Skip to main content

Transmission of Plant Viruses and Viroids

  • Chapter
  • First Online:
Plant Virus and Viroid Diseases in the Tropics
  • 1701 Accesses

Abstract

Plant viruses are horizontally or vertically or both ways are transmitted. The horizontal transmission takes place through a group of organisms as diverse as parasitic fungi, nematodes and most importantly arthropod insects. In vertical transmission, seed transmission plays a pivotal role in the spread and the survival of a number of important plant virus and viroid diseases. Some of these diseases are effectively transmitted vertically through pollen and ovule to the seed and seedlings. Nearly 231 virus and viroid diseases are found to be seed transmitted. Similarly viruses like Cucumber green mottle mosaic virus, Carnation mottle virus, Tobacco necrosis virus, Tomato bushy stunt virus and TMV are isolated from rivers, lakes, ditches and seawage water and found to be infectious. The insect vectors are aphids, leafhoppers, planthoppers, treehoppers, thrips, mealybugs, beetles, and whiteflies. Majority of the viruses are transmitted by aphids, thrips and whiteflies belongs to the families Potyviridae, Bunyaviridae and Geminiviridae respectively. These vectors may have non-persistent or semi-persistent or persistent virus - vector relationships. The spread of virus from the infected sources to a crop and also to remote areas takes place through aerial insect vectors and favarouble wind conditions cause long distance spread. Even some viruses have certain fungi, nematodes, and mites as their vectors. In Tropics, Tomato spotted wilt virus, Tomato yellow leaf curl virus, Potyviruses, and Cucumber mosaic viruses are wide spread on number of crop plants and are responsible for heavy yield losses. Among the thrips transmitted viruses Tospo and Ilarviruses are widely spread and have very wide host range. Among the thrips transmitted viruses the major viruses are Tomato spotted wilt virus, Impatiens necrotic spot virus, Iris yellow spot virus, Peanut bud necrosis virus, Watermelon silver mottle virus etc. In sunflower Tobacco streak virus is the major virus disease under Ilarvirus group. Whitefly transmitted viruses of genus Begomovirus (family: Geminiviridae) transmits about 200 accepted virus diseases and the most economically important whitefly transmitted virus diseases are African cassava mosaic virus, Tomato yellow leafcurl virus, Tobacco leafcurl virus, Squash leafcurl virus, Cotton leafcurl virus, Soybean crinkle leaf virus, Bean golden yellow mosaic virus, and Okra yellow vein mosaic virus. Throughout the world, stranded molecular tests are developed against almost all economically important virus and viroid diseases and suitable management measures are worked out. Viroid diseases of plants have no insect vectors. Their primary spread takes place mechanically through contaminated implements; through vegetative propagative material and true seeds. In tropical countries Potato spindle tuber viroid, Citrus exocortis, Avocado sunblotch, and Chrysanthemum stunt viroids are economically important and molecular characterization and diagnostic techniques are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Salam AM, Amin AH (1990) An Egyptian isolate of beet curly top virus: new differential hosts, physical properties, seed transmission and serologic studies. Bull Fac Agric Univ Cairo 41:843–858

    Google Scholar 

  • Abdullahi I, Ikotun T, Winter S, Thottappilly G, Atiri A (2001) Investigation on seed transmission of cucumber mosaic virus in cowpea. Afr Crop Sci J 9(4):677–684

    Google Scholar 

  • Abe H, Tamada T (1986) Association of beet necrotic yellow vein virus with isolates of polymyxa betae keskin. Ann Phytopathol Soc Jpn 52:235–247

    Article  Google Scholar 

  • Abo ME, Alegbejo MD, Sy A, Misari S (2000) An overview of the mode of transmission and host plants and methods of detection of rice yellow mottle virus in Africa. J Gen Virol 84:733–743

    Google Scholar 

  • Adams DB, Kuhn CW (1977) Seed transmission of peanut mottle virus. Phytopathology 67:1126–1129

    Article  Google Scholar 

  • Aftab M, Mughal SM, Ghafoor A (1989) Occurence and identification of bean yellow mosaic virus from faba bean in Pakistan. Indian J virol 5:88–93

    Google Scholar 

  • Agarwal VK, Nene YL, Beniwal SPS, Verma HS (1979) Transmission of bean common mosaic virus through urdbean (Phaseolus mungo L.) seeds. Seed Sci Technol 7:103–108

    Google Scholar 

  • Agrios GN (2005) Plant Pathology, 5th edn. Elsevier-Academic Press, San Diego

    Google Scholar 

  • Ainsworth GC, Ogilvie L (1939) Lettuce mosaic. Ann Appl Biol 26:279–297

    Article  Google Scholar 

  • Alberts E, Hannay J, Randles JW (1985) An epidemic of cucumber mosaic virus in South Australian lupins. Aust J Agric Res 36(2):267–273

    Article  Google Scholar 

  • Albrechtsen SE (2006) Testing methods for seed transmitted viruses: principles and protocols. CAB1 publishing, Oxfordshire, pp 1–268

    Google Scholar 

  • Alconero R, Hoch JG (1989) Incidence of pea seed borne mosaic virus pathotypes in the US national Pisum germplasm collection. Ann Appl Biol 114:311–315

    Article  Google Scholar 

  • Alegbejo MD (2001) Whitefly transmitted plant viruses in Nigeria. J Sustainable Agric 17:99–109

    Article  Google Scholar 

  • Allen WR (1969) Occurrence and seed transmission of tomato bushy stunt virus in apple. Can J Plant Sci 49:797–799

    Article  Google Scholar 

  • Allen WR, Davidson TR (1967) Tomato bushy stunt virus from. Prunus avium L. I. Field studies and virus characteristics. Can J Bot 45:2375–2383

    Article  Google Scholar 

  • Allen DJ, Anno-Nyako FO, Ochieng RS, Ratinam Mar-kandu (1981) Beetle transmission of cowpea mottle and southern bean mosaic viruses in West Africa. Trop Agric (Trinidad) 58:171–175

    Google Scholar 

  • Allen DJ, Thottapilly G, Rossel HW (1982) Cowpea mottle virus: field resistance and seed transmission in virus-tolerant cowpea. Ann Appl Biol 100:331–336

    Article  Google Scholar 

  • Al-Mabrouk O, Mansour AN (1998) Viruses affecting lentil in Jordhan. Indian Phytopathol 51:1–9

    Google Scholar 

  • Alvarez M, Campbell RN (1978) Transmission and distribution of squash mosaic virus in seeds of cantaloupe. Phytopathology 68:257–263

    Article  Google Scholar 

  • Ammar ED, Nault LR (2002) Virus transmission of leafhoppers, plant hoppers and tree hoppers (auchenorrhyncha, homoptera). Adv Bot Res 36:141–167

    Article  Google Scholar 

  • Anand Deepti, Rohatgi Deepika, Pankaj (2006) Seed—transmission of seed-borne mosaic virus in Pisum sativum. Ann Plant Prot Sci 14:252–253

    Google Scholar 

  • Anderson CW (1957) Seed transmission of three viruses in cowpea. Phytopathology 47:515

    Google Scholar 

  • Anderson KL, Sallam M, Congdon BC (2007) Long distance dispersal by Eumetopina flavipes (Hemiptera: Delphacidae), vector of Ramu stunt: is culture contributing? In: Proceedings of Australian society of sugar cane technologists, vol 29, pp 226–234

    Google Scholar 

  • Andret-Link P, Fuchs M (2005) Transmission specificity of plant viruses by vectors. J Plant Pathol 87(3):153–165

    Google Scholar 

  • Antignus Y, Lachman O, Pearlsman M (2007) The spread of Tomato apical stunt viroid (TAS Vd) in green house tomato crops is associated with seed transmission and bumble bee activity. Plant Dis 91:47–50

    Article  CAS  Google Scholar 

  • Archibald ES (1921) Report of the acting Dominion botanist. Rept. Dom Exp Farms (1920):58–64 (bean mosaic p. 62).

    Google Scholar 

  • Ata AEA, Allen DJ, Thottappilly G, Rossel HW (1982) Variation in the rate of seed transmission of cowpea aphid borne mosaic virus in cowpea. Trop Grain Legume Bull 25:2–7

    Google Scholar 

  • Athow KL, Bancroft JB (1959) Development and transmission of tobacco ring-spot virus in soybean. Phytopathology 49:697–701

    Google Scholar 

  • Avegelis A (1985) Occurrence of melon necrotic spot virus in crete (Greece). Phytopathol Z 114:365–372

    Article  Google Scholar 

  • Avegelis A, Katis N (1989) Identification of alfalfa mosaic virus in greek alfalfa crops. J Phytopathol 125:231–237

    Article  Google Scholar 

  • Avegelis AD, Katis N, Grammatikaki G (1992) Broad bean wrinkly seed caused by artichoke yellow ring spot nepovirus. Ann Appl Biol 121:133–142

    Article  Google Scholar 

  • Bakker W (1974) Characterisation and ecological aspects of rice yellow mottle virus in Kenya. Ph.D. Thesis, University of Wageningen, The Netherlands

    Google Scholar 

  • Barba M, Ragozzino E, Faggioli F (2007) Pollen transmission of Peach latent mosaic viroid. J Plant Pathology 89(2):287–289

    Google Scholar 

  • Bashir M, Hampton RO (1996) Detection and identification and seed-borne viruses from cowpea (vigna unguiculata (L.) walp.) germplasm. Plant Pathol 45:54–58

    Article  Google Scholar 

  • Baudin P (1969) Transmission par graines de mais du virus de la mosaique de la canne a′sucre. Revue Agric Sucr Ile Maurice 48:277–278

    Google Scholar 

  • Bayaa B, Kumari SG, Akkaya A, Erskine W, Makkouk KM, Turk ZO, Zberk I (1998) Survey of major biotic stresses of lentil in South–East Anatolia, Turkey. Phytopathol Mediterr 37:88–95

    Google Scholar 

  • Bayot RG, Villegas VN, Magdalita PM, Jovellana MD, Espino TM, Exconde SB (1990) Seed transmissibility of papaya ring spot virus Philippine. J Crop Sci 15:107–111

    Google Scholar 

  • Beczner L, Manninger S (1975) Epidemiology of alfalfa mosaic virus, investigations on aphid transmission and seed transmission. Kulonlenyomat A Novenyvedelmi Kutato Intezet Evkonyve 13:167–176

    Google Scholar 

  • Behncken GM (1983) Guar symptomless virus. In: Boswell KF, Gibbs AJ (eds) Viruses of legumes. Descriptions and keys from VIDE. Australian National University, Canberra

    Google Scholar 

  • Belli G (1962) Notes and experiments on the transmission of lucerne mosaic virus through the seed and demonstration of its exclusion from clones of virus infected vines. Reprinted from Ann. Fac. Agr. Milano 10 (1961):1–15 (vide Neergaard, 1977)

    Google Scholar 

  • Benetti MP, Kaswalder F (1982/1983) Seed transmission of turnip yellow mosaic virus. Transmission per seme del virus del mosaic giallo del rapa. Annali dell’ Istituto Sperimentale per la Patologia Vegetale Roma 8:67–70

    Google Scholar 

  • Beniwal SPS, Chaubey SN (1984) Internal seed borne nature of urdbean leaf crinkle virus in urdbean seed. Seed Res 12(2):8–10

    Google Scholar 

  • Beniwal SPS, Chaubey SN, Bharatan N (1980) Presence of urdbean leaf crinkle virus in seeds of mungbean germplasm. Indian Phytopathol 33:360–361

    Google Scholar 

  • Berg TM (1964) Studies on poplar mosaic virus and its relation to the host. Meded Landb Hogesch Wageningen 64:1–59

    Google Scholar 

  • Berkeley GH, Madden GO (1932) Transmission of streak and mosaic diseases of tomato through seed. Sci Agric 13:194–197

    Google Scholar 

  • Bharatan N, Reddy DVR, Rajeswari R, Murthy VK, Rao VR (1984) Screening of peanut germplasm lines by Enzyme linked immunosorbent assay for seed transmission of peanut mottle virus. Plant Dis 68:757–758

    Google Scholar 

  • Bhat AI, Devasahayam S, Sarma YR, Pant RP (2003) Association of a badnavirus in black pepper (Piper nigrum L.) transmitted by mealy bug (Ferrsia virgata) in India. Curr Sci 84:1547–1550

    Google Scholar 

  • Bhattiprolu SL (1991) Seed—borne cucumber mosaic virus infecting French bean (Phaseolus vulgaris) in India. Indian J Virol 7:67–76

    Google Scholar 

  • Bird AW, Corbett MK (1988) Bombara groundnut mosaic caused by a seed transmitted Potyvirus. Phytopathology 78:860

    Article  Google Scholar 

  • Blackstock JM (1978) Lucerne transient streak and lucerne latent, two new viruses of lucerne. Aust J Agric Res 29:291–304

    Article  Google Scholar 

  • Blattny C (1956) Trudy. Inst. Genet. 23:3173 (Cited according to peters, 1982, CMI/AAB, No: 257)

    Google Scholar 

  • Block JC (1983) Viruses in environmental waters. In: Berg G (ed) Viral pollution of the environment. University of Cincinnati, Cincinnati, pp 117–145

    Google Scholar 

  • Boccardo G, Lisa V, Milne RG (1983) Cryptic virus in plants. In: Company RW, Bishop DHL (eds) Double-stranded RNA viruses. Elsevier, Amsterdam, pp 425–430

    Google Scholar 

  • Bock KR (1973a) East African strains of cowpea aphid-borne mosaic virus. Ann Appl Biol 74:75–83

    Article  PubMed  CAS  Google Scholar 

  • Bock KR (1973b) Peanut mottle virus in East Africa. Ann Appl Biol 74:171–179

    Article  Google Scholar 

  • Bos L (1970) Bean yellow mosaic virus. CMI/AAB Descriptions of Plant Viruses, No. 20

    Google Scholar 

  • Bos L, Maat DZ (1974) A strain of cucumber mosaic virus, seed-transmitted in beans. Neth J Plant Pathol 80:113–123

    Article  Google Scholar 

  • Bos L, van der Want JPH (1962) Early browning of pea, a disease caused by a soil and seed-borne virus. Tijdschr PIZiekt 68:368–390

    Google Scholar 

  • Bos L, Huttinga H, Maat DZ (1980) Spinach latent virus, a new ilar virus seed-borne in Spinacea oleracea. Neth J Plant Pathol 80:79–98

    Article  Google Scholar 

  • Boulton RE, Dhillon NPS, Vassie V, Jellis GJ (1996) Occurrence of natural infection of faba bean (Vicia faba L.) with pea seed borne mosaic potyvirus in the U.K. Plant Var Seeds 9:37–41

    Google Scholar 

  • Boulton MI (2003) Geminiviruses: major threats to world agriculture. Ann. Appl. Biol., 142: 143

    Google Scholar 

  • Bowers GR Jr, Goodman RM (1979) Soybean mosaic virus: infection of soybean seed parts and seed transmission. Phytopathology 69:569–572

    Article  Google Scholar 

  • Brakke MK (1971a) Wheat streak mosaic virus. Descriptions of plant viruses No 48. Kew, Swrey, UK, CMI/AAB

    Google Scholar 

  • Brakke MK (1971b) Soil—borne wheat mosaic virus. Descriptions of plant viruses No 77. Kew, Swrey, UK, CMI/AAB

    Google Scholar 

  • Briddon R (2003) Tomato pseudo-curly top virus. AAB Descriptions of plant viruses No 395. http://www.dpvweb.net

