Skip to main content

Life at High Salt and Low Oxygen: How Do the Halobacteriaceae Cope with Low Oxygen Concentrations in Their Environment?

  • Chapter
  • First Online:
Polyextremophiles

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 27))

Abstract

Halophilic Archaea of the family Halobacteriaceae generally lead an aerobic chemoheterotrophic life. As the solubility of oxygen in concentrated brines is very small, it can be expected that these organisms will often experience a limited availability of molecular oxygen. To cope with the potential lack of oxygen, many members of the Halobacteriaceae have developed strategies enabling them to grow and survive in the absence of oxygen and/or ways to move toward more oxygen-rich niches. Some species can grow by denitrification, reducing nitrate to N2 and N2O. Some can couple growth with the reduction of other alternative electron acceptors such as dimethyl sulfoxide (DMSO), trimethylamine N-oxide (TMAO), and/or fumarate. Fermentative growth is rarely found among the halophilic Archaea, but growth of Halobacterium spp. by fermentation of arginine is well documented. Halobacterium salinarum and probably a few other species as well can use light energy absorbed by bacteriorhodopsin for photoheterotrophic growth. Another strategy used by some members of the group is to move toward more oxygen-rich areas, either by active motility (aerotaxis) or by passive flotation by means of gas vesicles. It is tempting to speculate that these strategies may help halophilic Archaea to grow and survive in situations where oxygen is limiting. However, nitrate is seldom abundant in hypersaline lakes (also due to the absence of autotrophic nitrification at high salt concentrations), and there is no reason to assume that DMSO, fumarate, or arginine may accumulate in any hypersaline environment to concentrations high enough to support anaerobic growth. TMAO may become available during the decay of salted fish but hardly elsewhere. Only a few species of Halobacteriaceae produce gas vesicles, and there is little evidence that those that do can exploit them to efficiently buoy up to the brine surface in natural salt lakes and saltern ponds to reach the oxygen. It is not yet clear to what extent their communities are truly oxygen limited in their natural environments. The fact that the halophilic Archaea also possess genes, encoding enzymes important in protection against peroxides, and superoxide radicals suggests that at least from time to time they may become exposed not only to low oxygen stress but to high oxygen stress as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this chapter, three-letter abbreviations for genus names are used as recommended by the ICSP Subcommittee on the taxonomy of Halobacteriaceae (http://www.the-icsp.org/taxa/halobacterlist.htm): Haloarcula (Har.), Halobacterium (Hbt.), Haloferax (Hfx.), Halogeometricum (Hgm.), Haloquadratum (Hqr.), Haloplanus (Hpn.), Halorhabdus (Hrd.), and Halorubrum (Hrr.).

References

  • Antunes A, Tiborda M, Huber R, Moissl C, Nobre MF, da Costa MS (2008) Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus. Int J Syst Evol Microbiol 58:215–220

    Article  PubMed  CAS  Google Scholar 

  • Antunes A, Alam I, Bajic VB, Stingl U (2011a) Genome sequence of Halorhabdus tiamatea, the first archaeon isolated from a deep-sea anoxic brine lake. J Bacteriol 193:4553–4554

    Article  PubMed  CAS  Google Scholar 

  • Antunes A, Kamanda Ngugi D, Stingl U (2011b) Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ Microbiol Rep 3:416–433

    Article  PubMed  Google Scholar 

  • Beard SJ, Hayes PK, Walsby AE (1997) Growth competition between Halobacterium salinarum strain PHH1 and mutants affected in gas vesicle synthesis. Microbiology 143:467–473

    Article  CAS  Google Scholar 

  • Bibikov SI, Skulachev VP (1989) Mechanisms of phototaxis and aerotaxis in Halobacterium halobium. FEBS Lett 243:303–306

    Article  CAS  Google Scholar 

  • Bickel-Sandkötter S, Gärtner W, Dane M (1996) Conversion of energy in halobacteria: ATP synthesis and phototaxis. Arch Microbiol 166:1–11

    Article  PubMed  Google Scholar 

  • Bolhuis H, Palm P, Wende A, Falb M, Rampp M, Rodriguez-Valera F, Pfeiffer F, Oesterhelt D (2006) The genome of the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC Genomics 7:169

