6):706–715

    Article  PubMed  CAS  Google Scholar 

  • Segura A, Meadows V, Kasting JF, Crisp D, Cohen M (2007) Abiotic formation of O2 and O3 in high-CO2 terrestrial atmospheres. Astrobiology 472:665–679

    CAS  Google Scholar 

  • Segura A, Walkowicz LM, Meadows V, Kasting J, Hawley S (2010) The effect of a strong stellar flare on the atmospheric chemistry of an Earth-like planet orbiting an M-dwarf. Astrobiology 10(7):751–771. doi:10.1089/ast.2009.0376

    Article  PubMed  CAS  Google Scholar 

  • Selsis F, Despois D, Parisot J-P (2002) Signature of life on exoplanets – can Darwin produce false detections? Astron Astrophys 388:985–1003

    Article  CAS  Google Scholar 

  • Selsis F, Kasting JF, Levrard B, Paillet J, Ribas I, Delfosse X (2007) Habitable planets around the star Gliese 581? Astron Astrophys 1373

    Google Scholar 

  • Shapley H (1953) Climatic change – evidence, causes, and effects. Harvard University Press, Cambridge, 318 pp

    Google Scholar 

  • Simoneit BRT (2004) Biomarkers (molecular fossils) as geochemical indicators of life. Adv Space Res 33(8):1255–1261

    Article  CAS  Google Scholar 

  • Som SM, Catling DC, Harnmeijer JP, Polivka JP, Buick R (2012) Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints. Nature 484:359–362. doi:10.1038/nature10890

    Article  PubMed  CAS  Google Scholar 

  • Stern A (2003) Delayed gratification zones: when deep outer solar system regions become balmy during post main-sequence stellar evolution. Astrobiology 3(2):317–321

    Article  PubMed  CAS  Google Scholar 

  • Sterzik MF, Bagnulo S, Palle E (2012) Biosignatures as revealed by spectropolarimetry of Earthshine. Nat Lett 483:64–66

    Article  CAS  Google Scholar 

  • Strughold H (1953) The green and red planet: a physiological study of the possibility of life on Mars. JAMA 153(15):1410. doi:10.1001/jama.1953.02940320082032

    Google Scholar 

  • Udry S, Bonfils X, Delfosse X et al (2007) Super-Earths (5 and 8 ME) in a 3-planet system. Astron Astrophys 469:L43

    Article  Google Scholar 

  • von Braun K et al (2011) 55 Cancri: stellar astrophysical parameters, a planet in the habitable zone, and implications for the radius of a transiting Super-Earth. Astrophys J 740:49

    Article  Google Scholar 

  • von Paris P, Rauer H, Grenfell JL, Patzer ABC, Hedelt P, Stracke B, Trautmann T, Schreier F (2008) Warming the early Earth – CO2 reconsidered. Planet Space Sci 56(9):1244–1259

    Article  Google Scholar 

  • von Paris P, Gebauer S, Godolt M, Grenfell JL, Hedelt P, Kitzmann D, Patzer ABC, Rauer H, Stracke B (2010) The extrasolar planet GL 581d: a potentially habitable planet? Astron Astrophys 522:A23

    Article  Google Scholar 

  • Walker JCG, Hays PB, Kasting JF (1981) A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J Geophys Res 86(1):147–158

    Google Scholar 

  • Williams DM, Pollard D (2003) Extraordinary climates of earth-like planets: three-dimensional climate simulations at extreme obliquity. Int J Astrobiol 2:1–19

    Article  CAS  Google Scholar 

  • Woolf NJ, Smith PS, Traub WA, Jucks KW (2002) The spectrum of Earthshine: a pale blue dot observed from the ground. Astrophys J 574(1):430

    Article  CAS  Google Scholar 

  • Wordsworth RD, Forget F, Selsis F, Millour E, Charnay B, Madeleine J-B (2011) Gliese 581d is the first discovered terrestrial-mass exoplanet in the habitable zone. Astrophys J 733(2):L48

    Article  Google Scholar 

  • Zahnle K, Freedman RS, Catling DC (2011) Is there methane on Mars? Icarus 212:493–503

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Lee Grenfell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grenfell, J.L., Rauer, H., von Paris, P. (2013). Exoplanets: Criteria for their Habitability and Possible Biospheres. In: de Vera, JP., Seckbach, J. (eds) Habitability of Other Planets and Satellites. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6546-7_2

Download citation

Publish with us

Policies and ethics