Skip to main content

Cerium Oxide Nanoparticles Counteract the Oxidative Stress in Cardiac Progenitor Cells

  • Conference paper
  • First Online:
  • 991 Accesses

Abstract

Cardiac progenitor cells (CPCs) are a promising source of cells for cardiac regenerative medicine. However, the poor results obtained after a decade of intensive investigation have suggested that innovative protocols must be setup to preserve progenitor cell regenerative potential during the expansion procedure in vitro. Indeed, CPC culture in vitro requires the presence of micro-environmental conditions closely mimicking the natural cell surrounding in vivo. The capability of this micro-environment to uphold reactive oxygen species (ROS) within physiological levels in vitro is a major requisite. Cerium oxide nanoparticles (nanoceria) are redox-active and could represent a potent tool to control the oxidative stress in isolated CPCs. The exposure to 5, 10 and 50 μg/mL of nanoceria for 24 h does not affect cell survival and function in cardiac progenitor cells, while being able to protect CPCs from H2O2-induced cytotoxicity. All the tested concentrations have been effective in protecting CPCs from the oxidative stress in the long run and no evidence of toxic effects was detectable, indicating that nanoceria is an effective antioxidant. Therefore, these findings confirm the great potential of nanoceria for controlling ROS-induced cell damage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bui QT, Gertz ZM, Wilensky RL (2010) Intracoronary delivery of bone-marrow-derived stem cells. Stem Cell Res Ther 1:29–35

    Article  PubMed  Google Scholar 

  2. Müller-Ehmsen J, Krausgrill B, Burst V et al (2006) Effective engraftment but poor mid-term persistence of mononuclear and mesenchymal bone marrow cells in acute and chronic rat myocardial infarction. J Mol Cell Cardiol 41:876–884

    Article  PubMed  Google Scholar 

  3. Anversa P, Kajstura J, Leri A et al (2006) Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation 113:1451–1463

    Article  PubMed  Google Scholar 

  4. Seeger FH, Tonn T, Krzossok N et al (2007) Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. Eur Heart J 28:766–772

    Article  PubMed  Google Scholar 

  5. Di Nardo P, Forte G, Ahluwalia A et al (2010) Cardiac progenitor cells: potency and control. J Cell Physiol 224:590–600

    Article  PubMed  Google Scholar 

  6. Pagliari S, Vilela-Silva A, Forte G et al (2011) Cooperation of biological and mechanical signals in cardiac progenitor cell differentiation. Adv Mater 23:514–518

    Article  PubMed  CAS  Google Scholar 

  7. Wong VW, Levi B, Rajadas J et al (2012) Stem cell niches for skin regeneration. Int J Biomater. doi:10.1155/2012/926059

  8. Li L, Xie T (2005) Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21:605–631

    Article  PubMed  CAS  Google Scholar 

  9. Quaini F, Urbanek K, Beltrami AP et al (2002) Chimerism of the transplanted heart. N Engl J Med 346:5–15

    Article  PubMed  Google Scholar 

  10. Bergmann O, Bhardwaj RD, Bernard S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102

    Article  PubMed  CAS  Google Scholar 

  11. Formigli L, Francini F, Tani A et al (2005) Morphofunctional integration between skeletal myoblasts and adult cardiomyocytes in coculture is favoured by direct cell-cell contacts and relaxin treatment. Am J Physiol Cell Physiol 288:C795–C804

    Article  PubMed  CAS  Google Scholar 

  12. Hata H, Matsumiya G, Miyagawa S et al (2009) Grafted skeletal myoblasts sheets attenuate myocardial remodelling in pacing-induced canine heart failure model. J Thorac Cardiovasc Surg 138:460–467

    Article  Google Scholar 

  13. Reinecke H, Minami E, Poppa V et al (2004) Evidence for fusion between cardiac and skeletal muscle cells. Circ Res 94:e56–e60