    Article  PubMed  Google Scholar 

  • Brown-Peterson NJ, Salin ML (1994) Salt stress in a halophilic bacterium: alterations in oxidative metabolism and oxy-intermediate scavenging systems. Can J Microbiol 40:1057–1063

    Article  CAS  Google Scholar 

  • Brown-Peterson NJ, Chen H, Salin ML (1994) Enhanced superoxide production by membrane vesicles from Halobacterium halobium in a hyposaline environment. Biochem Biophys Res Commun 205:1736–1740

    Article  PubMed  CAS  Google Scholar 

  • Brown-Peterson NJ, Begonia GB, Salin ML (1995) Alterations in oxidative activity and superoxide dismutase in Halobacterium halobium in response to aerobic respiratory inhibitors. Free Radic Biol Med 18:249–256

    Article  PubMed  CAS  Google Scholar 

  • Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML (2004) Cultivation of Walsby’s square haloarchaeon. FEMS Microbiol Lett 238:469–473

    PubMed  CAS  Google Scholar 

  • Burns DG, Janssen PH, Itoh T, Kamekura M, Li Z, Jensen G, Rodríguez-Valera F, Bolhuis H, Dyall-Smith ML (2007) Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57:387–392

    Article  PubMed  CAS  Google Scholar 

  • Cui H-L, Gao X, Li X-Y, Xu X-W, Zhou Y-G, Liu H-C, Zhou P-J (2010) Haloplanus vescus sp. nov., an extremely halophilic archaeon from a marine solar saltern, and emended description of the genus Haloplanus. Int J Syst Evol Microbiol 60:1824–1827

    Article  PubMed  CAS  Google Scholar 

  • DasSarma P, Klebahn G, Klebahn H (2010) Translation of Henrich Klebahn’s ‘Damaging agents of the klippfish – a contribution to the knowledge of the salt-loving organisms’. Saline Syst 6:7

    Article  PubMed  Google Scholar 

  • Ducharme L, Matheson AT, Yaguchi M, Visentin LP (1972) Utilization of amino acids by Halobacterium cutirubrum in chemically defined medium. Can J Microbiol 18:1349–1351

    Article  PubMed  CAS  Google Scholar 

  • Dundas ID, Halvorson HO (1966) Arginine metabolism in Halobacterium salinarium, an obligately halophilic bacterium. J Bacteriol 91:113–119

    PubMed  CAS  Google Scholar 

  • Elevi Bardavid R, Mana L, Oren A (2007) Haloplanus natans gen. nov., sp. nov., an extremely halophilic gas-vacuolate archaeon from Dead Sea – Red Sea water mixtures in experimental mesocosms. Int J Syst Evol Microbiol 57:780–783

    Article  Google Scholar 

  • Englert C, Horne M, Pfeifer F (1990) Expression of the major gas vesicle protein in the halophilic archaebacterium Haloferax mediterranei is modulated by salt. Mol Gen Genet 222:225–232

    Article  PubMed  CAS  Google Scholar 

  • Englert C, Wanner G, Pfeifer F (1992) Functional analysis of the gas vesicle gene cluster of the halophilic archaeon Haloferax mediterranei defines the vac-region boundary and suggests a regulatory role for the gvpD gene or its product. Mol Microbiol 6:3543–3550

    Article  PubMed  CAS  Google Scholar 

  • Fukumori Y, Fujiwara T, Okada-Takahashi Y, Mukohata Y, Yamanaka T (1985) Purification and properties of a peroxidase from Halobacterium halobium L-33. J Biochem 98:1055–1061

    PubMed  CAS  Google Scholar 

  • Gonzalez C, Gutierrez C, Ramirez C (1978) Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing extremely halophilic bacterium. Can J Microbiol 24:710–715

    Article  PubMed  CAS  Google Scholar 

  • Hartmann R, Sickinger H-D, Oesterhelt D (1980) Anaerobic growth of halobacteria. Proc Natl Acad Sci U S A 77:3821–3825

    Article  PubMed  CAS  Google Scholar 

  • Hochstein LI (1991) Nitrate reduction in the extremely halophilic bacteria. In: Rodriguez-Valera F (ed) General and applied aspects of halophilic microorganisms. Plenum Press, New York, pp 129–137

