Skip to main content

Application of Raman Spectroscopy as In Situ Technology for the Search for Life

  • Chapter
  • First Online:
Habitability of Other Planets and Satellites

Abstract

In preparation to future space missions it is necessary to study the circumstances when faced with performing Raman measurements in a non-Earth like environment. The differences and difficulties compared to the established measurement approaches on Earth need to be recognized and solutions must be found. As an example for extraterrestrial application Raman spectroscopy with the same specifications as those onboard the future ExoMars mission are conducted to test their potential of identifying biological material on martian analogue samples. Appropriate measurement parameters for the detection of biological material as well as for the determination of the mineral composition are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

7. References

  • Böttger U, de Vera J-P, Fritz J, Weber I, Hübers H-W, Schulze-Makuch D (2012) Optimizing the detection of carotene in cyanobacteria in a martian regolith analogue with a Raman spectrometer for the ExoMars mission. Planet Space Sci 60:356–362

    Article  Google Scholar 

  • Chevrier V, Mathé P (2007) Mineralogy and evolution of the surface of Mars: a review. Planet Space Sci 55:289–314

    Article  CAS  Google Scholar 

  • Edwards H, Wynn-Williams D, Villar S (2004) Biological modification of haematite in Antarctic cryptoendolithic communities. J Raman Spectrosc 35:470

    Article  CAS  Google Scholar 

  • Edwards H, Villar S, Parnell J, Cockell C, Lee P (2005) Raman spectroscopic studies of cyanobacterial gypsum halotrophs and their relevance for sulfate deposits on Mars. Analyst 130:917

    Article  PubMed  CAS  Google Scholar 

  • Ferrari F, Szuszkiewicz E (2009) Cosmic rays: a review for astrobiologists. Astrobiology 9:413–436

    Article  PubMed  Google Scholar 

  • Gooding J (1978) Chemical weathering on Mars. Thermodynamic stabilities of primary minerals (and their alteration) from mafic igneous rocks. Icarus 33:483–513

    Article  CAS  Google Scholar 

  • Hermelink A, Brauer A, Lasch P, Naumann D (2009) Phenotypic heterogeneity within microbial populations at the single cell level investigated by confocal Raman microspectroscopy. Analyst 134:1149–1153

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler H (2004) Evolution of carotenoid and isoprenoid biosynthesis in photosynthetic and non-photosynthetic organisms. In: 16th international plant lipid symposium, Budapest

    Google Scholar 

  • Maquelin K, Choo-Smith LP, Endtz HP, Bruining HA, Puppels GJ (2002) Rapid identification of Candida species by confocal Raman microspectroscopy. J Clin Microbiol 40:594–600

    Article  PubMed  CAS  Google Scholar 

  • McMillan PF, Dubessy J, Hemley R (1996) Applications in Earth, planetary and environmental sciences. In: Turell G, Corset J (eds) Raman microscopy – developments and applications. Academic, London, pp 289–365

    Chapter  Google Scholar 

  • Meyer C, Fritz J, Misgaiski M, Stöffler D, Artemieva NA, Hornemann U, Moeller R, de Vera J-P, Cockell C, Horneck G, Ott S, Rabbow R (2011) Shock experiments in support of the Lithopanspermia theory: the influence of host rock composition, temperature and shock pressure on the survival rate of endolithic and epilithic microorganisms. Meteorit Planet Sci 46:701–718

    Article  CAS  Google Scholar 

  • Morris RV, Ruff SW, Douglas RG, Ming W, Arvidson RE, Clark BC, Golden CD, Siebach K, Klingelhöfer G, Schröder C, Fleischer I, Yen A, Squyres SW (2010) Identification of carbonate-rich outcrops on Mars by the spirit rover. Science 329:421

    Article  PubMed  CAS  Google Scholar 

  • Mustard JF, Ehlmann BL, Murchie SL, Poulet F, Mangold N, Head JW, Bibring J-P, Roach LH (2009) Composition morphology and stratigraphy of Noachian crust around the Isidis basin. J Geophys Res 114:E00D12

    Article  Google Scholar 

  • Naumann D, Helm D, Labischinski H (1991) Microbiological characterization by FT-IR spectroscopy. Nature 351:81–82

    Article  PubMed  CAS  Google Scholar 

  • Naumann D, Keller S, Helm D, Schultz C, Schrader B (1995) FT-IR and FT-Raman spectroscopy are powerful analytical tools for the non-invasive characterization of intact microbial cells. J Mol Struct 347:399–406

    Article  CAS  Google Scholar 

  • Nymmik R (2006) Initial conditions for radiation analysis: models of galactic cosmic rays and solar particle events. Adv Space Res 38:1182–1190

    Article  Google Scholar 

  • Poulet F, Bibring J-P, Mustard JF, Gendrin A, Mangold N, Langevin Y, Arvidso RE, Gondet B, Gomez C (2005) Phyllosilicates on Mars and implications for early Martian climate. Nature 438:623–627

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Makuch D, Fairén A, Davila A (2008) The case for life on Mars. Int J Astrobiol 7(2):117–141

    Article  CAS  Google Scholar 

  • Stackebrandt E (2004) The phylogeny and classification of anaerobic bacteria. In: Nakano MM, Zuber P (eds) Strict and facultative anaerobes: medical and environmental aspects. Horizon Bioscience, Wymondham, pp 1–26

    Google Scholar 

  • Vitek P, Jehlicka J, Edwards HGM, Osterrothova K (2009) Identification of beta-carotene in an evaporitic matrix-evaluation of Raman spectroscopic analysis for astrobiological research on Mars. Anal Bioanal Chem 393:1967–1975

    Article  PubMed  CAS  Google Scholar 

  • Westall F (2013) Microbial scale habitability on Mars. In: de Vera JP, Seckbach J (eds) Habitability of other planets and satellites. Cellular origins, life in extreme habitats and astrobiology. Springer (this issue)

    Google Scholar 

  • Wynn-Williams D, Edwards HGM (2000) Proximal analysis of regolith habitats and protective biomolecules in situ by laser Raman spectroscopy: overview of terrestrial Antarctic habitats and Mars analogs. Icarus 144:486–503

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ute Böttger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Böttger, U. et al. (2013). Application of Raman Spectroscopy as In Situ Technology for the Search for Life. In: de Vera, JP., Seckbach, J. (eds) Habitability of Other Planets and Satellites. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6546-7_18

Download citation

Publish with us

Policies and ethics