Skip to main content

Introduction

  • Chapter
  • First Online:
  • 1593 Accesses

Part of the book series: Logic, Epistemology, and the Unity of Science ((LEUS,volume 30))

Abstract

The goal of this book is to explore the relationship between argumentation theory and the philosophy of mathematical practice. By ‘argumentation theory’ we intend the study of reasoning and argument, and especially those aspects not addressed (or not addressed well) by formal deduction. The great success of formal logic in the nineteenth and twentieth centuries led to an eclipse of informal techniques, but a revival began in the 1950s. These pioneers initiated a thriving research tradition with particular strengths in Canada and the Netherlands. The philosophy of mathematical practice diverges from mainstream philosophy of mathematics in the emphasis it places on what the majority of working mathematicians actually do, rather than on mathematical foundations, an issue most mathematicians ignore (rightly or wrongly). This leads to a closer relationship with history and sociology of mathematics, mathematics education, and mathematics itself. In the last decade philosophy of mathematical practice has been developed further by many authors, but the potential argumentation theory holds for this work has mostly been overlooked. This collection is designed to remedy that oversight.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aberdein, A. (2005). The uses of argument in mathematics. Argumentation, 19(3), 287–301.

    Article  Google Scholar 

  • Aberdein, A. (2006). Managing informal mathematical knowledge: Techniques from informal logic. In J. M. Borwein & W. M. Farmer (Eds.), MKM 2006, Vol. 4108 in LNAI (pp. 208–221). Berlin: Springer.

    Google Scholar 

  • Aberdein, A. (2007). The informal logic of mathematical proof. In B. Van Kerkhove & J. P. Van Bendegem (Eds.), Perspectives on mathematical practices: Bringing together philosophy of mathematics, sociology of mathematics, and mathematics education (pp. 135–151). Dordrecht: Springer.

    Google Scholar 

  • Aberdein, A. (2010). Observations on sick mathematics. In B. Van Kerkhove, J. P. Van Bendegem, & J. De Vuyst (Eds.), Philosophical perspectives on mathematical practice (pp. 269–300). London: College Publications.

    Google Scholar 

  • Aberdein, A. (2011). The dialectical tier of mathematical proof. In F. Zenker (Ed.), Argumentation: Cognition and community. Proceedings of the 9th international conference of the Ontario Society for the Study of Argumentation (OSSA). Windsor, ON: OSSA.

    Google Scholar 

  • Aberdein, A. (2013). Mathematical wit and mathematical cognition. Topics in Cognitive Science, 5(2), 231–250.

    Article  Google Scholar 

  • Azzouni, J. (2004). The derivation-indicator view of mathematical practice. Philosophia Mathematica, 12(2), 81–105.

    Article  Google Scholar 

  • Azzouni, J. (2009). Why do informal proofs conform to formal norms? Foundations of Science, 14(1–2), 9–26.

    Article  Google Scholar 

  • Baker, A. (2007). Is there a problem of induction for mathematics? In M. Leng, A. Paseau, & M. Potter (Eds.), Mathematical knowledge (pp. 59–73). Oxford: Oxford University Press.

    Google Scholar 

  • Baker, A. (2009). Non-deductive methods in mathematics. Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/mathematics-nondeductive/. Cited 20 Mar 2011.

  • Bartha, P. (2010). By parallel reasoning: The construction and evaluation of analogical arguments. New York: Oxford University Press.

    Book  Google Scholar 

  • Corfield, D. (2003). Towards a philosophy of real mathematics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Dove, I. J. (2007). On mathematical proofs and arguments: Johnson and Lakatos. In F. H. Van Eemeren & B. Garssen (Eds.), Proceedings of the sixth conference of the International Society for the Study of Argumentation (Vol. 1, pp. 346–351). Amsterdam: Sic Sat.

    Google Scholar 

  • Dufour, M. (2011). Didactical arguments and mathematical proofs. In F. H. van Eemeren, B. Garssen, D. Godden, & Mitchell, G. (Eds.), Proceedings of the 7th conference of the International Society for the Study of Argumentation (pp. 390–397). Amsterdam: Rozenberg/Sic Sat.

    Google Scholar 

  • Epstein, R. L. (2006). Classical mathematical logic. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Epstein, R. L., & Kernberger, C. ([2005] 1998). Critical thinking. Belmont, CA: Wadsworth.

    Google Scholar 

  • Hahn, U., & Oaksford, M. (2007). The rationality of informal argumentation: A Bayesian approach to reasoning fallacies. Psychological Review, 114(3), 704–732.

    Article  Google Scholar 

  • Hersh, R. (Ed.). (2006). 18 Unconventional essays about the nature of mathematics. New York: Springer.

    Google Scholar 

  • Inglis, M., & Mejía-Ramos, J. P. (2009a). The effect of authority on the persuasiveness of mathematical arguments. Cognition and Instruction, 27(1), 25–50.