    Chapter  Google Scholar 

  • Hochstein LI, Tomlinson GA (1985) Denitrification by extremely halophilic bacteria. FEMS Microbiol Lett 27:329–331

    Article  PubMed  CAS  Google Scholar 

  • Houwink AL (1956) Flagella, gas vacuoles and cell-wall structure in Halobacterium halobium: an electron microscope study. J Gen Microbiol 15:146–150

    Article  PubMed  CAS  Google Scholar 

  • Javor BJ (1984) Growth potential of halophilic bacteria isolated from solar salt environments: carbon sources and salt requirements. Appl Environ Microbiol 48:352–360

    PubMed  CAS  Google Scholar 

  • Klebahn H (1919) Die Schädlinge des Klippfisches. Mitt Inst Allg Bot Hamburg 4:11–69

    Google Scholar 

  • Larsen H, Omang S, Steensland H (1967) On the gas vacuoles of the halobacteria. Arch Mikrobiol 59:197–203

    Article  PubMed  CAS  Google Scholar 

  • Levy Y (1980) Seasonal and long range changes in oxygen and hydrogen sulfide concentration in the Dead Sea. Report MG/9/80, Ministry of Energy and Infrastructure, Geological Survey of Israel, Jerusalem

    Google Scholar 

  • Lindbeck JC, Goulbourne EA Jr, Johnson MS, Taylor BL (1995) Aerotaxis in Halobacterium salinarium is methylation-dependent. Microbiology 141:2945–2953

    Article  PubMed  CAS  Google Scholar 

  • Long SN, Salin ML (2000) Archaeal promoter-directed expression of the Halobacterium salinarum catalase-peroxidase gene. Extremophiles 4:351–356

    Article  PubMed  CAS  Google Scholar 

  • Mancinelli RL, Hochstein LI (1986) The occurrence of denitrification in extremely halophilic bacteria. FEMS Microbiol Lett 35:55–58

    Article  PubMed  CAS  Google Scholar 

  • May BP, Dennis PP (1987) Superoxide dismutase from the extremely halophilic archaebacterium Halobacterium cutirubrum. J Bacteriol 169:1417–1422

    PubMed  CAS  Google Scholar 

  • May BP, Tam P, Dennis PP (1989) The expression of the superoxide dismutase gene in Halobacterium halobium and Halobacterium volcanii. Can J Microbiol 35:171–175

    Article  PubMed  CAS  Google Scholar 

  • Monstadt GM, Holldorf AM (1991) Arginine deiminase from Halobacterium salinarium: purification and properties. Biochem J 273:739–746

    PubMed  CAS  Google Scholar 

  • Montalvo-Rodríguez R, Vreeland RH, Oren A, Kessel M, Betancourt C, López-Garriga J (1998) Halogeometricum borinquense gen. nov., sp. nov., a novel halophilic Archaeon from Puerto Rico. Int J Syst Bacteriol 48:1305–1312

    Article  PubMed  Google Scholar 

  • Müller JA, DasSarma S (2005) Genomic analysis of anaerobic respiration in the archaeon Halobacterium sp. strain NRC-1: dimethyl sulfoxide and trimethylamine N-oxide as terminal electron acceptors. J Bacteriol 187:1659–1667

    Article  PubMed  Google Scholar 

  • Mwatha WE, Grant WD (1993) Natronobacterium vacuolata, a haloalkaliphilic archaeon isolated from Lake Magadi, Kenya. Int J Syst Bacteriol 43:401–404

    Article  Google Scholar 

  • Oesterhelt D (1982) Anaerobic growth of halobacteria. Methods Enzymol 88:417–420

    Article  Google Scholar 

  • Oesterhelt D, Krippahl G (1983) Phototrophic growth of halobacteria and its use for isolation of photosynthetically-deficient mutants. Ann Microbiol 134B:137–150

    CAS  Google Scholar 

  • Offner S, Ziese U, Wanner G, Typke D, Pfeifer F (1998) Structural characteristics of halobacterial gas vesicles. Microbiology 144:1331–1342