  • Bristow PR, Martin RR (1999) Transmission and role of honeybees in field spread of blueberry shock ilarvirus, a pollen-borne virus of highbush blueberry. Phytopathology 89:124–130

    Article  PubMed  CAS  Google Scholar 

  • Brown JK, Czosnek HK (2002) Whitefly transmission of plant viruses. Adv Bot Res 36:65–100

    Article  Google Scholar 

  • Brunt AA (1970) Cocoa yellow mosaic virus. CMI/AAB Descriptions of plant viruses No 11. Commonwealth Mycological Institute, Kew

    Google Scholar 

  • VIDE, Brunt AA, Crabtree K, Dallwitz MJ, Gibbs AJ, Watson L, Zurcher EJ (eds) (1996 onwards) Plant viruses online: descriptions and lists from the VIDE Database. Version 20 August 1996. http://www.biology.anu.edu.au/Groups/MES/vide/

  • Brunt AA, Kenten RH (1973) Cowpea mild mottle, a newly recognized virus infecting cowpeas (Vigna unguiculata) in Ghana. Ann Appl Biol 74:67–74

    Article  PubMed  CAS  Google Scholar 

  • Burkholder WH, Muller AS (1926) Hereditary abnormalities resembling certain infectious diseases in beans. Phytopathology 16:731–737

    Google Scholar 

  • Byrne DN, Bellows TS Jr (1991) Whitefly biology. Ann Rev Entomol 36:431–457

    Article  Google Scholar 

  • Cadman CH (1963) Biology of soil-borne viruses. Ann Rev Phytopathol 1:143–172

    Article  Google Scholar 

  • Campbell RN (1996) Fungal transmission of plant viruses. Ann Rev Phytopathol 34:87–108

    Google Scholar 

  • Campbell RN, Wipf–Scheibel C, Lecoq H (1996) Vector—associated seed transmission of melon necrotic spot virus in melon. Phytopathology 86:1294–1298

    Article  Google Scholar 

  • Cannon RJC, Matthews L, Collins DW (2007) A review of the pest status and control options for Thrips palmi. Crop Prot 26:1089–1098

    Article  CAS  Google Scholar 

  • Capoor SP, Varma PM (1956) Studies on a mosaic disease of vigna cylindrical Skeels. Indian J Agric Sci 26:95–103

    Google Scholar 

  • Capoor SP, Rao DG, Sawant DM (1986) Seed transmission of French bean mosaic virus. Indian Phytopathol 39:343–345

    Google Scholar 

  • Carroll TW (1974) Barley stripe mosaic virus in sperm and vegetative cells of barley pollen. Virology 60:21–28

    Article  PubMed  CAS  Google Scholar 

  • Carroll TW, Mayhew DE (1976a) Anther and pollen infection in relation to the pollen and seed transmissibility of two strains of barley stripe mosaic virus in varley. Can J Bot 54:1604–1621

    Article  Google Scholar 

  • Carroll TW, Mayhew DE (1976b) Occurrence of virions in developing ovules and embryo sacs of barley in relation to the seed transmissibility of barley stripe mosaic virus. Can J Bot 54:2497–2512

    Article  Google Scholar 

  • Castano M, Morales FJ (1983) Seed transmission of soybean mosaic virus in Phaseolus vulgaris L. Fitapathol Bras 8:103–107

    Google Scholar 

  • Castillo JN, Olive EF, Campos SS (2011) Emerging virus diseases transmitted by whiteflies. Ann Rev Phytopathol 49:219–248

    Article  CAS  Google Scholar 

  • Catherall PL (1972) Barley stripe mosaic virus. Rep Welsh Plant Breed Stat 1971:62

    Google Scholar 

  • Chagas CM, Kitajima EW, Rodrigues JCV (2003) Coffee ringspot virus vectored by Brevipalpus phoenicis (Acari: Tenuipalpidae) in coffee. Exp Appl Acarol 30:203–213

    Google Scholar 

  • Chand Dinesh, Chalam VC, Pant RP, Khetrapal RK (2004) Detection and symptomatology of seed-transmitted black gram mottle virus in Vigna mango. J Mycol Plant Pathol 34:202–204

    Google Scholar 

  • Chang CA, Kno YJ (1983) Cowpea aphid borne mosaic virus and its effect on the yield and quality of asparagus bean. J Agric Res 32(3):270–278

    Google Scholar 

  • Chang CA, Purcifull DE, Zettler FW (1990) A comparison of two strains of peanut stripe virus in Taiwan. Plant Dis 74:593–596

    Article  Google Scholar 

  • Chauhan LS, Singh DR (1979) Occurrence of mosaic on safflower in Northern India. Indian Phytopathol 32(2):301–302

    Google Scholar 

  • Chenulu VV, Sachchidananda J, Mehta SC (1968) Studies on a mosaic disease of cowpea from India. Phytopathol Z 63:381–387

    Article  Google Scholar 

  • Chiko AW (1975) Natural occurrence of barley stripe mosaic virus in wild oats (Avena fatua). Can Bot 53:417–420

    Article  Google Scholar 

  • Chiko AW, Zimmer RC (1978) Effect of pea seed-borne mosaic virus on two cultivars of field pea grown in Manitoba. Can J Plant Sci 58:1073–1080

    Article  Google Scholar 

  • Chitra TR, Prakash HS, Albrechtsen SE, Shetty HS, Mathur SB (1999a) Infection of tomato and bell pepper of ToMV and TMV at different growth stages and establishment of virus in seeds. J Plant Pathol 81:123–126

    Google Scholar 

  • Chitra TR, Prakash HS, Albrechtsen SE, Shetty HS, Mathur SB (1999b) Seed transmission of mosaic viruses in tomato and bell pepper. Trop Sci 39:80–84

    Google Scholar 

  • Chitra TR, Prakash HS, Albrechtsen SE, Shetty HS, Mathur SB (2002) Indexing of leaf and seed samples of tomato and bell pepper for tobamoviruses. Indian Phytopathol 55:123–126

    Google Scholar 

  • Choi HS, Kim MK, Park JW, Lee SH, Kim KH, Kim JS, Were HK, Choi JK, Takanami Y (2006a) First report of the peanut stripe strain of bean common mosaic virus (BCMV—PSt.) infecting mungbean in Korea. Plant Pathol J 22(1):46–50

    Article  Google Scholar 

  • Choi HS, Kim MK, Park JW, Cheon JK, Kim KH, Kim JS, Were HK, Choi JK, Takanami Y (2006b) Occurrence of bean common mosic virus (BCMV) infecting peanut in Korea. Plant Pathol J 22:97–102

    Article  Google Scholar 

  • Cicek Y, Yorganci U (1991) Studies on the incidence of tobacco mosaic virus on certified seed of tomato, pepper and egyptian in A’ egean region. J Turk Phytopathol 20:57–68

    Google Scholar 

  • Clark MF (1972) Purification some properties of a como virus group virus isolated in New Zealand. Newzeal J Agric Res 15:846–856

    Article  Google Scholar 

  • Cockbain AJ (1988) Pea seed-borne mosaic virus (PSbMV). Rothamsted Annual Report for 1987, pp 70–71

    Google Scholar 

  • Cockbain AJ, Woods RD, Calilung VCJ (1983) Necrosis in field beans (Vicia faba) induced by interactions between bean leaf roll, pea early-browning and pea enation mosaic viruses. Ann Appl Biol 102:495–499

    Article  Google Scholar 

  • Corbett MK (1958) A virus disease of lupines caused by bean yellow mosaic virus. Phytopathology 48:86–91

    Google Scholar 

  • Cordoba-Selles MC, Garcia-Randez A, Alfaro-Fernandez A, Jorda-Gutierrez C (2007) Seed transmission of pepino mosaic virus and efficacy of tomato seed disinfection treatments. Plant Dis 91:1250–1254

    Article  Google Scholar 

  • Costa AS (1976) Whitefly transmitted plant diseases. Ann Rev Phytopathol 14:429–449

    Article  Google Scholar 

  • Couch HB (1955) Studies on seed transmission of lettuce mosaic virus. Phytopathology 45:63–69

    Google Scholar 

  • Coutts BA, Prince RT, Jones RAC (2008) Further studies on pea seed—borne mosaic virus in cool—season crop legumes: responses to infection and seed quality defects. Aust J Agric Res 59(11):1130–1145

    Article  Google Scholar 

  • Crill P, Hagedorn FJ, Hanson EW (1970) Alfalfa mosaic the disease and its virus incitant. University of wisconsin research bulletin No 280, p 39

    Google Scholar 

  • Crowley NC (1957) Studies on the seed transmission of plant virus diseases. Aust J Biol Sci 10:449–464

    Google Scholar 

  • Crowley NC (1959) Studies on the time of embryo infection by seed-transmitted virus. Virology 8:116–123

    Article  PubMed  CAS  Google Scholar 

  • Dale WT (1949) Observations on a virus disease of cowpea in Trinidad. Ann Appl Biol 36:327–333

    Article  PubMed  CAS  Google Scholar 

  • Darozhkin MA, Chykava SIG (1974) Da pytannya peredachy X-virusa nasennem bul ′by. (Transmission of virus X by potato seeds). Vestsi Akad Navuk BSSR Biyal Navuk 5:80–85

    Google Scholar 

  • Davis RF, Hampton RO (1986) Cucumber mosaic virus isolates seed-borne in Phaseolus vulgaris: serology, host pathogen relationships and seed transmission. Phytopathology 76:999–1004

    Article  Google Scholar 

  • De Assis Filho FM, Sherwood JL (2000) Evaluation of seed transmission of turnip yellow mosaic virus and Tobacco mosaic virus in Arabidopsis thaliana. Phytopathology 90:1233–1238

    Article  PubMed  Google Scholar 

  • de Bokx JA, Vander want JPH (1987) Viruses of potato and sweet potato production, 2nd edn. Wageningen, The Netherlands

    Google Scholar 

  • Delfosse P, Reddy AS, Legreve A, Devi PS, Devi KT, Maraite H, Reddy DVR (1999) Indian peanut clump virus (IPCV) infection on wheat and barley: symptoms, yield loss and transmission through seed. Plant Pathol 48:278–282

    Article  Google Scholar 

  • Demangeat G, Komar V, Van-Ghelder C, Voisin R, Lemaire O, Esmen Jaud D, Fuchs M (2010) Transmission competency of single female xiphinema index lines for Grapevine fanleaf virus. Phytopathology 100:384–389

    Article  PubMed  CAS  Google Scholar 

  • Demski JW (1977) Seed-borne tobacco mosaic virus in peppers. In: Abstracts of the proceedings of American phytopathological society, vol 4, pp 92–93

    Google Scholar 

  • Demski JW (1981) Tobacco mosaic virus is seedborne in pimiento peppers. Plant Dis 65:723–724

    Article  Google Scholar 

  • Demski JW, Wells HD, Miller JD, Khan MA (1983) Peanut mottle virus epidemics in Lupins. Plant Dis 67:166–168

    Article  Google Scholar 

  • Demski JW, Reddy DVR, Sowell G Jr, Bays D (1984) Peanut stripe virus—a new seed borne poty virus from China infecting groundnut (Archis hypogaea). Ann Appl Biol 105:495–501

    Article  Google Scholar 

  • Desjardins PR, Latterell RL, Mitchell JE (1954) Seed transmission of tobacco ringspot virus in Lincoln variety of soybean. Phytopathology 44:86

    Google Scholar 

  • Dhanraj KS, Raychaudhuri SP (1969) A note on barley mosaic in India. Plant Dis Rep 53:766–767

    Google Scholar 

  • Dieryck B, Otto G, Doucet D, Legreve A, Delfosse P, Bragard C (2009) Seed, soil and vegetative transmission contribute to the spread of pecluviruses in Western Africa and the Indian sub-continent. Virus Res 141:184–189

    Article  PubMed  CAS  Google Scholar 

  • Dinesh Chand, Chalam VC, Khetarpal RK (2007) Prevalence and seed transmission of Bean common mosaic virus on black gram and green gram in India. In: Procedings of the 2nd Asian congress of mycology and plant pathology, Hyderabad, 19–22 Dec 2007, p 425

    Google Scholar 

  • Diwakar MP, Mali VR (1977) Cowpea mosaic virus disease—a new record for Marathwada. J Maharastra Agric Univ 1:274–277

    Google Scholar 

  • Domier LL, Steinlage TA, Hobbs HA, Wang Y, Herrera Rodriguez G, Haudenshield J, McCoppin NK, Hartman GL (2007) Similarities in seed and aphid transmission among soybean virus isolates. Plant Dis 91:546–550

    Article  CAS  Google Scholar 

  • Doolittle SP (1920) The mosaic disease of cucurbits. U.S Dept Agric Bull 879:1–69

    Google Scholar 

  • Doolittle SP, Beecher ES (1937) Seed transmission of tomato mosaic following the planting of freshly exteracted seed. Phytopathology 27:800–801

    Google Scholar 

  • Doolittle SP, Gilbert WW (1919) Seed transmission of cucurbit mosaic by the wild cucumber. Phytopathology 9:326–327

    Google Scholar 

  • Doolittle SP, Walker MN (1925) Further studies on the overwintering and dissemination of cucurbit mosaic. J Agric Res 31:1–58

    Google Scholar 

  • Dos SAA (1987) Virus transmission by cowpea (Vigna unguiculata) seeds in the State of Piaui. Transmissao de viurs atraves de semetes de caupi (Vigna unguiculata) no Estado do Piaui. Fito Patologia Brasileira 12:90–91

    Google Scholar 

  • Drijfhout E, Bos L (1977) The identification of two new strains of bean common mosaic virus. Neth J Plant Pathol 83:13–25

    Article  Google Scholar 

  • Dubey GS, Sharma I (1985) Seed transmission of urdbean leaf crinkle virus. Seed Sci Technol 13(1):149–153

    Google Scholar 

  • Duffus JE, Liu HY, Wisler GC (1996) Tomato infectious chlorosis virus—a new clostero-like virus transmitted by Trialeurodes vapovariosum. Eur J Plant Pathol 102:591–596

    Article  Google Scholar 

  • Edwardson JR, Christie RG (1986) Viruses infecting forage legumes. Fla Agric Exp Stn Mongr 14:742

    Google Scholar 

  • Ekbote AU, Mali VR (1978) Occurrence of alfalfa mosaic virus on alfalfa in India. Indian Phytopathol 31:171–175

    Google Scholar 

  • El-Dougdoug KA, Taha RM, Mousa AA (1999) Studies on some faba bean seed-borne viruses. J Agric Sci 7:381–390

    Google Scholar 

  • Eppler A, Kheder MA (1988) Seedborne viruses in locally produced Vicia faba seeds from the A.R. of Egypt. Med Fac Landbouww Rijksuniv Genet 53/2a:461–471

    Google Scholar 

  • Eppler A, Kheder MA, Schlosser E (1988) Viruses in lentils raised from seeds collected on local markets in Egypt. In: 5th international congress of plant pathology, Kyoto

    Google Scholar 

  • Erdiller G, Akbas B (1996) Seed transmission of some viruses in chickpea and lentil. J Turk Phytopathol 25:93–101

    Google Scholar 

  • Eslick RF, Afanasiev MM (1955) Influence of time of infection with barley stripe mosaic on symptoms, plant yield and seed infection of barley. Plant Dis Rep 39:722–724