    Article  Google Scholar 

  • Inglis, M., & Mejía-Ramos, J. P. (2009b). On the persuasiveness of visual arguments in mathematics. Foundations of Science, 14(1–2), 97–110.

    Article  Google Scholar 

  • Inglis, M., Mejía-Ramos, J. P., & Simpson, A. (2007). Modelling mathematical argumentation: The importance of qualification. Educational Studies in Mathematics, 66(1), 3–21.

    Article  Google Scholar 

  • Johnson, R. H. (2000). Manifest rationality: A pragmatic theory of argument. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Knipping, C. (2003). Beweisprozesse in der Unterrichtspraxis: Vergleichende Analysen von Mathematikunterricht in Deutschland und Frankreich. Hildesheim: Franzbecker Verlag.

    Google Scholar 

  • Knipping, C. (2008). A method for revealing structures of argumentations in classroom proving processes. ZDM Mathematics Education, 40, 427–441.

    Article  Google Scholar 

  • Krabbe, E. C. W. (1985). Formal systems of dialogue rules. Synthese, 63, 295–328.

    Article  Google Scholar 

  • Krummheuer, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 229–269). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery (edited by J. Worrall & E. Zahar). Cambridge: Cambridge University Press.

    Google Scholar 

  • Larvor, B. (1998). Lakatos: An introduction. London: Routledge.

    Google Scholar 

  • Larvor, B. (2012). How to think about informal proofs. Synthese, 187, 715–730.

    Article  Google Scholar 

  • Mancosu, P. (Ed.). (2008). The philosophy of mathematical practice. Oxford: Oxford University Press.

    Google Scholar 

  • Newell, A. (1983). The heuristic of George Polya and its relation to artificial intelligence. In R. Groner, M. Groner, & W. F. Bischof (Eds.), Methods of heuristics (pp. 195–243). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Pease, A. (2007). A computational model of Lakatos-style reasoning. PhD thesis, School of Informatics, University of Edinburgh. Online at http://hdl.handle.net/1842/2113. Cited 5 Feb 2012.

  • Pease, A., Colton, S., Smaill, A., & Lee, J. (2005). Modelling Lakatos’s philosophy of mathematics. In L. Magnani & R. Dossena (Eds.), Computing, philosophy and cognition: Proceedings of the European computing and philosophy conference (ECAP 2004) (pp. 57–85). London: College Publications.

    Google Scholar 

  • Perelman, C., & Olbrechts-Tyteca, L. (1969). The new rhetoric: A treatise on argumentation. Notre Dame, IN: University of Notre Dame Press.

    Google Scholar 

  • Pólya, G. (1954). Mathematics and plausible reasoning (2 Vols.). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Powers, L. H. (1995). The one fallacy theory. Informal Logic, 17(2), 303–314.

    Google Scholar 

  • Reid, D., & Knipping, C. (2010). Proof in mathematics education: Research, learning and teaching. Rotterdam: Sense.

    Google Scholar 

  • Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press.

    Google Scholar 

  • Toulmin, S., Rieke, R., & Janik, A. (1979). An introduction to reasoning. London: Macmillan.

    Google Scholar 

  • Van Bendegem, J. P. (1988). Non-formal properties of real mathematical proofs. In J. Leplin, A. Fine, & M. Forbes (Eds.), PSA: Proceedings of the biennial meeting of the philosophy of science association (vol. 1: Contributed Papers, pp. 249–254). East Lansing, MI: Philosophy of Science Association.

    Google Scholar 

  • Van Bendegem, J. P., & Van Kerkhove, B. (2009). Mathematical arguments in context. Foundations of Science, 14(1–2), pp. 45–57.

    Article  Google Scholar 

  • Van Eemeren, F. H., & Grootendorst, R. (2004). A systematic theory of argumentation: The pragma-dialectical approach. Cambridge: Cambridge University Press.

    Google Scholar 

  • Van Eemeren, F. H., & Houtlosser, P. (2002). Strategic manoeuvring in argumentative discourse: A delicate balance. In Van Eemeren, F. H. & Houtlosser, P. (Eds.), Dialectic and rhetoric: The warp and woof of argumentation analysis (pp. 131–159). Amsterdam: Kluwer.

    Google Scholar 

  • Van Kerkhove, B. (2005). Aspects of informal mathematics. In Sica, G. (Ed.), Essays on the foundations of mathematics and logic (pp. 268–351). Monza: Polimetrica International Scientific Publisher.

    Google Scholar 

  • Walton, D. N., Reed, C., & Macagno, F. (2008). Argumentation schemes. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Zuckero, M. (2003). Three potential problems for Powers’ One-Fallacy Theory. Informal Logic, 23(2), 285–292.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Aberdein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Aberdein, A., Dove, I.J. (2013). Introduction. In: Aberdein, A., Dove, I. (eds) The Argument of Mathematics. Logic, Epistemology, and the Unity of Science, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6534-4_1

Download citation

Publish with us

Policies and ethics