    Article  PubMed  CAS  Google Scholar 

  • Oren A (1991) Anaerobic growth of halophilic archaeobacteria by reduction of fumarate. J Gen Microbiol 137:1387–1390

    Article  CAS  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    PubMed  CAS  Google Scholar 

  • Oren A (2001) The bioenergetic basis for the decrease in metabolic diversity at increasing salt concentrations: implications for the functioning of salt lake ecosystems. Hydrobiologia 466:61–72

    Article  CAS  Google Scholar 

  • Oren A (2002) Halophilic microorganisms and their environments. Kluwer Scientific, Dordrecht

    Book  Google Scholar 

  • Oren A (2006) The order Halobacteriales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, vol 3. Springer, New York, pp 113–164

    Google Scholar 

  • Oren A (2011) Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol 13:1908–1923

    Article  PubMed  CAS  Google Scholar 

  • Oren A (2012) Taxonomy of Halobacteriaceae: a paradigm for changing concepts in prokaryote systematics. Int J Syst Evol Microbiol 62:263–271

    Article  PubMed  Google Scholar 

  • Oren A, Litchfield CD (1999) A procedure for the enrichment and isolation of Halobacterium. FEMS Microbiol Lett 173:353–358

    Article  CAS  Google Scholar 

  • Oren A, Trüper HG (1990) Anaerobic growth of halophilic archaeobacteria by reduction of dimethylsulfoxide and trimethylamine N-oxide. FEMS Microbiol Lett 70:33–36

    Article  CAS  Google Scholar 

  • Oren A, Ginzburg M, Ginzburg BZ, Hochstein LI, Volcani BE (1990) Haloarcula marismortui (Volcani) sp. nov., nom. rev., an extremely halophilic bacterium from the Dead Sea. Int J Syst Bacteriol 40:209–210

    Article  PubMed  CAS  Google Scholar 

  • Oren A, Priel N, Shapiro O, Siboni N (2006) Buoyancy studies in natural communities of square gas-vacuolate archaea in saltern crystallizer ponds. Saline Syst 2:4

    Article  PubMed  Google Scholar 

  • Oren A, Ventosa A, Ma Y (2011) Helge Larsen (1922–2005) and his contributions to the study of halophilic microorganisms. In: Ventosa A, Oren A, Ma Y (eds) Halophiles and hypersaline environments: current research and future trends. Springer, Berlin, pp 1–7

    Chapter  Google Scholar 

  • Parkes K, Walsby AE (1981) Ultrastructure of a gas-vacuolate square bacterium. J Gen Microbiol 126:503–506

    Google Scholar 

  • Petter HFM (1932) Over Roode en Andere Bacteriën van Gezouten Visch. PhD thesis, University of Utrecht

    Google Scholar 

  • Pfeifer F, Krüger K, Röder R, Mayr A, Ziesche S, Offner S (1997) Gas vesicle formation in halophilic Archaea. Arch Microbiol 167:259–268

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer F, Gregor D, Hofacker A, Ploßer P, Zimmermann P (2002) Regulation of gas vesicle formation in halophilic archaea. J Mol Microbiol Biotechnol 4:175–181

    PubMed  CAS  Google Scholar 

  • Röder R, Pfeifer F (1996) Influence of salt on the transcription of the gas-vesicle gene of Haloferax mediterranei and identification of the endogenous transcriptional activator. Microbiology 142:1715–1723

    Article  PubMed  Google Scholar 

  • Rodriguez-Valera F, Juez G, Kushner DJ (1983) Halobacterium mediterranei spec. nov., a new carbohydrate-utilizing extreme halophile. Syst Appl Microbiol 4:369–381

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Valera F, Ventosa A, Juez G, Imhoff JF (1985) Variation of environmental features and microbial populations with salt concentration in a multi-pond saltern. Microb Ecol 11:107–115

    Article  PubMed  CAS  Google Scholar 

  • Romanenko VI (1981) Square microcolonies in the surface water film of the Saxkoye lake. Mikrobiologiya (USSR) 50:571–574 (in Russian)

    Google Scholar 

  • Ruepp A, Soppa J (1996) Fermentative arginine degradation in Halobacterium salinarium (formerly Halobacterium halobium): genes, gene products, and transcripts of the arcRACB gene cluster. J Bacteriol 178:4942–4947