    Google Scholar 

  • Evans IR (1973) Seed-borne bean yellow mosaic virus of fababean in Canada. Can Plant Dis Surv 53:123–126

    Google Scholar 

  • Falk BW, Tsai JH (1998) Biology and molecular biology of viruses in the genus Tenuivirus. Ann Plant Pathol 36:139–163

    CAS  Google Scholar 

  • Fauquet CM, Nawaz-ul-Rehman MS (2008) Emerging Gemini viruses In: Desk encyclopedia of plant and fungal virology. Academic Press, pp 404–411

    Google Scholar 

  • Fauquet CM, Bisaro DM, Briddon RW, Brown JK, Harrison BD, Rybicki EP, Stenger DC, Stanley J (2003) Revision of taxonomic criteria for species demarcation in the family Geminiviridae, and an updated list of begomovirus species. Arch Virol 148:405–421

    Article  PubMed  CAS  Google Scholar 

  • Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball IA (2005) Virus taxonomy. Eighth report of the International committee on taxonomy of viruses, Elsevier

    Google Scholar 

  • Fauquet CM, Briddon RW, Brown JK, Moriones E, Stanley J, Zerbini M, Zhou X (2008) Geminivirus strain demarcation and nomenclature. Arch Virol 153:783–821

    Article  PubMed  CAS  Google Scholar 

  • Fazardo TG (1930) Studies on the mosaic disease of the bean (Phaseolus vulgaris). Phytopathology 20:469–494

    Google Scholar 

  • Fernow KH, Peterson LC, Plaisted RL (1970) Spindle tuber virus in seeds and pollen of infected potato plants. Am Potato J 47:75–80

    Article  Google Scholar 

  • Fiedorow ZG (1980) Some virus diseases of horse bean. Tagungs-Bericht Akademie der landwirtschaftswissenschaften der Deutschen Demokratischen Republik, vol 184. Berlin, pp 361–366

    Google Scholar 

  • Fiedorow ZG (1983) Pea early browning virus on horse bean (Vicia faba L. ssp. minor). Zeszyty problemowe postepow Nauk Rolniczych 291:97–110

    Google Scholar 

  • Fischer HU, Lockhart BE (1976) A strain of cucumber mosaic virus isolated from cowpea in Morocco. Phytopathol Z 85:132–138

    Article  Google Scholar 

  • Forbes AR (1977) The mouth parts and feeding mechanism of aphids pp 83-104. In: Harris KF, Maramorosch K (eds) Aphids as virus vectors. Academic Press, London, p 559

    Google Scholar 

  • Forster RL, Seifers DL, Strausbaugh CA, Jensen SG, Ball EM, Harvey TL (2001) Seed transmission of the high plains virus in sweet corn. Plant Dis 85:696–699

    Article  Google Scholar 

  • Franc GD, Banttari EE (1984) The transmission of potato virus S by the cutting knife and retention time of infectious PVS on common surfaces. Am Potato J 61:253–260

    Article  Google Scholar 

  • Francki RIB, Kitajima EW, Peters D (1981) Tomato spotted wilt virus. In: Kurstak E (ed) Handbook of plant virus infections. Elsevier/North-Holland, London, pp 455–490

    Google Scholar 

  • Francki RIB, Graddon DJ, McLean GD (1988) Subterranean clover mottle virus. AAB Descriptions of plant viruses No 329, Association of Applied Biologists, Wellesbourne

    Google Scholar 

  • Frencel I, Pospieszny H (1979) Viruses in natural infections of yellow lupin (Lupinus luteus L.) in Poland. IV. Bean common mosaic virus (BCMV). Phytopathol Acad Sci Hung 14:279–284

    Google Scholar 

  • Fritzsche R, Karl E, Lehmann W, Proesler G (1972) Tierische Vektoren Pflanzen Pathogener viren. Veb Gustav. Fischer Verlag, Jena, p 521

    Google Scholar 

  • Frosheiser FI (1964) Alfalfa mosaic virus transmitted through alfalfa seed. Phytopathology 54:893

    Google Scholar 

  • Frosheiser FI (1970) Virus-infected seeds in alfalfa seed lots. Plant Dis Rep 54:591–594

    Google Scholar 

  • Frosheiser FI (1974) Alfalfa mosaic virus transmission to seed through alfalfa gametes and longevity in alfalfa seed. Phytopathology 64(1):102–105

    Google Scholar 

  • Fulton JP, Scott HA, Gamez R (1980) Beetles. In: Harris KF, Maramorosch K (eds) Vectors of plant pathogens. Academic Press, New York, pp 467, 115–132

    Google Scholar 

  • Fulton JP, Gergerich RC, Scott HA (1987) Beetle transmission of plant viruses. Ann Rev Phytopathol 25:111–123

    Article  Google Scholar 

  • Gallo J, Jurik M (1995) Susceptibility of some pea cultivars to pea seed—borne mosaic virus infection and virus transmission by seeds. Acta Virlogica 39:283–286

    CAS  Google Scholar 

  • Gamarra HA, Fuentes S, Morales FJ, Glover R, Malumphy C, Barker I (2010) Bemisia afer sensu lato, a vector of Sweet potato chlorotic stunt virus. Plant Dis 94:510–514

    Article  CAS  Google Scholar 

  • Garnsey SM, Behe CG and Lockhart BEL (1998) Transmission of citrus yellow mosaic badnavirus by the citrus mealybug. Phytopathology 9. Supplement Abstract S43

    Google Scholar 

  • Gay JD (1972) Isolation and identification of a new lima bean virus. Phytopathology 62:803

    Google Scholar 

  • Gergerich RC, Scott HA, Fulton JP (1983) Regurgitant as a determinant of specificity in the transmission of plant viruses by beetles. Phytopathology 73:936–938

    Article  Google Scholar 

  • German TL, Ullman DE, Moyer JW (1992) Tospo viruses: diagnosis, molecular biology, phylogeny and vector relationships. Ann Rev Phytopathol 30:315–348

    Article  CAS  Google Scholar 

  • Ghanekar AM, Schwenk FW (1974) Seed transmission and distribution of tobacco streak virus in six cultivars of soybeans. Phytopathology 64:112–114

    Article  Google Scholar 

  • Ghanim M, Morin S, Zeiden M, Czosnek H (1998) Evidence for transovarial transmission of tomato yellow leaf curl virus by its vector, the whitefly, Bemisia tabaci. Virology 240:295–303

    Article  PubMed  CAS  Google Scholar 

  • Ghanim M, Czosnek H (2000) Tomato yellow leaf curl geminivirus (TYLCV-Is) Is Transmitted among Whiteflies (Bemisia tabaci) in a Sex-Related Manner. J Virol 74(10):4738–4745

    Google Scholar 

  • Gibb KS, Randles JW (1988) Studies on the transmission of Velvet tobacco mottle virus by the mirid, Cyrtopeltis nicotianae. Ann Appl Biol 112:427–437

    Google Scholar 

  • Gibbs AJ, Harrison BD (1964) Nematode transmitted viruses in sugarbeet in East Anglia. Plant Pathol 13:144–150

    Article  Google Scholar 

  • Gillaspie AG Jr, Hajimorad MR, Ghabrial SA (1998a) Characterization of a severe strain of cucumber mosaic cucumovirus seed borne in cowpea. Plant Dis 82:419–422

    Article  Google Scholar 

  • Gillaspie AG Jr, Pappu HR, Jain RK, Rey MEC, Hopkins MS, Pinnow DL, Morris JB (1998b) Characteristics of a latent poty seed—borne in guar and of Guar green—sterile virus. Plant Dis 82:765–770

    Article  Google Scholar 

  • Gillaspie AG Jr, Pio-Ribeiro G, Andrade GP, Pappu HR (2001) RT-PCR detection of seed-borne cowpea aphid-borne mosaic virus in peanut. Plant Dis 85:1181–1182

    Article  CAS  Google Scholar 

  • Gilmer RM, Kelts LJ (1968) Transmission of tobacco mosaic virus in grape seed. Phytopathology 58:277–278

    Google Scholar 

  • Gilmer RM, Wilks JM (1967) Seed transmission of tobacco mosaic virus in apple and pear. Phytopathology 57:214–217

    Google Scholar 

  • Gilmer RM, Whitney WK, Williams RJ (1974) Epidemiology and control of cowpea mosaic in Western Nigeria. In: Proceedings of the Ist I.I.T.A. Grain legume improvement workshop. International Institute of Tropical Agriculture, Ibadan, p 325

    Google Scholar 

  • Girish KR, Usha R (2005) Molecular characterization of two soybean-infecting begomoviruses from India and evidence for recombination among legume-infecting begomoviruses from South-East Asia. Virus Res 108:167–176

    Article  PubMed  CAS  Google Scholar 

  • Givord L (1981) Southern bean mosaic virus isolated from cowpea (Vigna unguiculata) in Ivory coast. Plant Dis 65:755–756

    Article  Google Scholar 

  • Glaeser G (1976) Untersuchungen Zur Frage der Samenumbertragung von paprikavirosen (Gurken mosaik virus and Tobak mosaik virus). Land und Forsiwirtschaftliche Forschung in Oesterreich (Festschrift) 7:111–124

    Google Scholar 

  • Gold AH, Suneson CA, Houston BR, Oswald JW (1954) Electron microscopy and seed and pollen transmission of rod-shaped particles associated with the false stripe disease of barley. Phytopathology 44:115–117

    Google Scholar 

  • Golnaraghi AR, Shahraeen N, Pourrahim R, Farzadfar Sh, Ghasemi A (2004) Occurrence and relative incidence of viruses infecting soybeans in Iran. Plant Dis 88:1069–1074

    Article  Google Scholar 

  • Gonzalez-Garza R, Gumpf DJ, Kishaba AN, Bohn GW (1979) Identification, seed transmission and host range pathogenecity of California isolate of melon necrotic spot virus. Phytopathology 69:340–345

    Article  Google Scholar 

  • Goodell JJ, Hampton RO (1984) Ecological characteristics of the lentil strain of pea seedborne mosaic virus. Plant Dis 68:148–150

    Google Scholar 

  • Goss RW (1926) Transmission of potato spindle tuber by cutting knives and seed piece contact. Phytopathology 16:299–303

    Google Scholar 

  • Grasmick ME, Slack SA (1986) Effect of potato spindle tuber viroid on sexual reproduction and viroid transmission in true potato seed. Can J Bot 64(2):336–340

    Article  Google Scholar 

  • Gray SM, Banerjee N (1999) Mechanisms of arthropod transmission of plant and animal viruses. Microbiol Mol Biol R 63:128–148

    Google Scholar 

  • Green SK, Lee DR (1989) Occurrence of Peanut stripe virus (PStV) on soybean in Taiwan—effect on yield and screening for resistance. Trop Pest Manag 35:123–126

    Article  Google Scholar 

  • Grogan RG, Bardin R (1950) Some aspects concerning seed transmission of lettuce mosaic virus. Phytopathology 40:965

    Google Scholar 

  • Grogan RG, Schnathorst WC (1955) Tobacco ringspot virus the cause of lettuce calico. Plant Dis Rep 39:803–806

    Google Scholar 

  • Grogan RG, Welch JE, Bardin R (1952) Common lettuce mosaic and its control by the use of mosaic free seed. Phytopathology 42:573–578

    Google Scholar 

  • Grogan RG, Hall DH, Kimble KA (1959) Cucurbit mosaic viruses in California. Phytopathology 49:366–376

    Google Scholar 

  • Guirao P, Beitia F, Cenis JL (1997) Biotype determination in Spanish populations of Bemisia tabaci (Hemiptera: Aleyrodidae). Bull Entomol Res 87:587–593

    Article  Google Scholar 

  • Hadidi A, Shamloul AM, Poggi-Pollini C, Amer MA (1997) Occurrence of peach latent mosaic viroid in stone fruits and its transmission with contaminated blades. Plant Dis 81:154–158

    Article  CAS  Google Scholar 

  • Hagborg WAF (1954) Dwarfing of wheat and barley by the barley stripe mosaic (false-stripe) virus. Can J Bot 32:24–37

    Article  Google Scholar 

  • Hamilton RI (1985) Soybean bud blight, seed transmission of causal virus. In: Shibles R (ed) Proceedings of the World’s soybean research, conference, III Westview press, Boulder Co, pp 515–522

    Google Scholar 

  • Hamilton RI, Leung E, Nichols C (1977) Surface contamination of pollen by plant viruses. Phytopathology 67:395–399

    Article  Google Scholar 

  • Hampton RO (1963) Seed transmission of white clover mosaic and clover yellow mosaic viruses in red clover. Phytopathology 53:1139

    Google Scholar 

  • Hampton RO (1967) Seed transmission of viruses in red clover. Phytopathology 57:98

    Google Scholar 

  • Hampton RO (1969) Characteristics of virus particles associated with the seed-borne pea fizzletop disease. Phytopathology 59:1029

    Google Scholar 

  • Hampton RO (1972) Dynamics of symptom development of the seed-borne pea fizzletop virus. Phytopathology 62:268–272

    Article  Google Scholar 

  • Hampton RO (1982) Incidence of the lentil strain of pea seed—borne mosaic virus as a contaminant of lens culinaris germplasm. Phytopathology 72:695–698

    Article  Google Scholar 

  • Hampton RO, Mink GI (1975) Pea seed-borne mosaic virus. CMI/AAB, Descriptions of plant viruses. Kew, Surrey

    Google Scholar 

  • Hampton RO, Muehlbauer FJ (1977) Seed transmission of the pea seed-borne mosaic virus in lentils. Plant Dis Rep 61:235–238

    Google Scholar 

  • Hampton R, Beczner L, Hagedorn D, Bos L, Inouye T, Barnett O, Musil M, Meiners J (1978) Host reactions of mechanically transmissible legume viruses on the Northern temperate zone. Phytopathology 65:1342–1346

    Article  Google Scholar 

  • Hampton RO, Waterworth H, Goodman RM, Lee R (1982) Importance of seed-borne viruses in crop germplasm. Plant Dis 66:977–978

    Article  Google Scholar 

  • Hanada K, Harrison BD (1977) Effects of virus genotype and temperature on seed transmission of nepoviruses. Ann Appl Biol 85:79–92

    Article  Google Scholar 

  • Hani A (1971) Zur Epidemiologie des Guerkinmosaic virus im Tessin. Phytopathol Z 72:115–144

    Article  Google Scholar 

  • Hani A, Pelet F, Kern H (1970) Zur Bedeutung von Stellaria media (L.) Vill. in der Epidemiologie des Gurkenmosaik virus. Phytopathol Z 68:81–83

    Article  Google Scholar 

  • Hansen AJ, Leseman DE (1978) Occurrence and characteristics of a seed-transmitted potyvirus from Indian, African, North American Guar. Phytopathology 68:841–846

    Article  Google Scholar 

  • Haque SQ, Persad GC (1975) Some observations on the seed-transmission of beetle-transmitted cowpea mosaic virus.. In: Bird J, Maramorosch K (eds) Tropical diseases of legumes. Academic Press, New York, p. 171, 119–121

    Google Scholar 

  • Hardtl H (1964) Zum Nachweis von Gesund-und Abbaulagen bei Zweibelkultue. Gesunde Pfl 16:218–221

    Google Scholar 

  • Hardtl H (1972) Die Ubertragung der Zwiebelgelbstreifigkeit durch den Samen. Z Pflkrankh PflSchutz 79:694–701