    Article  PubMed  CAS  Google Scholar 

  14. Menasché P, Alfieri O, Janssens S et al (2008) The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117:1189–1200

    Article  PubMed  Google Scholar 

  15. Beltrami AP, Cesselli D, Bergamini N et al (2007) Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow). Blood 110:3438–3446

    Article  PubMed  CAS  Google Scholar 

  16. Vacanti V, Kong E, Suzuki G et al (2005) Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture. J Cell Physiol 205:194–201

    Article  PubMed  CAS  Google Scholar 

  17. Foudah D, Redaelli S, Donzelli E et al (2009) Monitoring the genomic stability of in vitro cultured rat bone-marrow-derived mesenchymal stem cells. Chromosome Res 17:1025–1239

    Article  PubMed  CAS  Google Scholar 

  18. Momin EN, Vela G, Zaidi HA et al (2010) The oncogenic potential of mesenchymal stem cells in the treatment of cancer: directions for future research. Curr Immunol Rev 6:137–148

    Article  PubMed  CAS  Google Scholar 

  19. Itzhaki-Alfia A, Leor J, Raanani E et al (2009) Patient characteristics and cell source determine the number of isolated human cardiac progenitor cells. Circulation 120:2559–2566

    Article  PubMed  Google Scholar 

  20. Xu C, Police S, Rao N et al (2002) Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res 91:501–508

    Article  PubMed  CAS  Google Scholar 

  21. Anonymous (2007) Regulation (EC) No 1394/2007 of the European Parliament and of the Council of 13 November 2007 on advanced therapy medicinal products and amending Directive 2001/83/EC and Regulation (EC) No 726/2004. Official J Eur Union L324/121-L324/137

    Google Scholar 

  22. Xytex International (2006) The complete FDA 1271 American regulations for human reproductive tissue banks. Food and Drug Administration 21 CFR 1271

    Google Scholar 

  23. Nesselmann C, Ma N, Bieback K et al (2008) Mesenchymal stem cells and cardiac repair. J Cell Mol Med 12:1795–1810

    Article  PubMed  CAS  Google Scholar 

  24. Laugwitz KL, Moretti A, Caron L et al (2008) Islet1 cardiovascular progenitors: a single source for heart lineages? Development 135:193–200

    Article  PubMed  CAS  Google Scholar 

  25. Beltrami AP, Barlucchi L, Torella D et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    Article  PubMed  CAS  Google Scholar 

  26. Stanford WL, Haque S, Alexander R et al (1997) Altered proliferative response by T lymphocytes of Ly-6A (Sca-1) null mice. J Exp Med 186:705–717

    Article  PubMed  CAS  Google Scholar 

  27. Matsuura K, Nagai T, Nishigaki N et al (2004) Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem 279:11384–11391

    Article  PubMed  CAS  Google Scholar 

  28. Rosenblatt-Velin N, Lepore MG, Cartoni C et al (2005) FGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytes. J Clin Invest 115:1724–1733

    Article  PubMed  CAS  Google Scholar 

  29. Goumans MJ, de Boer TP, Smits AM et al (2008) TGF b1 induces efficient of human cardiomyocyte progenitor cells into functional cardiomyocytes in-vitro. Stem Cell Res 1:138–149

    Article  Google Scholar 

  30. Zhang H, Lin CY, Hollister SJ (2009) The interaction between bone marrow stromal cells and RGD-modified three-dimensional porous polycaprolactone scaffolds. Biomaterials 30:4063–4069

    Article  PubMed  CAS  Google Scholar 

  31. Mandoli C, Pagliari F, Pagliari S et al (2010) Stem cell aligned growth induced by CeO2 nanoparticles in PLGA scaffolds with improved bioactivity for regenerative medicine. Adv Funct Mater 20:1617–1624

    Article  CAS  Google Scholar 

  32. Phelps EA, Landázuri N, Thulé PM et al (2010) Bioartificial matrices for therapeutic vascularization. Proc Natl Acad Sci USA 107:3323–3328