    PubMed  CAS  Google Scholar 

  • Ruepp A, Müller HN, Lottspeich F, Soppa J (1995) Catabolic ornithine transcarbamylase of Halobacterium halobium (salinarium): purification, characterization, sequence determination, and evolution. J Bacteriol 177:1129–1136

    PubMed  CAS  Google Scholar 

  • Salin ML, Brown-Peterson NJ (1993) Dealing with active oxygen intermediates: a halophilic perspective. Experientia 49:523–529

    Article  CAS  Google Scholar 

  • Salin ML, Oesterhelt D (1988) Purification of a manganese-containing superoxide dismutase from Halobacterium halobium. Arch Biochem Biophys 260:806–810

    Article  PubMed  CAS  Google Scholar 

  • Shand RF, Betlach MC (1991) Expression of the bop gene cluster of Halobacterium halobium is induced by low oxygen tension and by light. J Bacteriol 173:4692–4699

    PubMed  CAS  Google Scholar 

  • Shatkay M (1991) Dissolved oxygen in highly saline sodium chloride solutions and in the Dead Sea – measurements of its concentration and isotopic composition. Mar Chem 32:89–99

    Article  CAS  Google Scholar 

  • Shatkay M, Anati DA, Gat JR (1993) Dissolved oxygen in the Dead Sea – seasonal changes during the holomictic stage. Int J Salt Lake Res 2:93–110

    Article  Google Scholar 

  • Sherwood JE, Stagnitti F, Kokkinn MJ, Williams WD (1991) Dissolved oxygen concentrations in hypersaline waters. Limnol Oceanogr 36:235–250

    Article  CAS  Google Scholar 

  • Sherwood JE, Stagnitti F, Kokkinn MJ, Williams WD (1992) A standard table for predicting equilibrium dissolved oxygen concentrations in salt lakes dominated by sodium chloride. Int J Salt Lake Res 1:1–6

    Article  Google Scholar 

  • Stoeckenius W, Wolff EK, Hess B (1988) A rapid population method for action spectra applied to Halobacterium halobium. J Bacteriol 170:2790–2795

    PubMed  CAS  Google Scholar 

  • Strøm AR, Larsen H (1979) Anaerobic fish spoilage by bacteria. Biochemical changes in herring extracts. J Appl Bacteriol 46:269–277

    Article  Google Scholar 

  • Strøm AR, Olafsen JA, Larsen H (1979) Trimethylamine oxide: a terminal electron acceptor in anaerobic respiration of bacteria. J Gen Microbiol 112:315–320

    Article  PubMed  Google Scholar 

  • Takao M, Kobayashi T, Oikawa A, Yasui A (1989) Tandem arrangement of photolyase and superoxide dismutase genes in Halobacterium halobium. J Bacteriol 171:6323–6329

    PubMed  CAS  Google Scholar 

  • Tindall BJ, Trüper HG (1986) Ecophysiology of the aerobic halophilic archaebacteria. Syst Appl Microbiol 7:202–212

    Article  CAS  Google Scholar 

  • Tomlinson GA, Jahnke LL, Hochstein LI (1986) Halobacterium denitrificans sp. nov., an extremely halophilic denitrifying bacterium. Int J Syst Bacteriol 36:66–70

    Article  PubMed  CAS  Google Scholar 

  • van der Wielen PWJJ, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, D’Auria G, de Lange GJ, Huebner A, Varnavas SP, Thomson J, Tamburini C, Marty D, McGenity TJ, Timmis KN, BioDeep Scientific Party (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307:121–123

    Article  PubMed  Google Scholar 

  • Walsby AE (1980) A square bacterium. Nature 283:69–71

    Article  Google Scholar 

  • Warkentin M, Schumann R, Oren A (2009) Community respiration studies in saltern crystallizer ponds. Aquat Microb Ecol 56:255–261

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aharon Oren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Oren, A. (2013). Life at High Salt and Low Oxygen: How Do the Halobacteriaceae Cope with Low Oxygen Concentrations in Their Environment?. In: Seckbach, J., Oren, A., Stan-Lotter, H. (eds) Polyextremophiles. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6488-0_24

Download citation

Publish with us

Policies and ethics