    Google Scholar 

  • Hardtl H (1978) Pollen as carrier of virus. Gartanban Wissenschaft 43:34–47

    Google Scholar 

  • Harris KF, Maramorosch K (1980) Vectors of plant pathogens. Academic Press, NewYork. pp 467

    Google Scholar 

  • Harrison AL (1935) Mosaic of the refugee bean. New York St. Agr. Exp. Sta. Bull 656:19

    Google Scholar 

  • Harrison BD (1964) Specific nematode vector for serologically distinctive forms of raspberry ringspot and tomato black ring viruses. Virology 23:544–550

    Article  Google Scholar 

  • Harrison BD (1973) Pea early-browning virus. CMI/AAB Descriptions of plant viruses No 120, Kew, Surry

    Google Scholar 

  • Harrison BD (1977) Ecology and control of viruses with soil-inhabiting vectors. Annu Rev Phytopathol 15:331–360

    Article  Google Scholar 

  • Heinze K, Kohler E (1941) Die Mosaikkrankheit der Sojabohne und ihre ubertragung durch insekten. Phytopathol Z 13:207–242

    Google Scholar 

  • Hemmati K, McLean DL (1977) Gamete-seed transmission of alfalfa mosaic virus and its effect on seed germination and yield in alfalfa plants. Phytopathology 67:576–579

    Article  Google Scholar 

  • Hernandez L, Ramos PL, Rodriguez M, Pena I, Perez JM (2010) First report of pineapple mealybug wilt associated virus-3 infecting pineapple in Cuba. New Dis Rep 22:18

    Article  Google Scholar 

  • Herold F (1956) Isteine wirksame Bekampfung des Salatmosaik virus moglich? Saatgutwirtschaft 1956:307–309

    Google Scholar 

  • Hill JH, Martinson CA, Russell WA (1974) Seed transmission of maize dwarf mosaic and wheat streak mosaic viruses in maize and response to inbred lines. Crop Sci 14:232–235

    Article  Google Scholar 

  • Hogenhout Saskia A, Ammar El-Desouky, Whitfield Anna E, Redinbaugh Margaret G (2008) Insect vector interactions with persistently transmitted viruses. Annu Rev Phytopathol 46:327–359

    Article  PubMed  CAS  Google Scholar 

  • Hohn T (2007) Plant virus transmission from the insect point of view. Proc Natl Acad Sci USA 104:17905–17906

    Google Scholar 

  • Hollings M, Stone OM, Dale WT (1972) Tomato ringspot virus in Pelargonium in England. Plant Pathol 21:46–47

    Article  Google Scholar 

  • Honda Y, Muhsin M, Iizuka N, Yoshida K (1988) Comparisons among Indonasian isolates and Japanese strains of soybean stunt virus. Jpn Agric Res Q 22:14–19

    Google Scholar 

  • Hull R (2002) Matthews plant virology. Academic Press, San Diego

    Google Scholar 

  • Hunter DE, Darling HM, Beale WL (1969) Seed transmission of potato spindle tuber virus. Am Potato J 46:247–250

    Article  Google Scholar 

  • Hunter WB, Hiebert E, Webb SE, Tsai JH, Polston JE (1998) Location of geminiviruses in the whitefly Bemisia tabaci (Homoptera: Aleyrodidae). Plant Dis 82:1147–1151

    Article  Google Scholar 

  • Iizuka N (1973) Seed transmission of viruses in soybean. Bull Tohoku Nat Agric Exp Sta 46:131–141

    Google Scholar 

  • Iizuka N, Reddy DVR (1986) Identification of viruses from peanut in India. In: Virus diseases of rice and legumes in the tropics. Technical Bulletin No 21. TARS, Japan, p 238, 64–183

    Google Scholar 

  • Iizuka N, Yunoki T (1974) Peanut stunt virus isolated from soybeans, glycine max. Merr Bull Tohuku Nat Agric Exp Stat 47:1–12

    Google Scholar 

  • Inouye T (1962) Studies on barley stripe mosaic in Japan. Ber Ohara Inst Landw Biol 11:413–496

    Google Scholar 

  • Inouye T (1967) A seed-borne mosaic virus of pea. Ann Phytopathol Soc Jpn 33:38–42

    Article  Google Scholar 

  • Irwin ME, Goodman RM (1981) Ecology and control of soybean mosaic virus in soybeans. In: Maramorosch K, Harris KF (eds) Plant diseases and vectors: ecology and epidemiology. Academic Press, New York, pp 182–215

    Google Scholar 

  • Irwin ME, Ruesink WG, Isard SA, Kampmaier GE (2000) Mitigating epidemics caused by non-persistently transmitted aphid-borne viruses: the role of plant environment. Virus Res 71:185–211

    Article  PubMed  CAS  Google Scholar 

  • Iwaki M (1978) Seed transmission of cucumber mosaic virus in mungbean (Vigna radiata). Ann Phytopathol Soc Jpn 44:337–339

    Article  Google Scholar 

  • Iwaki M, Thongmeearkom P, Parommin M, Honda Y, Hibi T (1982) Whitefly transmission and some properties of cowpea mild mottle virus on soybean in Thailand. Plant Dis 66:365–368

    Article  Google Scholar 

  • Iwaki M, Thongmeearkom P, Sarindu N, Deema N, Honda Y, Goto T, Surin P (1986) Peanut mottle virus isolated from soybean in Thailand. In: Virus diseases of rice and legumes in the tropics Technical Bulletin No 21. TARC, Japan, p 238, 101–105

    Google Scholar 

  • Jain RK, Pappu HR, Pappu SS, Varma A, Ram RD (1998) Molecular characterization of papaya ringspot potyvirus isolates from India. Ann Appl Biol 132:413–425

    Article  CAS  Google Scholar 

  • Jayasinghe U (1982) Chlorotic mottle of bean. Ph.D. Thesis, Agricultural University of Wageningen, The Netherlands, p 156

    Google Scholar 

  • Jezewska M (1995) Detection of polish isolate of wheat soil borne mosaic virus in cereal seeds. Phytopathologica 10:61–67

    Google Scholar 

  • Johansen E, Edwards MC, Hampton RO (1994) Seed transmission of viruses: current perspectives. Ann Rev Phytopathol 32:363–386

    Article  Google Scholar 

  • Jones RAC (1982) Tests for transmission of four potato viruses through potato true seed. Ann Appl Biol 100:315–320

    Article  Google Scholar 

  • Jones RAC (1988) Seed-borne cucumber mosaic virus infection of narrowleafed lupin (Lupinus angustifolius) in Western Australia. Ann Appl Biol 113:507–518

    Article  Google Scholar 

  • Jones RAC (1991) Losses in productivity of subterranean clover swards caused by sowing cucumber mosaic virus infected seed. Ann Appl Biol 119:273–288

    Article  Google Scholar 

  • Jones DR (2003) Plant viruses transmitted by whiteflies. Eur J Plant Pathol 109(3):195–219

    Article  Google Scholar 

  • Jones RAC (2004) Using epidemiological information to develop effective integrated virus disease management strategies. Virus Res 100:5–30

    Article  PubMed  CAS  Google Scholar 

  • Jones DR (2005) Plant viruses transmitted by thrips. Eur J Plant Pathol 113:119–157

    Article  Google Scholar 

  • Jones RAC, Mc Kirdy SJ (1990) Seed—borne cucumber mosaic virus infection of Subterranean clover in Western Australia. Ann Appl Biol 115:263–277

    Article  Google Scholar 

  • Jones RAC, Nicholas DA (1992) Studies on alfalfa mosaic virus infection of burn medic (medicago polymorpha) sward: seed-borne infection, persistence, spread and effects on productivity. Aust J Agric Res 43:697–715

    Article  Google Scholar 

  • Jones RAC, Pathipanawat W (1989) Seed-borne Alfalfa mosaic virus infecting annual medics (Medicago spp) in Western Australia. Ann Appl Biol 115:263–277

    Article  Google Scholar 

  • Jones AT, Froster RLS, Mohamed NA (1979) Purification and properties of Australian lucerne latent virus, a seed-borne virus having affinities with nepoviruses. Ann Appl Biol 92:49–59

    Article  Google Scholar 

  • Jones RAC, Coutts BA, Mackie AE, Dwyer GI (2005) Seed transmission of wheat streak mosaic virus shown unequivocally in wheat. Plant Dis 89:1048–1050

    Article  Google Scholar 

  • Jones RAC, Pearce RM, Prince RT, Coutts BA (2008) Natural resistance to Alfalfa mosaic virus in different lupin species. Aust Plant Pathol 37:112–116

    Article  Google Scholar 

  • Jose J, Usha R (2003) Bhendi yellow vein mosaic disease in India is caused by association of a DNA Beta satellite with a Begomovirus. Virology 305:310–317

    Article  PubMed  CAS  Google Scholar 

  • Kahn RP (1956) Seed transmissioin of tomato ringspot virus in the Lincoln variety of soybeans. Phytopathology 46:295

    Google Scholar 

  • Kahn RP, Scott HA, Monroe RI (1962) Eucharis mottle strain of tobacco ring spot virus. Phytopathology 52:1211–1216

    Google Scholar 

  • Kaiser WJ (1972) Seed transmission of bean yellow mosaic virus in broad beans. Phytopathology 62:768

    Google Scholar 

  • Kaiser WJ (1973) Biology of bean yellow mosaic and pea leaf roll viruses affecting Vicia faba in Iran. Phytopathol Z 78:253–263

    Article  Google Scholar 

  • Kaiser WJ, Hannan RM (1983) Additional hosts of alfalfa mosaic virus and its seed transmission in tumble pigweed and bean. Plant Dis 67(12):1354–1357

    Article  Google Scholar 

  • Kaiser WJ, Mossahebi GH (1974) Natural infection of mungbean by bean common mosaic virus. Phytopathology 64:1209–1214

    Article  Google Scholar 

  • Kaiser WJ, Mossahebi GH (1975) Studies with cowpea aphid-borne mosaic virus and its effect on cowpea in Iran. FAO Plant Prot Bull 23(2):33–39

    Google Scholar 

  • Kaiser WJ, Danesh D, Mohmoud Okhovat, Hossein Mossahebi (1968) Diseases of pulse crops (edible legumes) in Iran. Plant Dis Rep 52:687–691

    Google Scholar 

  • Kaiser WJ, Wyatt SD, Pesho GR (1982) Natural hosts and vectors of tobacco streak virus in eastern Washington. Phytopathology 72:1508–1512

    Article  Google Scholar 

  • Kaiser WJ, Wyatt SD, Klein RE (1991) Epidemiology and seed transmission of two tobacco streak virus pathotypes associated with seed increases of legume germplasm in Eastrus Washington. Plant Dis 75:258–264

    Article  Google Scholar 

  • Kawai A, Kimura S, Nishio T, Nagao N (1985) Detection for cucumber green mottle mosaic virus in cucumber seeds using Enzyme-linked immunosorbent assay. Res Bull Plant Prot Serv Jpn 21:47–53

    Google Scholar 

  • Kelley RD, Cameron HR (1986) Location of prune dwarf and Prunus necrotic ringspot viruses associated with sweet cherry pollen and seed. Phytopathology 76:317–322

    Article  Google Scholar 

  • Kemp WG, Weibe J, Patrick ZA (1972) Squash mosaic virus in muskmelon seed distributed commercially in Ontario. Can Plant Dis Surv 52:58–59

    Google Scholar 

  • Kendrick JB (1934) Cucurbit mosaic transmitted by muskmelon seed. Phytopathology 24:820–823

    Google Scholar 

  • Kendrick JB, Gardner MW (1924) Soybean mosaic: seed transmission and effect on yield. J Agric Res 27:91–98

    Google Scholar 

  • Kennedy BW, Cooper RL (1967) Association of virus infection with mottling of soybean seed coats. Phytopathology 57:35–37

    Google Scholar 

  • Kennedy JS, Day MF, Eastop VP (1962) A conspectus of aphids as vectors of plant viruses. Commonwealth Institute of Entomology, London

    Google Scholar 

  • Khan JA, Dijkstra J (2002) Seed transmission of viruses: Biological and molecular insights. In: Khan JA, Dijkstra J (eds) Plant viruses and molecular pathogens. Haworth Press, New York, pp 105–126

    Google Scholar 

  • Kheder MA, Eppler A (1988) Seed borne viruses in locally produced pea seeds from the A.R of Egypt. Med Fac Land bouw Rijksuniv 53/2a:449–459

    Google Scholar 

  • Khetarpal RK (1989) Contribution A L’etude des relations pea seed-borne mosaic virus—Pois Universite De Paris Sud. Centre D’orsay, Paris

    Google Scholar 

  • Kim SG, Lee KW (1986) Epidemics of soybean mosaic virus and varietal resistance in soybean. Korean J Plant Prot 25:113–120

    Google Scholar 

  • Kirchmair M, Neuhauser S, Scholz C, Huber L (2005) Sorosphaera viticola nom. prov., a newly discovered plasmodiophorid, a potential vector for grapevine viruses? In: Rush C (ed) Proceedings of the IWGPVFV 6th symposium on American society of sugar beet technologists, Denver, CO, pp 108–111

    Google Scholar 

  • Kishi K (1966) Necrotic spot of melon, a new virus disease. Ann Phytopathol Soc Jpn 32:138–144

    Article  Google Scholar 

  • Klein RE, Wyatt SD, Kaiser WJ (1988) Incidence of bean common mosaic in USDA Phaseolus germplasm collection. Plant Dis 72:301–302

    Article  Google Scholar 

  • Koenig R (1986) Plant viruses in rivers and lakes. Adv Virus Res 31:321–333

    Article  PubMed  CAS  Google Scholar 

  • Koenig R, Leseman D-E (1985) Plant viruses in German rivers and lakes. I. Tombusviruses, a potexvirus and carnation mottle virus. Phytopathologische Zeitschrift 112:105–116

    Article  Google Scholar 

  • Kolte SJ, Nene YL (1972) Studies on symptoms and mode of transmission of the leaf crinkle virus of urdbean (Phaseolus mungo). Indian Phytopathol 25:401–404

    Google Scholar 

  • Komuro Y, Tochihara H, Fukatsu R, Nagai Y, Yoneyama S (1971) Cucumber green mottle mosaic virus (watermelon strain) in watermelon and its bearing on deterioration of watermelon fruit known as “Konnyaku” disease. Ann Phytopathol Soc Jpn 37:34–42

    Article  Google Scholar 

  • Konate G, Sarra S, Traore O (2001) Rice yellow mottle virus is seed-borne, but not seed transmitted in rice seeds. Eur J Plant Pathol 107:361–364

    Article  Google Scholar 

  • Koshimizu Y, Iizuka N (1963) Studies on soybean virus diseases in Japan. Bull Tohoku Nat Agric Exp Stat 27:1–103

    Google Scholar 

  • Kramer M, Orlando A, Silberschmidt KM (1945) Estudos sobre uma grave doença responsável pelo deperecimento de nossas culturas de alface. O Biológico 11:121–1343 São Paulo

    Google Scholar 

  • Krishnareddy M (1989) Studies on yellow mosaic and leaf crinkle diseases of blackgram. Ph.D. Thesis submitted to the P.G. School. IARI, New Delhi, p 263

    Google Scholar 

  • Kryczynski S, Paduch-Cichal E, Skrzeclzkowski LJ (1988) Transmission of three viroids through seed and pollen of tomato plants. J Phytopathol 121:51–57

    Article  Google Scholar 

  • Kuhn CW (1965) Symptomatology, host range and effect on yield of seed-transmitted peanut virus. Phytopathology 55:880–884