    Article  PubMed  CAS  Google Scholar 

  33. Engler AJ, Sen S, Sweeney HL et al (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  PubMed  CAS  Google Scholar 

  34. Soliman S, Pagliari S, Rinaldi A et al (2010) Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning. Acta Biomater 26:1227–1237

    Article  Google Scholar 

  35. Forte G, Carotenuto F, Pagliari F et al (2008) Criticality of the biological and physical stimuli array inducing resident cardiac stem cell determination. Stem Cells 26:2093–2103

    Article  PubMed  CAS  Google Scholar 

  36. Marklein RA, Burdick JA (2010) Controlling stem cell fate with material design. Adv Mater 22:175–189

    Article  PubMed  CAS  Google Scholar 

  37. Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677

    Article  PubMed  CAS  Google Scholar 

  38. Vunjak-Novakovic G, Tandon N, Godier A et al (2010) Challenges in cardiac tissue engineering. Tissue Eng Part B Rev 16:169–187

    Article  PubMed  Google Scholar 

  39. Jacot JG, McCulloch AD, Omens JH (2008) Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys J 95:3479–3487

    Article  PubMed  CAS  Google Scholar 

  40. Engler AJ, Carag-Krieger C, Johnson CP et al (2008) Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci 121:3794–3802

    Article  PubMed  CAS  Google Scholar 

  41. Engelmayr GC Jr, Cheng M, Bettinger CJ et al (2008) Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat Mater 7:1003–1010

    Article  PubMed  CAS  Google Scholar 

  42. Aubin H, Nichol JW, Hutson CB (2010) (2008) Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials 31:6941–6951

    Article  PubMed  CAS  Google Scholar 

  43. Zimmermann WH, Melnychenko I, Wasmeier G (2006) (2008) Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 12:452–458

    Article  PubMed  CAS  Google Scholar 

  44. Martinez EC, Kofidis T (2011) Adult stem cells for cardiac tissue engineering. J Mol Cell Cardiol 50:312–319

    Article  PubMed  CAS  Google Scholar 

  45. Oh H, Bradfute SB, Gallardo TD et al (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 100:12313–12318

    Article  PubMed  CAS  Google Scholar 

  46. Smith RR, Barile L, Cho HC et al (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115:896–908

    Article  PubMed  Google Scholar 

  47. Matsuura K, Honda A, Nagai T et al (2009) Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice. J Clin Invest 119:2204–2217

    PubMed  CAS  Google Scholar 

  48. Choi HS, Frangioni JV (2010) Nanoparticles for biomedical imaging: fundamentals of clinical translation. Mol Imaging 9:291–310

    PubMed  CAS  Google Scholar 

  49. Wickline SA, Lanza GM (2003) Nanotechnology for molecular imaging and targeted therapy. Circulation 107:1092–1095

    Article  PubMed  Google Scholar 

  50. Lee CH, Kim JH, Lee HJ et al (2011) The generation of iPS cells using non-viral magnetic nanoparticle based transfection. Biomaterials 32:6683–6691

    Article  PubMed  CAS  Google Scholar 

  51. Spadaccio C, Rainer A, Trombetta M et al (2009) Poly-L-lactic acid/hydroxyapatite electrospun nanocomposites induce chondrogenic differentiation of human MSC. Ann Biomed Eng 37:1376–1389

    Article  PubMed  Google Scholar 

  52. Zhang L, Webste TJ (2009) Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4:66–80

    Article  CAS  Google Scholar 

  53. Oh S, Brammer KS, Li J et al (2009) Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci USA 106:2130–2135

    Article  PubMed  CAS  Google Scholar 

  54. Chen J, Patil S, Seal S et al (2006) Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol 1:142–150

    Article  PubMed  CAS  Google Scholar 

  55. Pagliari F, Mandoli C, Forte G et al (2012) Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS Nano 6:3767–3775

    Article  PubMed  CAS  Google Scholar 

  56. Jasinski P, Suzuki T, Anderson HU (2003) Nanocrystalline undoped ceria oxygen sensor. Sens Actuators B Chem 95:73–77

    Article  CAS  Google Scholar 

  57. Kharton VV, Figueiredo FM, Navarro L et al (2001) Ceria-based materials for solid oxide fuel cells. J Mater Sci 36:1105–1117