    Google Scholar 

  • Kuhn CW (1969) Effects of peanut stunt virus alone and incombination with peanut mottle virus on peanuts. Phytopathology 59:1513–1516

    Google Scholar 

  • Kulkarni NK, Kumar PL, Muniyappa V, Jones AT, Reddy DVR (2002) Transmission of Pigeon pea sterility mosaic virus by the Eriophyid mite, Aceria cajani (Acari: Arthropoda). Plant Dis 86(12):1297–1302. ISSN 0191-2917

    Google Scholar 

  • Kumar CA, Singh Shamsher, Parakh DB (1991) Detection of pea seed-borne mosaic virus (P5bMV) during quarantine processing of pea germ plasm. Indian Phytopathol 44:366–369

    Google Scholar 

  • Kumar SS, Dasgupta A, Baranwal A, Praveen S (2004) Molecular variability in the replicase gene of viruses causing tomato leaf curl disease in India. J Plant Biochem Biotechnol 13:43–46

    Article  Google Scholar 

  • Kyriakou A (1992) Incidence in Cyprus of citrus exocortis viroid and its mechanical transmission. Plant Pathol 41:20–24

    Article  Google Scholar 

  • Ladipo JL (1977) Seed transmission of cowpea aphid-borne virus in some cowpea cultivars. Niger J Plant Prot 3:3–10

    Google Scholar 

  • Lamptey PNL, Hamilton RI (1974) A new cowpea strain of southern bean mosaic virus from Ghana. Phytopathology 64:1100–1104

    Article  Google Scholar 

  • Lange L, Tien P, Begtrup J (1983) The potential of ELISA and ISEM in seed health testing seed. Sci Technol 11:477–490

    Google Scholar 

  • Lapidot M, Guenoune-Gelbart D, Leibman D, Holdengreber V, Davidovitz M, Machbash Z, Klieman-Shoval S, Cohen S, Gal-On A (2010) Pelargonium zonate spot virus is transmitted vertically via seed and pollen in tomato. Phytopathology 100:798–804

    Article  PubMed  CAS  Google Scholar 

  • Latham LJ, Jones RAC (2001a) Incidence of virus infection in experimental plots, commercial crops and seed stocks of cool season crop legumes. Aust J Agric Res 52:397–413

    Article  Google Scholar 

  • Latham LJ, Jones RAC (2001b) Alfalfa mosaic and pea seed-borne mosaic viruses in cool season crop, annual pasture and forage legumes: susceptibility, sensitivity and seed transmission. Aust J Agric Res 52:771–790

    Article  Google Scholar 

  • Latham LJ, Jones RAC, Coutts BA (2004) Yield losses caused by virus infection in four combinations of non–persistently aphid transmitted virus and cool—season crop legume. Aust J Exp Agric 44:57–63

    Article  Google Scholar 

  • Li RH, Zettler FW, Elliott MS, Petersen MA, Still PE, Baker CA, Mink GI (1991) A strain of Peanut mottle virus seed-borne in bambarra groundnut. Plant Dis 75:130–133

    Article  Google Scholar 

  • Li L, Wang X, Zhou G (2007) Analysis of maize embryo invasion by sugarcane mosaic virus. Plant Sci 172:131–138

    Article  CAS  Google Scholar 

  • Lin MT, Hill JH (1983) Bean pod mottle virus: occurrence in Nebrasca and seed transmission in soybeans. Plant Dis 67:230–233

    Article  Google Scholar 

  • Lin MT, Kitajima EW, Rios GP (1981) Serological identification of several cowpea viruses in central Brazil. Fitopatol Bras 6:73–85

    Google Scholar 

  • Lindberg GD, Hall DH, Walker JC (1956) A study of melon and squash mosaic virus. Phytopathology 46:489–495

    Google Scholar 

  • Ling K (2008) Pepino mosaic virus on tomato seed: virus location and mechanical transmission. Plant Dis 92:1701–1705

    Article  Google Scholar 

  • Lister RM (1960) Transmission of soil-borne viruses through seed. Virology 10:547–549

    Article  PubMed  CAS  Google Scholar 

  • Lister RM, Murant AF (1967) Seed-transmission of nematode-borne viruses. Ann Appl Biol 59:49–62

    Article  Google Scholar 

  • Lockhart BEL, Fischer HU (1974) Chronic infection by seed-borne bean common mosaic virus in Morocco. Plant Dis Rep 58:307–308

    Google Scholar 

  • Lockhart BEL, Jones DR (1999) Banana streak, in diseases of banana. In: Jones (ed) Abaca and Enset. CABI Publishing, Wallingford, pp 263–274

    Google Scholar 

  • Lockhart BEL, Jebbour F, Lennon AM (1985) Seed transmission of squash mosaic virus in Chenopodium spp. Plant Dis Rep 69:946–947

    Article  Google Scholar 

  • Lockhart BEL, Autrey LJC, Comstock JC (1992) Partial purification and serology of sugarcane mild mosaic virus, a mealybug transmitted clostero like virus. Phytopathology 82:691–695

    Article  Google Scholar 

  • Lovisolo O, Conti M (1966) Identification of an aphid-transmitted cowpea mosaic virus. Neth J Plant Pathol 72:265–269

    Article  Google Scholar 

  • Mahajan PD, Joi MB (1999) Survey and seed transmission of leaf crimkle virus of mung and urd beans. Seed Res 27:131–133

    Google Scholar 

  • Mahalakshmi B, Reddy BMR, Nagaraju (2008) Transmission, host range and screening of a mosaic virus disease occurring on cowpea Vigna unguisculata. Mysore J Agric Sci 42:429–434

    Google Scholar 

  • Mahgoub HA, Wipf Scheibel C, Delecolle B, Pitrat M, Dafalla G, Lecoq H (1997) Melon rugose mosaic virus: characterization of an isolate from Sudan and seed transmission in melon. Plant Dis 81:656–660

    Article  Google Scholar 

  • Mahoney CH (1935) Seed transmission of mosaic in inbred lines of muskmelon (Cucumis melo L.). Proc Ann Soc Hort Sci 32:477–480

    Google Scholar 

  • Makkouk KM, Bos L, Rizkallah A, Azzam OI, Katul L (1988) Broad bean mottle virus: identification, host range, serology and occurrence of faba bean (Vicia faba) in West Asia and North Africa. Neth J Plant Pathol 94:195–212

    Article  Google Scholar 

  • Makkouk KM, Kumari SG, Bos L (1990) Broadbean wilt virus: host range, purification, serology, transmission characteristics and occurrence in faba bean in West Asia and North Africa. Neth J Plant Pathol 96:291–300

    Article  Google Scholar 

  • Makkouk KM, Kumari SG, Al-Daoud R (1992) Survey of virus affecting lentil. (Lens culinaries Med) in Syria. Phytopathol Mediterr 31:188–190

    Google Scholar 

  • Malathi VG, Sumiya KV (2006) Diseases caused by whitefly transmitted geminiviruses in India. In: Gadewar AV, Singh BP (eds) Plant protection in new millennium, vol I. Satish Serial Publishing House, Delhi, pp 535–562, 588

    Google Scholar 

  • Malathi VG, Usharani KS, Sivalingam PN, Rouhibakhsh A, Padma Latha KV, Periasamy M (2004) Diversity and complexity of Begomoviruses. Ann Rev Plant Pathol 3:225–270

    Google Scholar 

  • Mali VR, Kulthe KS (1980) A seed—borne potyvirus causing mosaic of cowpea in India. Plant Dis 64:925–928

    Article  Google Scholar 

  • Mali VR, Kulthe KS, Patil FS, Mundhe GE, Dhond VM, Deshmukh RV (1987) Identification of source of resistance to some virusis and seed transmission in cowpea. Indian J Virol 3:99–109

    Google Scholar 

  • Mali VR, Mundhe GE, Patil NS, Kulthe KS (1988) Detection and identification of Blackeye cowpea mosaic and Cowpea aphid borne mosaic viruses in India. Int Nat J Trop Plant Dis 6:159–163

    Google Scholar 

  • Mali VR, Mundhe GE, Shaikh WR (1989) Serodiagnosis of six cowpea seed borne viruses in India. Indian J Virol 5:45–55

    Google Scholar 

  • Mali VR, Subr Z, Kudela O (2003) Seed transmission of como and poty viruses in faba bean and vetch cultivars introduced into Slovakia. Ann Phytopathlo Entomol Hung 38:87–97

    Article  Google Scholar 

  • Mandahar CL (1978) Introduction to plant viruses. S. Chand & Co, New Delhi, p 333

    Google Scholar 

  • Mandahar CL (1981) Virus transmission through seed and pollen. In: Harris HF, Maramorsch K (eds) Plant diseases and vectors. Academic Press, New York, pp 241–292, 368

    Google Scholar 

  • Mandahar CL (1985) Vertical and horizontal spread of plant viruses through seed and pollen: an epidemiological view. In: Gupta BM, Singh BT, Nerma HN, Srivastava KM (eds) Perspectives in plant virology, vol I. Print House (India), Lucknow, pp 23–44

    Google Scholar 

  • Mandal B, Jain RK, Krishnareddy M, Krishna Kumar NK, Ravi KS, Pappu HR (2012) Emerging problems of Tospoviruses (Bunyaviridae) and their Management in the Indian Subcontinent. Plant Disease, 96:468–479

    Google Scholar 

  • Manzer FE, Merriam D (1961) Field transmission of the potato spindle tuber virus and virus X by cultivating and hilling equipment. Am Potato J 38:346–352

    Article  Google Scholar 

  • Maramorosch K, Harris KF (eds) (1979) Leafhopper vectors and Plant disease agents. New York/London, Academic, p 654

    Google Scholar 

  • Marchoux G, Quiot JB, Devergne JC (1977) Characterisation d’un isolat du virus de la mosaique du concombre transmis par les graines du karicot (Phaseolus vulgaris L.). Ann de Phytopathol 9:421–434

    Google Scholar 

  • Markham R, Smith KM (1949) Studies on the virus of turnip yellow mosaic. Parasitology 39:330–342

    Google Scholar 

  • Mastenbroek C (1942) Some field observations on virus diseases of lupin and research on mosaic disease. Tijdschr Pl Ziekt 48:97–118

    Google Scholar 

  • Matsumoto AK, Kopicky BJ, Carter RH, Tuveson DA, Tedder TF, Fearon DT (1991) Intersection of the complement and immune systems: a signal transduction complex of the B lymphocyte-containing complement receptor type 2 and CD19. J Exp Med 173:55–64

    Article  PubMed  CAS  Google Scholar 

  • Mazyad KHM, EI-Hamnady M, BI-Amrety AA, EI-din ASG (1984) Studies in cowpea aphid borne mosaic virus in Egypt. Agric Res Rev 59:167–178

    Google Scholar 

  • McClean APD (1948) Bunchy-top disease of the tomato: additional host plants and the transmission of the virus through the seed of infected plants. Union S. Africa Dep Agric Sci Bull 256:28

    Google Scholar 

  • McGrath PF, Harrison BD (1995) Transmission of tomato leaf curl geminiviruses by Bemisia tabaci: effect of virus isolate and vector biotype. Ann Appl Biol 126:307–316

    Article  Google Scholar 

  • McKeown BM, Biddle AJ (1991) Pea seed-borne mosaic virus and its significance in the United Kingdom. Aspects Appl Biol 27:333–338

    Google Scholar 

  • McKinney HH (1951) A seed-borne virus causing false stripe in barley. Phytopathology 41:563–564

    Google Scholar 

  • McKinney HH (1952) Two strains of tobacco mosaic virus, one of which is seed-borne in an etch-immune pungent pepper. Plant Dis Rep 36:184–187

    Google Scholar 

  • McKinney HH (1953) New evidence on virus diseases in barley. Plant Dis Rep 37:292–295

    Google Scholar 

  • McKinney HH, Greely LW (1965) Biological characteristics of barley stripe mosaic virus strains and their evolution. U.S. Dep Agric Technol Bull 1324:84

    Google Scholar 

  • McKirdy SJ, Jones RAC, Sivasithamparam K (1998) Determining the effectiveness of grazing and trampling by livestocks in transmitting white clover mosaic and subterranean clover mottle viruses. Ann Appl Biol 132:91–105

    Article  Google Scholar 

  • McKirdy SJ, Jones RAC, McLaughin M (2005) Contact transmission of plant viruses by grazing animals in pastures and forage crops. Plant Disease (in press)

    Google Scholar 

  • McLean DM (1962) Seed transmission of tobacco ringspot virus in cantaloupe. Phytopathology 52:21

    Google Scholar 

  • McMechan AJ (2012) Transmission of Triticum mosaic virus and its impact on the biology of the wheat curl mite Aceria tosichella Keifer (Eriophyidae), and an evaluation of management tactics for the wheat curl mite and the wheat-mite-virus complex. Dissertation and Student Research in Entomology. Paper 16. http://www.digitalcommons.unl.edu/entomologydiss/16

  • McNeal FH, Afanasiev MM (1955) Transmission of barley stripe mosaic through the seed in 11 varieties of spring wheat. Plant Dis Rep 39:460–462

    Google Scholar 

  • Medina AC, Grogan RG (1961) Seed transmission of bean common mosaic viruses. Phytopathology 51:452–456

    Google Scholar 

  • Meier M, Olspert A, Sarmiento C, Truve E (2008) Sobemovirus. In: Mahy BWJ, Van Regenmortel MHV (eds) Desk enclyclopedia of plant and fungal virology. Academic Press,Washington, pp 312–320

    Google Scholar 

  • Meiners JP, Waterworth HE, Smith FF, Alconero R, Lawson RH (1977) A seed-transmitted strain of cucumber mosaic virus isolated from bean. J Agric Univ Puerto Rico 61:137–147

    Google Scholar 

  • Meiners JP, Gillaspie AG Jr, Lawson RH, Smith FF (1978) Identification and partial characterization of a strain of bean common mosaic virus from Rhynochosia minima. Phytopathology 68:283–287

    Article  Google Scholar 

  • Merkel L (1929) Beitrage zur Kenntris der mosaikkrankheir der Familie der Papilionaceen. Z Pflkrankli 39:289–347

    Google Scholar 

  • Merriam D, Bonde R (1954) Dissemination of spindle tuber by contaminated tractor wheels and by foliage contact with diseased plants. Phytopathology 44:11

    Google Scholar 

  • Middleton JT (1944) Seed transmission of squash-mosaic virus. Phytopathology 34:405–410

    Google Scholar 

  • Mikel MA, D’Arcy CJ, Ford RE (1984) Seed transmission of maize dwarf mosaic virus in sweet corn. Phytopathologische Zeitschrift 110(3):185–191

    Article  Google Scholar 

  • Mink GI (1983a) The current status of cherry virus research in Washington. In: Proceedings of the 78th annual meeting. Washington State Horticultural Association, Yakisna, pp 184–186

    Google Scholar 

  • Mink GI (1983b) The possible role of honeybees in long distance spread of prunus necrotic ringspot virus from California into Washington sweet cherry orchards. In: Plumb RT, Thresh JM (eds) Plant virus epidemiology, Black Well Scientific Publications, Oxford, pp 85–91, 377

    Google Scholar 

  • Mink GI (1993) Pollen and seed-transmitted viruses and viroids. Annu Rev Phytopathol 31:375–402

    Article  PubMed  CAS  Google Scholar 

  • Mink GI, Kraft J, Knesek J, Jafri A (1969) A seed-borne virus of peas. Phytopathology 59:1342–1343

    Google Scholar 

  • Morales FJ (2007) Tropical whitefly IPM project. Adv Virus Res 69:249–306

    Article  PubMed  CAS  Google Scholar 

  • Morales FJ, Castano M (1985) Effect of colombian isolate of bean southern mosaic virus on selected yield components of Phaseolus vulgaris. Plant Dis 69:803–804

    Article  Google Scholar 

  • Morales FJ, Castano M (1987) Seed transmission characteristics of selected bean common mosaic virus strains in differential bean cultivars. Plant Dis 71:51–53

    Article  Google Scholar 

  • Morand JC, Poutier JC (1978) Les taches en anneaux de la laitue, une souche de tomato black ring virus. Annales de Phytopathologie 10:101–102

    Google Scholar 

  • Mukhayyish SF, Makkouk KM (1983) Detection of four seed-borne plant viruses by the Enzyme-linked immunosorbent assay (ELISA). Phytopathol Z 106:108–114

    Article  Google Scholar 

  • Muniyappa V (1976) Studies on a mosaic disease of French bean (Phaseolus vulgaris Zinn.). Madras Agric J 63:69–70

    Google Scholar 

  • Muniyappa V (1980a) Viral diseases transmitted by whiteflies. In: Harris KF, Maramorosch K (eds) Vectors of plant pathogens. Academic Press, New York, pp 39–85

    Google Scholar 

  • Muniyappa V (1980b) Whiteflies. In: Harris KF, Marmorosch K (eds) Vectors of plant pathogens. Academic Press, New York, pp 39:85–467

    Google Scholar 

  • Muniyappa V, Reddy DVR (1983) Transmission of cowpea mild mottle virus by Bemisia tabaci in a non-persistent manner. Plant Dis 67:391–393

    Article  Google Scholar 

  • Muniyappa V, Veeresh GK (1984) Plant virus diseases transmitted by whiteflies in Karnataka. Proc Indian Acad Sci (Anim Sci) 93:397–406

    Article  Google Scholar 

  • Musil M (1970) Pea leaf rolling mosaic virus and its properties. Biologia Bratislava 25:379–392

    CAS  Google Scholar 

  • Musil M (1980) Seed transmission of pea leaf roll mosaic virus. Tagungsbericht der Dentschin Demokratischen Republik 184:345–352

    Google Scholar 

  • Nagata T, Alves DMT, Inoue-Nagata AK (2005) A novel flexivirus transmitted by whitefly. Arch Virol 150:379–387

    Article  PubMed  CAS  Google Scholar 

  • Nakano M, Vsugi T, Shinkai A (1988) Effect of inoculation time of soybean mosaic virus on yield and seed quality of soybean. Proc Assoc Plant Prot Kyushu 34:13–16

    Article  Google Scholar 

  • Nalini MS, Prakash HS, Shylaja MD, Setty HS (2004) Indexing French bean (Phaseolus vulgaris L) for bean common mosaic virus infection. Seed Res 32:200–206

    Google Scholar 

  • Nalini MS, Prakash HS, Shetty HS, Prabhakar M (2006) Reaction of French bean accessions and varieties to bean common mosaic potyvirus and seed transmission of the virus. Legume Res 29:126–129

    Google Scholar 

  • Narayana YD, Muniyappa V (1996) Virus-vector relationships of a planthopper (Peregrinus maidis)—borne sorghum stripe tenuivirus 42:165–170

    Google Scholar 

  • Narayanaswamy P, Jaganathan T (1975) Seed transmission of black gram leaf crinkle virus. Phytopathol Z 82:107–110

    Article  Google Scholar 

  • Natasa Mehle, Maja Ravnikar (2012) Plant viruses in aqueous environment—survival, water mediated transmission and detection. Water research, 46(16): 4902–4917

    Google Scholar 

  • Natsuaki T, Yamashita S, Doi Y, York K (1979) Radish yellow edge virus, a seed borne small spherical virus newly recognised in Japanese radish Raphanus sativus L. Ann Phytopathol Soc Jpn 45:313–320

    Google Scholar 

  • Natsuaki T, Yamashita S, Doi Y, Okuda S, Teranaka M (1983a) Radish yellow edge virus, a seed-borne virus with double standard RNA, of a possible new group. Ann Phytopathol Soc Jpn 49:593–599

    Google Scholar 

  • Natsuaki T, Yamashita S, Doi Y, Okuda S, Teranaka N (1983 b) Two seed borne double-standed RNA viruses, beet temperate virus and spinach temperate virus. Ann Phytopathol Soc Jpn 49(5):709–712

    Google Scholar 

  • Nault L (1997) Arthropod transmission of plant viruses: a new synthesis. Ann Entomol Soc Am 90:521–541

    Google Scholar 

  • Nayudu MV (2008) Plant viruses. Tata Mc Graw Hill Publishing company Limited, New Delhi, pp 1249

    Google Scholar 

  • Ndiaye M, Bashir M, Keller KE, Hampton RO (1993) Cowpea viruses in Senegal, West Africa: identification, distribution, seed transmission and sources of genetic resistance. Plant Dis 77:999–1003

    Article  Google Scholar 

  • Neergaard P (1977) Quarantine policy for seed in transfer of genetic resources. In: Hewitt WB, Chiarappa L (eds) Plant health and quarantine in international transfer of genetic resources. CRC Press Inc, Ohio, pp 309–314, 346

    Google Scholar 

  • Nelson MR, Knuhtsen HK (1969) Relation of seed transmission to the epidemiology of squash mosaic virus strains. Phytopathology 59:1042

    Google Scholar 

  • Nelson MR, Knuhtsen HK (1973) Squash mosaic virus variability: epidemiological consequences of differences in seed transmission frequency between strains. Phytopathology 63:918–920

    Article  Google Scholar 

  • Newhall AG (1923) Seed transmission of lettuce mosaic. Phytopathology 13:104–106

    Google Scholar 

  • Ng JCK, Perry KL (2004) Transmission of plant viruses by aphid vectors. Mol Plant Pathol 5:505–511

    Google Scholar 

  • Njau PJR, Lyimo HFJ (2000) Incidence of bean common mosaic virus and bean common mosaic necrosis virus in bean (Phaseolus vulgaris L.) and wild legume seed lots in Tanzania. Seed Sci Technol 28:85–92

    Google Scholar 

  • Njeru R, Ferris DG, Jones RAC, Jones MGK (1997) Studies on seed transmission of subterranean clover mottle virus and its detection in clover seed by ELISA and RT-PCR. Aust J Agric Res 48:343–350

    Article  CAS  Google Scholar 

  • Ogilvie L, Mulligan BO, Brian PW (1935) Progress report on vegetable disease. VI. Annu Rep Agric Hortic Bristol 1934:175–190

    Google Scholar 

  • O’Hair SK, Miller JC, Toler RW (1981) Reaction of cowpea introductions to infection with the cowpea strain of southern bean mosaic virus. Plant Dis 65:251–252

    Article  Google Scholar 

  • Ohki ST, Nakatsuji T, Inouye T (1989) Peanut stripe virus, a seed-borne potyvirus isolated from peanut plant in Japan. Ann Phytopathol Soc Jpn 45:267–278

    Google Scholar 

  • Oldfield GF (1970) Mite transmission of plant viruses. Annual review of entomology, vol 15, pp 343–380

    Google Scholar 

  • Ordosgoitty A (1972) Identification of bean (Phaseolus valgoris) common mosaic virus in Venezuela. Identification del mosaic common de la carota (Phaseolus vulgaris) en venezuela. Agron Trop Venezuela 22:29–43 (RPP 1973, 287)

    Google Scholar 

  • Owusu GK, Crowley NC, Francki RIB (1968) Studies of the seed transmission of tobacco ringspot virus. Ann Appl Biol 61:195–202

    Article  Google Scholar 

  • Pacumbaba RP (1995) Seed ransmission of soyabean mosaic virus in mottled and nonmottled soybean seeds. Plant Dis 79:193–195

    Article  Google Scholar 

  • Paguio OR, Kuhn CW (1974) Incidence and source of inoculum of peanut mottle virus and its effect on peanut. Phytopathology 64:60–64

    Article  Google Scholar 

  • Paliwal YC (1983) Identification and distribution in eastern canada of lucerne transient streak, a virus newly recognised in North America. Can J Plant Pathol 5:75–80

    Article  Google Scholar 

  • Panarin IV, Zabavina ES (1978) The question of virus transmission by maize seeds. Tr Krasnodar N 11 S Kh 15:167–170

    Google Scholar 

  • Pappu HR, Sampangi R, Krishna Mohan S, Schwartz HF, Rondon SI (2007) Thrips-transmitted Iris yellow spot tospovirus epidemics in the US: understanding the epidemiological factors behind the outbreaks in onion seed and bulb crops. In: 10th international plant virus epidemiology symposium: controlling epidemics of emerging and established plant virus diseases-the way forward. ICRISAT, Hyderabad. 15–19 Oct 2007

    Google Scholar 

  • Pappu HR, Jones RAC, Jain RK (2009) Global status of tospovirus epidemics in diverse cropping systems: success achieved and challenges ahead. Virus Res 141:219–236

    Article  PubMed  CAS  Google Scholar 

  • Patel AB, Mishra Ashok, Valand GB, Mishra A (1999) Characterizations of leaf crinkle virus disease of urdbean (Vi–). Indian J Virol 15:101–105

    Google Scholar 

  • Pathipanawat W, Jones RAC, Sivasithamparam K (1995) Studies on seed and pollen transmission of alfalfa mosaic cucumber mosaic and bean yellow mosaic viruses in cultivars and accessions of annual Medicago species. Aust J Agric Res 46:153–165

    Article  Google Scholar 

  • Pathipanawat W, Jones RAC, Sivasithamparam K (1997) Factors influencing transmission of alfalfa mosaic virus through seed of annual medics (Medicago spp) and the genetic control of seed transmission rate. Aust J Agric Res 48:989–997

    Article  Google Scholar 

  • Patil RG, Byadgi AS (2005) Transmission studies of Soybean mosaic virus. Karnataka J Agric Sci 18:52–54

    Google Scholar 

  • Patil BL, Rajasubramaniam S, Bagchi C, Dasgupta I (2005) Both Indian cassava mosaic virus and Sri Lankan cassava mosaic virus are found in India and exhibit high variability as assessed by PCR-RFLP. Arch Virol 150:389–397

    Article  PubMed  CAS  Google Scholar 

  • Pesic Z, Hiruki C (1986) Difference in the incidence of alfalfa mosaic virus in seed coat and embryo of alfalfa seed. Can J Plant Pathol 8(1):39–42

    Article  Google Scholar 

  • Phatak HC (1974) Seed-borne plant viruses-identification and diagnosis in seed health testing. Seed Sci Technol 2:3–155

    Google Scholar 

  • Phatak HC (1983) Blackgram mottle virus. In: Boswell KF, Gibbs AJ (eds) Viruses of legumes, Australian National University, Canberra, pp 44–45

    Google Scholar 

  • Phatak HC, Summanwar AS (1967) Detection of plant viruses in seeds and seed stock. Proc Int Seed Test Assoc 32:625–631

    Google Scholar 

  • Phatak HC, Diaz-Ruiz JR, Hull R (1976) Cowpea ringspot virus: a seed transmitted cucumovirus. Phytopathol Z 87:132–142

    Article  CAS  Google Scholar 

  • Pio-Ribeiro G, Wyatt SD, Kuhn CW (1978) Cowpea stunt. A disease caused by a synergistic interaction of two viruses. Phytopathology 68:1260–1265

    Article  Google Scholar 

  • Pio–Ribeiro G, Andrade GP, Cruz SM, Santos RC, Reddy DVR, Andrade AAMX (2000) Virus eradication from peanut germplasm based on serological indexing of seeds and analysis of seed multiplication fields. Fitopathol Bras 25:42–48

    Google Scholar 

  • Pirone TP, Blanc S (1996) Helper-dependent vector transmission of plant viruses. Annu Rev Phytopathol 34:227–247

    Article  PubMed  CAS  Google Scholar 

  • Plazolla P, Castellano MA, De Stradis A (1986) Presence of plant viruses in some rivers in southern Italy. J Phytopathol 116:224–246

    Google Scholar 

  • Porembskaya NB (1964) Peredacha virusnykh boleznei lyupina cherez semena. Trudy vses Inst Zashch Rast 20:54–55

    Google Scholar 

  • Prasad MS, Sharma BK, Kumar Sangit, Prasad MSL, Kumar S (1998) Transmission tests and variety screening for urdbean leaf crinkle virus in black gram. (Vijng mungo L. Hepper). Ann Plant Prot Sci 6:205–207

    Google Scholar 

  • Prasada Rao RDVJ, Reddy AS, Chakravarthy SK (1988) Survey for peanut stripe virus in India. Indian J Plant Prot 16:99–102

    Google Scholar 

  • Prasadarao RDVJ, Reddy AS, Reddy, SV, Tirumaladevi K, Chanderrao AS, Manoj Kumar V, Subramanyam K, Yellamanda Reddy T, Nigam N and Reddy DVR (2003) The host range of Tobacco streak virus in India and transmission by thrips. Ann Entomol Soc Am 142:365–368

    Google Scholar 

  • Provvidenti R (1986) Seed transmission of black eye cowpea mosaic virus in Vigna mungo. Plant Dis 70:981

    Article  Google Scholar 

  • Provvidenti R, Braverman SW (1976) Seed transmission of bean common mosaic virus in phasemy bean. Phytopathology 66:1274–1275

    Article  Google Scholar 

  • Provvidenti R, Cobb ED (1975) Seed transmission of bean common mosaic virus in tepary bean. Plant Dis Rep 59:966–969

    Google Scholar 

  • Pushpalatha KC, Prakash HS, Albrechtsen SE, Setty HS, Mathur SB (1999) Transmission of urdbean leaf crinkle virus through urdbean seeds. Seed Res 27:112–115

    Google Scholar 

  • Puttaraju HR, Prakash HS, Albrechtsen SE, Shetty HS, Mathur SB (1999) Detection of bean common mosaic potyvirus in French bean seed samples from Karnataka. Indian J Virol 15:27–29

    Google Scholar 

  • Puttaraju HR, Prakash HS, Shetty HS (2001) Detection of peanut mottle poty virus in leaf and seed of peanut and its effect on yield. Indian Phytopathol 54:479–480

    Google Scholar 

  • Puttaraju HR, Prakash HS, Shetty HS (2002) Contribution of seed-borne Blackeye cowpea mosaic potyvirus to disease dynamics and loss of yield. Trop Sci 42:147–152

    Google Scholar 

  • Puttaraju HR, Prakash HS, Shetty HS (2004) Seed infection by black eye cowpea mosaic potyvirus and yield loss in different cowpea varieties. J Mycol Plant Pathol 34:41–46

    Google Scholar 

  • Putz C, Kuszala M (1973) Two new viruses attacking broad-bean (vicia faba L.) in France. I. Identification trials and evaluation of economic importance. Ann Phytopathol 5:447

    Google Scholar 

  • Quainoo AK, Wetten AC, Allainguillaume J (2008) Transmission of Cocoa swollen shoot virus by seeds. J Virol Methods 150:45–49

    Article  PubMed  CAS  Google Scholar 

  • Quantz L (1954) Ein Schalentest zum schenllnachweis des Gowohnlichen Bohnenmosaik virus (Phaseolus virus 1) Nachr Bl. Dt. Pflschutzdienst, Stuttgrt 9:71–74