    Article  CAS  Google Scholar 

  58. El-Toni AM, Yin S, Sato T (2006) Enhancement of calcia doped ceria nanoparticles performance as UV shielding material. Adv Sci Technol 45:673–678

    Article  CAS  Google Scholar 

  59. Park EJ, Park YK, Park K (2008) Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 245:90–100

    Article  PubMed  CAS  Google Scholar 

  60. Kocbek P, Teskac K, Kreft ME et al (2010) Toxicological aspects of long-term treatment of keratinocytes with ZnO and TiO2 nanoparticles. Small 6:1908–1917

    Article  PubMed  CAS  Google Scholar 

  61. Schubert D, Dargusch R, Raitano J et al (2006) Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 342:86–91

    Article  PubMed  CAS  Google Scholar 

  62. Campbell TC, Peden CH (2005) Oxygen vacancies and catalysis on ceria. Surf Sci 309:713–714

    CAS  Google Scholar 

  63. Zhang F, Wang P, Koberstein J et al (2004) Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy. Surf Sci 563:74–82

    Article  CAS  Google Scholar 

  64. Das M, Patil S, Bhargava N et al (2007) Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 28:1918–1925

    Article  PubMed  CAS  Google Scholar 

  65. Tarnuzzer RW, Colon J, Patil S et al (2005) Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett 5:2573–2577

    Article  PubMed  CAS  Google Scholar 

  66. Colon J, Herrera L, Smit J et al (2009) Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomedicine 5:225–231

    Article  PubMed  CAS  Google Scholar 

  67. Hirst SM, Karakoti AS, Tyler RD et al (2009) Anti-inflammatory properties of cerium oxide nanoparticles. Small 5:2848–2856

    Article  PubMed  CAS  Google Scholar 

  68. Colon J, Hsieh N, Ferguson A et al (2010) Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase-2. Nanomedicine 6:698–705

    Article  PubMed  CAS  Google Scholar 

  69. Celardo I, De Nicola M, Mandoli C et al (2011) Ce3+ ions determine redox-dependent antiapoptotic effect of cerium oxide nanoparticles. ACS Nano 5:4537–4549

    Article  PubMed  CAS  Google Scholar 

  70. Korsvik C, Patil S, Seal S et al (2007) Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun (Camb) 14:1056–1058

    Article  Google Scholar 

  71. Heckert EG, Karakoti AS, Seal S et al (2008) The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 29:2705–2709

    Article  PubMed  CAS  Google Scholar 

  72. Pirmohamed T, Dowding JM, Singh S et al (2010) Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun 46:2736–2738

    Article  CAS  Google Scholar 

  73. Niu J, Azfer A, Rogers LM et al (2006) Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. Cardiovasc Res 73:549–559

    Article  PubMed  Google Scholar 

  74. Li TS, Marban E (2010) Physiological levels of reactive oxygen species are required to maintain genomic stability in stem cells. Stem Cells 28:1178–1185

    Article  PubMed  CAS  Google Scholar 

  75. Sauer H, Wartenberg M, Hescheler J (2001) Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11:173–186

    Article  PubMed  CAS  Google Scholar 

  76. Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Di Nardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Pagliari, F., Di Nardo, P. (2013). Cerium Oxide Nanoparticles Counteract the Oxidative Stress in Cardiac Progenitor Cells. In: Pierce, G., Mizin, V., Omelchenko, A. (eds) Advanced Bioactive Compounds Countering the Effects of Radiological, Chemical and Biological Agents. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6513-9_8

Download citation

Publish with us

Policies and ethics