    Google Scholar 

  • Raccah B, Fereres A (2009) Plant virus transmission by insects. Encyclopedia of life sciences (ELS), John Wiley and sons Ltd, Chichester

    Google Scholar 

  • Rader WE, Fitzpatvick HF, Hildebrand EM (1947) A seed borne virus of musmelon. Phytopathology 37:809–816

    PubMed  CAS  Google Scholar 

  • Randles JW, Harrison BD, Roberts IM (1976) Nicotiana velutina mosaic virus: purification, properties and affinities with other rod-shaped viruses. Ann Appl Biol 84:193–204

    Article  PubMed  CAS  Google Scholar 

  • Ratna AS, Rao AS, Reddy AS, Nolt BL, Reddy DVR, Vijayalaxmi M, McDonald D (1991) Studies on transmission of Indian peanut clump and virus disease by Polymyxa graminis. Ann Appl Biol 111:353–358

    Google Scholar 

  • Ravinder Reddy, Jeyarajan R (1989) Seed transmission of urdbean leaf crinkle virus in relation to age of the plant at infection and pod location. In: Proceedings of the national seminar on advances in seed science and technology, Mysore, 14–16 Dec 1989, pp 198–202

    Google Scholar 

  • Ravinder Reddy Ch, Tonapi VA, Varanarasiappan S, Navi SS, Jayarajan R (2005) Studies on seed transmission of urd bean leaf crinkle virus on Vigna mungo. Indian J Plant Prot 33:241–245

    Google Scholar 

  • Reddick D, Stewart VB (1919) Transmission of the virus of bean mosaic in seed and observations on thermal death point of seed and virus. Phytopathology 9:445–450

    Google Scholar 

  • Reddy KRC, Nariani JK (1963) Studies on mosaic diseases of vegetable marrow (Cucurbita pepo L). Indian Phytopathol 16:260–267

    Google Scholar 

  • Reddy DVR, Amin PW, Mc Donald D, Ghanekar AM (1983) Epidemiology and control of groundnut bud necrosis and other diseases of legume crops in India caused by tomato spotted wilt virus. In: Plumb RT, Thresh JM (eds) Plant virus epidemiology. Blackwell Scientific Publications, Oxford, pp 93–102, 377

    Google Scholar 

  • Reddy DVR, Nolt BL, Hobbs HA, Reddy AS, Rajeswari R, Rao AS, Reddy DDR, McDonald D (1988) Clump virus in India: isolates host range, transmission and management, pp 239–246

    Google Scholar 

  • Reddy DVR, Reddy AS, Ratna AS (1989) Epidemiology of a soil borne virus disease occurring in India. Paper presented at national symposium on epidemiology of viral diseases, held at CPRI, Simla, 17–19 Oct1989, p 11

    Google Scholar 

  • Reddy AS, Hobbs HA, Delfosse P, Murthy AK, Reddy DVR (1998) Seed transmission of Indian peanut clump virus (IPCV) in peanut and millets. Plant Dis 82:343–346

    Article  Google Scholar 

  • Riedle–Bauer M, Suarez B, Reinprecht HJ (2002) Seed transmission and natural reservoirs of Zucchini yellow mosaic virus in Cucurbita pepo var. Styriaca. Z Pfl Krankh Pfl Schutz 109:200–206

    Google Scholar 

  • Riley DG, Joseph SV, Srinivasan R, Diffie S (2011) Thrips vectors of Tospoviruses. J Integr Pest Manag 1(2):2011. doi:10.1603/IPM10020

  • Rishi N, Singh A (1987) Seed—borne virus disease of Pisum and vigna crops. Recent Res Ecol Environ Pollut 2:97–126

    Google Scholar 

  • Robertson DG (1966) Seed-borne viruses of cowpea in Nigeria. B.Sc. Thesis, University of Oxford, Oxford, p 111

    Google Scholar 

  • Rodrigues JCV, Machado MA, Kitajima EW, Muller GW (2000) Transmission of Citrus leprosis virus to mandarins by Brevipalpus phoenicis (Acari: Tenuipalpidae). Proc Conf Int Org Citrus Virol 14:174–178

    Google Scholar 

  • Rohloff I (1962) Entwicklung ciner Laboratoriumsmethodezur kurzfristigen Untersuchung von Salatsamen (Lactua sativa L.) auf Befall mit Salatmosaik Virus (SMV). Gartenhauwissenschaft 27:413–436

    Google Scholar 

  • Roistacher CN, Calavan EC, Blue RL (1969) Citrus exocortis virus—chemical inactivation on tools, tolerance to heat and separation of isolates. Plant Dis Rep 53:333–336

    Google Scholar 

  • Ross JP (1963) Interaction of the soybean mosaic and bean pod mottle viruses infecting soybeans. Phytopathology 53:887

    Google Scholar 

  • Ryder EJ (1964) Transmission of common lettuce mosaic virus through the gametes of the lettuce plant. Plant Dis Rep 48:522–523

    Google Scholar 

  • Sachchidananda J, Singh S, Prakash N, Verma VS (1973) Bean common mosaic virus on cowpea in India. Z PflKrankh Pflschutz 80:88–91

    Google Scholar 

  • Salazar LF, Harrison BD (1978) Host range, purification and properties of potato virus. T Ann Appl Biol 89:223–235

    Article  Google Scholar 

  • Salazar LF, Muller G, Querci M, Zapata JL, Owens RA (2000) Potato yellow vein virus: its host range, distribution in South America and identification as a crinivirus transmitted by Trialeurodes vaporariorum. Ann Appl Biol 137:7–19

    Article  CAS  Google Scholar 

  • Saleh N, Honda Y, Iwaki M, Jantera DM (1986) Occurrence of blackgram mottle virus on mungbean in Indonesia and seed transmission of the virus. Technical Bulletin No 21. Tropical Agricultural Research Centre Japan, pp 203–211, 238

    Google Scholar 

  • Sandhu PS, Kang SS (2007) Variability in virus isolates causing mosaic symptoms of cucurbits in Punjab. Indian J Virol 18:75–78

    Google Scholar 

  • Saponari M, Savino V, Martelli GP (2002) Seed transmission in olive of two olive infecting viruses. J Plant Pathol 84(3):167–168

    Google Scholar 

  • Sasaya T, Koganezawa H (2006) Molecular analysis and virus transmission tests place Olpidium virulentus, a vector of Mirafiori lettuce big-vein virus and tobacco stunt virus, as a distinct species rather than a strain of Olpidium brassicae. Journal of General Plant Pathology, 72(1):20–25

    Google Scholar 

  • Sastry KS, Nayudu MV (1976) Ringspot symptoms of egg plant incited by tobacco ringspot virus. Phytopathol Mediterr 15:60–62

    Google Scholar 

  • Sastry KS (2013) Seed-borne plant virus diseases. Springer Publishers, New Delhi, pp 327.

    Google Scholar 

  • Sastry KS, Zitter TA (2013) Plant virus and viroid diseases in the Tropics. Volume II. Epidemiology and Management. Springer (In press)

    Google Scholar 

  • Satyanarayana T, Lakshminarayana Reddy K, Ratna AS, Deom CM, Gowda S, Reddy DVR (1996) Peanut yellow spot virus: A distinct tospovirus species based on serology and nucleic acid hybridisation. Ann Appl Biol 129(2):237–245

    Article  Google Scholar 

  • Sawant DM, Capoor SP (1983) Seed transmission of lima bean mosaic virus. Indian Phytopathol 36(4):659–661

    Google Scholar 

  • Scheets K (2008) Machlomovirus (Tombusviridae). In: Mahy BWJ, Van Regenmortel MHV (eds) Encyclopedia of Virology, 5 vols, 3rd edn. Elsevier, Oxford, pp 259–263

    Chapter  Google Scholar 

  • Schrijnwerkers CCFM, Huijberts N, Bos L (1991) Zucchini yellow mosaic virus: two out breaks in the Netherlands seed transmissibility. Neth J Plant Pathol 97:187–191

    Article  Google Scholar 

  • Scifers DL, Harvey TL, Martin TJ, Jensen SG (1997) Identification of the wheat curl mite as the vector of the high plains virus in corn and wheat. Plant Dis 81:1161–1166

    Article  Google Scholar 

  • Scotland CB, Burke DW (1961) A seed-borne bean virus of mide host range. Phytopathology 51:565–568

    Google Scholar 

  • Scott HA, Phatak HC (1979) Properties of blackgram mottle virus. Photopathology 52:489–493

    Google Scholar 

  • Selman BJ (1973) Beetles-Phytophagus Coleoptera. In: Gibbs AJ (eds) Virus and invertabrates. North-Holland Publishing Co., London, pp 157–177

    Google Scholar 

  • Sharma YR, Chohan JS (1974) Transmission of cucumis viruses 1 and 3 through seeds of cucurbits. Indian Phytopathol 26:596–598

    Google Scholar 

  • Sharma RB, Prasad SM, Kudada N (2007) Leaf crinkle virus disease in urd bean (Vigna mungo Linn.). J Res (BAU) 19(1):73–79

    Google Scholar 

  • Sharman M, Persley DM, Thomas JE (2009) Distribution in Australia and seed transmission of tobacco streak virus in Parthenium hysterophorus. Plant Dis 93:708–712

    Article  Google Scholar 

  • Shepherd RJ (1964) Properties of a mosaic disease of cowpea and its relationship to bean pod mottle virus. Phytopathology 54:466–473

    Google Scholar 

  • Shepherd RJ (1972) Transmission of viruses through seed and pollen.In: Kado CI, Agrawal HO (eds) Principles and techniques in plant virology.Van Nostrand-Reinhold Co., New York, pp 267–292, 688

    Google Scholar 

  • Shepherd RJ, Fulton RW (1962) Identity of a seed-borne virus of cowpea. Phytopathology 52:489–493

    Google Scholar 

  • Shepherd RJ, Holdeman QL (1965) Seed transmission of the johnson grass strain of the sugarcane mosaic virus in corn. Plant Dis Rep 49:468–469

    Google Scholar 

  • Sherwood JL, German TL, Moyer JW, Ullman DE (2003) Tomato spotted wilt. Plant Health Instructor. doi:10.1094/PHI-1-2003-0613-02

    Google Scholar 

  • Shivanathan P (1977) A seed-borne virus of Phaseolus aureus (Roxb). Trop Agric Res Ser 10:143–150

    Google Scholar 

  • Shoodee R, Teakle DS (1988) Seed and pollen transmission of tobacco streak virus in tomato (Lycopersicon esculentum cv. Grossee Lissc). Aust J Agric Res 39:469–474

    Article  Google Scholar 

  • Shoyinka SA, Bozarth RF, Reese J, Rossel HW (1978) Cowpea mottle virus: a seed borne virus with distinctive properties infecting cowpeas in Nigeria. Phytopathology 68:693–699

    Article  Google Scholar 

  • Shukla S, Kalyani G, Kulkarni N, Waliyar F, Nigam SN (2005) Mechanism of transmission of Tobacco streak virus by Scirtothrips dorsalis, Frankliniella schultzei and Megalurothrips usitatus in groundnut, Arachis hypogaea L. J Oilseeds Research, 22: 215–217

    Google Scholar 

  • Simmons HE, Holmes EC, Gildow FE, Bothe–Goralzyk MA, Stephenson AG (2011) Experimental verification of seed transmission of Zucchini yellow mosaic virus. Plant Dis 95:751–754

    Article  Google Scholar 

  • Singh RP (1970) Seed transmission of potato spindle tuber virus in tomato and potato. Am Potato J 47:225–227

    Article  Google Scholar 

  • Singh JP (1979) Mechanical and seed transmission of the causal agent of sunflower rugose mosaic in Kenya. In: Abstracts of Sunflower newsletter on tropical agriculture, vol 3, pp 13–14

    Google Scholar 

  • Singh RP, Finnie RE (1973) Seed transmission of potato spindle tuber meta virus through the ovule of Scopolia sinensis. Can Plant Dis Surv 53:153–154

    Google Scholar 

  • Singh RP, Boucher A, Somerville TH (1992) Detection of potato spindle tuber viroid in the pollen and various parts of potato plant pollinated with viroid-infected pollen. Plant Dis 76:951–953

    Article  Google Scholar 

  • Skotland CB, Burke DE (1961) A seed borne bean virus of wide host range. Phytopathology 51:565–568

    Google Scholar 

  • Slack SA, Shepherd RJ, Hall DH (1975) Spread of seed-borne barley stripe mosaic virus and effects of the virus on barley in California. Phytopathology 65:1218–1223

    Article  Google Scholar 

  • Slykhuis JT (1960) Current status of mite transmitted plant viruses. Proc Entomol Soc Ontario 90:22–30

    Google Scholar 

  • Smith KM (1972) A textbook of plant virus diseases. Longman, London, p 684

    Google Scholar 

  • Smith FL, Hewitt WB (1938) Varietal susceptibility to common bean mosaic and transmission through seed. Calif Agric Exp Stat Bull 621:18

    Google Scholar 

  • Snyder WC (1942) A seed borne mosaic of Asparagus bean, Vigna sesquipedalis. Phytopathology 32:518–523

    Google Scholar 

  • Spence NJ (2001) Virus-vector interactions in plant virus disease transmission and epidemiology. In: Jeger MJ and Spence NJ (eds.). Biotic interactions in plant-pathogen associations, pp 15–26. Oxford University Press, New York, USA

    Google Scholar 

  • Sontakke PL, Chavan RA (2007) Transmission, host range and physical properties of virus causing stunting of pea (Pisum sativum L.). J Mycol Plant Pathol 37:451–453

    Google Scholar 

  • Stanley J, Bisar DM, Briddon RW, Brown JK, Fauquet CM, Harrison BD, Rybicki EP, Stenger DC (2005) Geminiviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy. VIIIth report of ICTV. Academic Press, New York, pp 301–326

    Google Scholar 

  • Stefanac Z, Wrischer M (1983) Spinach latent virus: some properties and comparison of two isolates. Acta Boranica Croatica 42:1–9

    Google Scholar 

  • Stevenson WR, Hagedorn DJ (1969) A new seed-borne virus of peas. Phytopathology 59:1051

    Google Scholar 

  • Stevenson WR, Hagedorn DJ (1973) Further studies on seed transmission of pea seed-borne mosaic virus in Pisum sativum. Plant Dis Rep 57:248–252

    Google Scholar 

  • Sumana, Keshava Murthy KV (1992) Reaction of cowpea cultivars to black eye cowpea mosaic virus. Legume Res 15:141–142

    Google Scholar 

  • Surendranath B, Usharani KS, Nagma A, Victoria AK, Malathi VG (2005) Absence of interaction of genomic components and complementation between Mungbean yellow mosaic India virus isolates in cowpea. Arch Virol 150:1833–1844

    Article  PubMed  CAS  Google Scholar 

  • Sushak RM (1976) Seed transmission of tobacco ringspot and tomato ringspot viruses in gladioli and inoculations of tissue altured, virusfree gladiolus plants and calli with bean yellow mosaic virus and with cucumber mosaic virus. Dissertation, Abstracts, 36:3708-13-3709-13

    Google Scholar 

  • Suteri BD (1981) Effect of soybean mosaic virus on seed germination and its transmission through seeds. Indian Phytopathol 34:370–371

    Google Scholar 

  • Sutic D (1959) Die Rolle des Paprikasamens bei der Virusubertragung. Phytopathol Z 36:84–93

    Article  Google Scholar 

  • Sylvester ES (1956) Beet yellows virus transmission by the green peach aphid. J Econ Entomol 49:789–800

    Google Scholar 

  • Takahashi K, Tanaka T, Ltsuda Y (1974) Soybean milk mosaiv virus. Ann Phytopathol Soc Jpn 40:103–105

    Article  Google Scholar 

  • Takahashi K, Tanka T, Iida W, Tsuda Y (1980) Studies on virus diseases and causal viruses of soybean in Japan. Bull Tohoku Nat Atr Exp. Stat. 62:1–130 (Japanese)

    Google Scholar 

  • Taylor CE (1980) Nemitodes. In: Harris KF, Maramorosch K (eds) Vectors of plant pathogens. Academic Press, New York, pp 375–416, 467

    Google Scholar 

  • Taylor MJ (2002) Wolbachia endosymbiotic bacteria of filarial nematodes. A new insight into disease pathogenesis and control. Arch Med Res 33:422–424

    Article  PubMed  Google Scholar 

  • Taylor CE, Brown DJF (1997) Nematode vectors of plant viruses. CAB International, Wallingford, UK. pp 286

    Google Scholar 

  • Taylor CE, Robertson WM (1970) Sites of virus retention in the alimentary tract of the nematode vectors, Xiphinema diversicaudatum (Micol) and X. Index (Thorne and Allen). Ann Appl Biol 66:375–380

    Google Scholar 

  • Taylor RH, Smith PR (1971) Lucerne latent virus. Victorian Plant Research Institute Report No 5, p 20

    Google Scholar 

  • Taylor RH, Grogan RG, Kimble KA (1961) Transmission of tobacco mosaic virus in tomato seed. Phytopathology 51:837–842

    Google Scholar 

  • Teakle DS (1980) Fungi. In: Harris KF, Maramorsch K (eds) Vectors of Plant pathogens. Academic Press, London and New York, p 151–192

    Google Scholar 

  • Thakur VS, Thakur MS, Khurana SMP (1985) Pea seed-borne mosaic virus in India–a new record. Curr Sci 54:1240–1241

    Google Scholar 

  • Thomas WD Jr, Graham RW (1951) Seed transmission of red node virus in Pinto bean. Phytopathology 41:959–962

    Google Scholar 

  • Thomas W, Mohamed NA (1979) Avacado sunblotch—a viroid disease of Australian. Plant Pathol 8:1–3

    CAS  Google Scholar 

  • Thottappilly G, Schmutterer H (1968) Zur Kenntnis eines mechanisch, samen-pilzund insektubertragbaren neuen Virus der Erbse. Z Pflkrankh Pflschutz 75:1–8

    Google Scholar 

  • Thouvenel JC, Fauquet C, Lamy D (1978) Seed transmission of groundnut clump virus. Transmission par la graine du virsu du “Clump” de larachide. Oleagineux 33:503–504

    Google Scholar 

  • Thouvenel JC, Montsarrat A, Fauquet C (1982) Isolation of cowpea mild mottle virus from diseased soybeans in Ivory Coast. Plant Dis 66:336–337

    Article  Google Scholar 

  • Thresh JM (1963) A vein pattern of black currant leaves associated with reversion disease. Rep E Malling Res Stat 1962:97–98

    Google Scholar 

  • Timian RC (1967) Barley stripe mosaic virus seed transmission and barley yield as influenced by time of infection. Phytopathology 57:1375–1377

    Google Scholar 

  • Tobias I, Szabo B, Salanki K, Sari L, Kuhlmann H, Palkovics L (2008) Seed borne transmission of Zucchini yellow mosaic virus and Cucumber mosaic virus in Styrian Hulless group of Cucurbita pepo. In: Pitrat M (ed) Proceedings of the IXth EUCARPA meeting of genetics and plant breeding of cucurbitaceae. INRA, Avignon (France)

    Google Scholar 

  • Tomilson JA, Carter AL (1970) Seed transmission of cucumber mosaic virus in chickweed. Plant Dis Rep 54:150–151

    Google Scholar 

  • Tomilson JA, Faithfull EM (1984) Studies on the occurrence of tomato bushy stant virus in English rivers. Ann Appl Biol 104:485–495

    Article  Google Scholar 

  • Tomilson JA, Walker VM (1973) Further studies on seed-transmission in the ecology of some aphid-transmitted virus. Ann Appl Biol 73:292–298

    Google Scholar 

  • Tosic M, Pesic Z (1975) Investigation of alfalfa mosaic virus transmission through alfalfa seed. Phytopathol Z 83:320–327

    Article  Google Scholar 

  • Tosic M, Sutic D (1977) Investigation of maize mosaic virus transmission through corn seed. Annales de Phytopathgie 9:403–405

    Google Scholar 

  • Tosic M, Tosic D (1984) Occurrence of tobacco mosaic virus in water of the Danube and Sava rivers. Phytopathol Z 110:200–202

    Article  Google Scholar 

  • Tosic M, Sutic D, Pesic Z (1980) Transmission of tobacco mosaic virus through pepper (capsicum annuum L. seed). Phytopathol Z 97:10–13

    Article  Google Scholar 

  • Traore O (2006) Ecology, pathogeny and evolution of rice yellow mottle virus in Sudano-Sahelian areas. University of Ouagadougou, Burkina Faso, These d’Etat

    Google Scholar 

  • Troutman JL, Bailey WK, Thomas CA (1967) Seed transmission of peanut stunt virus. Phytopathology 57:1280–1281

    Google Scholar 

  • Truol GA, Laguna IG, Nome SF (1987) Detection of tobacco streak virus (TSV) on soyabean crops in Argentia. Detection del tobacco streak virus (TSV) en cultivos de soja en Argentina. Fitopatologia 22(1):15–20

    Google Scholar 

  • Tsai CW, Chau J, Fernandez D, Bosco D, Daane KM, Almeida RPP (2008) Transmission of grapevine leafroll associated virus-3 by the vine mealybug (Planococcus ficus). Phytopathology 98:1093–1098

    Article  PubMed  Google Scholar 

  • Tsai CW, Rowhani A, Golino DA, Deane KM, Almeida RPP (2010) Mealybug transmission of grapevine leaf roll viruses: an analysis of virus vector specificity. Phytopathology 100:830–834

    Article  PubMed  Google Scholar 

  • Tsuchizaki T, Hibino H, Saito Y (1971) Mulberry ringspot virus isolated from mulberry showing ringspot symptoms. Ann Phytopathol Soc Jpn 37:266–271

    Article  Google Scholar 

  • Tsuchizaki T, Saraki A, Saito Y (1978) Purification of citrus tristeza virus from diseased citrus fruits and the detection of the virus by in citrus tissues by fluorescent antibody techniques. Phytopathology 68:139–142

    Article  Google Scholar 

  • Tsuchizaki T, Senboku T, Iwaki M, Pholauporn S, Srithongchi W, Deema N, Ong CA (1984) Blackeye cowpea mosaic virus from asparagus bean Vigna resquipedalis. in Thailand and Malaysia and their relationships to a Japanese isolate. Ann Phytopathol Soc Jpn 50:461–468

    Article  Google Scholar 

  • Tsuchizaki T, Iwaki M, Thongmeearkom P, Sarindu N, Deema N (1986) Bean common mosaic virus isolated from mungbean (Vigna radiata) in Thailand. In: Virus diseases of rice and legumes in tropics. Technical Bulletin No 21, TARC, Japan, pp 84–188, 238

    Google Scholar 

  • Tu JC (1989) Effect of different strains of soybean mosaic virus on growth, maturity, yield, seed mottling and seed transmission in several soybean cultivars. J Phytopathol 126:231–236

    Article  Google Scholar 

  • Udayashankar AC, Nayaka CS, Kumar BH, Shetty HS, Prakash HS (2009) Detection and identification of the black eye cowpea mosaic strain of bean common mosaic virus in seeds of cowpea from Southern India. Phytoparasitica 37:283–293

    Article  Google Scholar 

  • Ullman DE, Meideros R, Campbell LR, Whitefield AE, Sherwood JL, German TL (2002) Thrips as vectors of tospovirus. In: Plumb RT (ed) Plant virus vector interactions. Advances in Botanical Research, vol 36. Academic Press, New York, pp 113–140

    Google Scholar 

  • Valleau WD (1941) Seed transmission and sterility studies of two strains of tobacco ringspot. Res Bull Kentucky Agric Exp Stat 327

    Google Scholar 

  • Van Hoof HA (1959) Seed transmission of lettuce mosaic virus in Lactuca serriola. Tijdschr PIZiekt 65:44–46

    Google Scholar 

  • Van Hoof HA (1962) Trichodorns pachydermus and I. teres vectors of early browning virus of peas. Tijdschr Plant Ziekt 68:391–396

    Google Scholar 

  • Vani S, Varma (1993) Properties of cucumber green mottle mosaic virus isolated from water of river Jamuna. Indian Phytopathol 46:118–122

    Google Scholar 

  • Varma A, Malathi VG (2003) Emerging geminivirus problems: a serious threat to crop production. Ann Appl Biol 142:145–164

    Article  CAS  Google Scholar 

  • Varma A, Krishna Reddy M, Malathi VG (1992) Influence of the amount of the blackgram mottle virus in different tissues on transmission through the seeds of Vigna mungo. Plant Pathol 41:274–281

    Article  Google Scholar 

  • Verhoeven JKJ, Jansen CCC, Roenhorst JW, Flores R, de la Pena (2009) Pepper chat fruit viroid: biological and molecular properties of a proposed new species of the genus Pospiviroid. Virus Res 144:209–214

    Article  PubMed  CAS  Google Scholar 

  • Verma HN, Awasthi LP (1978) Further studies on a rosette virus of Crotalaria juncea. Phytopathol Z 92:83–87

    Article  Google Scholar 

  • Vertesy J (1976) Embryological studies of Ilar-virus infected cherry seeds. Acta Hort 67:245

    Google Scholar 

  • Vetten HJ, Green SK, Lesemann DE (1992) Characterization of peanut stripe virus isolates from soybean in Taiwan. J Phytopathol 135:107–124

    Article  CAS  Google Scholar 

  • von Wechmar MB (1980) Transmission of Brome mosaic virus by Puccinia graminis tritici. Phytopathology 5:239–250

    Google Scholar 

  • Von Wechmar MB, Kaufmann A, Desmarais F, Rybicki EP (1984) Detection of seed transmitted brome mosaic virus by ELISA, radial immunodiffusion and immune electroblotting tests. Phytopathol Z 109(4):341–352

    Article  Google Scholar 

  • Vroon CW, Pietersen C, Van Tonder HJ (1988) Seed transmission of soybean mosaic virus in Lupinus albus L. Phytoparasitica 20:169–175

    Google Scholar 

  • Walkey DGA (1967) Seed transmission of arabis mosaic virus in lettuce (Lactuca sativa). Plant Dis Rep 51:883–884

    Google Scholar 

  • Wallace JM, Drake RJ (1962) A high rate of seed transmission of avocado sun-blotch virus from symptomless trees and the origin of such trees. Phytopathology 52:237–241

    Google Scholar 

  • Walter MH, Kaiser WJ, Klein RE, Wyatt SD (1992) Association between tobacco streak Ilarvirus seed transmission and anther tissue infection in bean. Phytopathology 82:412–415

    Article  Google Scholar 

  • Walters HJ (1969) Beetle transmission of plant viruses. Adv Virus Res 15:339–363

    Article  PubMed  CAS  Google Scholar 

  • Wang WY (1982) Tech. Bull. Plant Quarantine Res. No. 3, Plant Quarantine, Dong San Huan, Beijine.

    Google Scholar 

  • Watson MA, Roberts FM (1939) A comparative study of the transmission of Hyoscyamus virus 3, Potato virus Y and Cucumber virus 1 by the vectors Myzus perciae (Sulzer), M. circumflexus (Buckton), and Macrosiphum gel (koch). Proc Roy Soc Lond B 127:543–577

    Google Scholar 

  • Warwick D, Demski JW (1988) Susceptibility and resistance of soybean to peanut stripe virus. Plant Dis 72:19–21

    Article  Google Scholar 

  • Wheeler AG, Jr (2001) Biology of the plant bugs (Hemiptera: Miridae): Pests, predators, opportunists. Ithaca, New York, Cornell Univ. Press, pp 507

    Google Scholar 

  • Whitefield AE, Ullman DE, German TL (2005) Tospovirus—thrips interactions. Ann Rev Phytopathol 43:459–489

    Article  CAS  Google Scholar 

  • Williams LE, Findley WR, Dollinger EJ, Ritter RM (1968) Seed transmission studies of maize dwarf mosaic virus in corn. Plant Dis Rep 52:863–864

    Google Scholar 

  • Wisler GC, Duffus JE, Lui HY, Li RH (1998) Ecology and Epidemiology of whitefly transmitted closteroviruses. Plant Dis 82:270–280

    Article  Google Scholar 

  • Woodward TE, Evans JW, Eastop VF (1979) Hemiptera, in The Insects of Australia, The Division of Entomology, Commonwealth Scientific and Industrial Research Organization, Melbourne University Press, Melbourne, pp 387–457

    Google Scholar 

  • Xu Z, Barnett OW (1984) Identification of a cucumber mosaic virus strain from naturally infected peanuts in China. Plant Dis 68:386–389

    Google Scholar 

  • Xu Z, Yu Z, Liu J, Barnett OW (1983) A virus causing peanut mild mottle in Hubei province. China Plant Dis 67:1029–1032

    Article  Google Scholar 

  • Xu Z, Chen K, Zhang Z, Chen J (1991) Seed transmission of peanut stripe virus in peanut. Plant Dis 75:723–726

    Article  Google Scholar 

  • Yakovleva N (1965) Borba s zelenoi mazaikoi Ogurtsov. (Control of green mosaic of cucumber). Zashch Rast Vredit Bolez 10:50–51

    Google Scholar 

  • Yang AF, Hamilton RI (1974) The mechanism of seed transmission of tobacco ringspot virus in soybean. Virology 62:26–37

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Kim KS, Anderson EJ (1997) Seed transmission of cucumber mosaic virus in spinach. Phytopathology 87:924–931

    Article  PubMed  CAS  Google Scholar 

  • Zettler FW, Evans IR (1972) Blackeye cowpea mosaic virus in Florida: host range and incidence in certified cowpea seed. Proc Florida State Hort Sci 85:99–101

    Google Scholar 

  • Zimmer RC, Ali-khan ST (1976) New seed-borne virus of field peas. Can Agric 21:6–7

    Google Scholar 

  • Zimmer RC, Lamb RJ (1993) Amplification and spread of pea seed-borne mosaic-virus in field grown peas. Can J Plant Pathol Rev Can De Phytopathol 15:17–22

    Article  Google Scholar 

  • Zschau K (1962) Versuche and Beobachtungen Zur Samenubentragurg der Mosaikkrankheit der lupinen, insbesondere der Gelblupine. Nachr Bl dt Pflschutzdienst 16:1–7

    Google Scholar 

  • Zschau K, Janke C (1962) Samenubertragung des Luzernemosaik Virus and Luzerne. NachBl dt Pfschutzdienst 16:94–96

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Subramanya Sastry .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sastry, K.S. (2013). Transmission of Plant Viruses and Viroids. In: Plant Virus and Viroid Diseases in the Tropics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6524-5_4

Download citation

Publish with us

Policies and ethics