Skip to main content

Deep Subsurface Oil Reservoirs as Poly-extreme Habitats for Microbial Life. A Current Review

  • Chapter
  • First Online:
Polyextremophiles

Abstract

Oil reservoirs located deep within the earth crust represent one of the most challenging environments for life, usually providing combinations of high temperatures and pressures, as well as high concentrations of salts, heavy metals, and organic solvents. Organisms thriving in such environments, therefore, have to be truly poly-extremophiles, adapted to conditions otherwise very hostile to life. In spite of this, research carried out in many groups worldwide throughout the past decades has revealed that deep subsurface oil reservoirs indeed are populated by diverse consortia of poly-extremophilic Bacteria and Archaea. Numerous sites on all continents have been sampled in search for novel species and strains to describe and compare microbial consortia and to understand biological processes that might occur in response to and possibly interfere with an efficient oil production. In addition, the special adaptations of oil reservoir microbes to their extreme environments have rendered them highly attractive for bioprospecting approaches for novel enzymes and metabolites with potential industrial value.

In this chapter, we provide a current status overview of subsurface oil reservoir microbiology research, covering sites with in situ temperatures of 50 °C and higher. We also discuss the challenge of representative sampling and contamination issues affecting research results and derived conclusions. Further, the current understanding of metabolic capabilities predominant in oil reservoir communities is discussed, including the challenges these communities provide in oil production and their potential with respect to Biologically activated Enhanced Oil Recovery (Bio-EOR) and other industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aburuwaida AS, Banat IM, Haditirto S, Salem A, Kadri M (1991) Isolation of biosurfactant-producing bacteria product characterization, and evaluation. Acta Biotechnol 11:315–324

    CAS  Google Scholar 

  • Allen EE, Banfield JF (2005) Community genomics in microbial ecology and evolution. Nat Rev Microbiol 3:489–498

    PubMed  CAS  Google Scholar 

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    PubMed  CAS  Google Scholar 

  • Banat IM (1995) Characterization of biosurfactants and their use in pollution removal state of the art. Acta Biotechnol 15:251–267

    CAS  Google Scholar 

  • Beeder J, Nilsen RK, Rosnes JT, Torsvik T, Lien T (1994) Archaeoglobus fulgidus isolated from hot North Sea oil field waters. Appl Environ Microbiol 60:1227–1231

    PubMed  CAS  Google Scholar 

  • Beeder J, Torsvik T, Lien T (1995) Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water. Arch Microbiol 164:331–336

    PubMed  CAS  Google Scholar 

  • Belyaev SS, Wolkin R, Kenealy WR, Deniro MJ, Epstein S, Zeikus JG (1983) Methanogenic bacteria from the bondyuzhskoe oil field: general characterization and analysis of stable-carbon isotopic fractionation. Appl Environ Microbiol 45:691–697

    PubMed  CAS  Google Scholar 

  • Belyaev SS, Borzenkov IA, Nazina TN, Rozanova EP, Glumov IF, Ibatullin RR, Ivanov MV (2004) Use of microorganisms in the biotechnology for the enhancement of oil recovery. Microbiology 73:590–598

    CAS  Google Scholar 

  • Bødtker G, Thorstenson T, Lillebø BL, Thorbjørnsen BE, Ulvøen RH, Sunde E, Torsvik T (2008) The effect of long-term nitrate treatment on SRB activity, corrosion rate and bacterial community composition in offshore water injection systems. J Ind Microbiol Biotechnol 35:1625–1636

    PubMed  Google Scholar 

  • Bødtker G, Lysnes K, Torsvik T, Bjørnestad EO, Sunde E (2009) Microbial analysis of backflowed injection water from a nitrate-treated North Sea oil reservoir. J Ind Microbiol Biotechnol 36:439–450

    PubMed  Google Scholar 

  • Bonch-Osmolovskaya EA, Miroshnichenko ML, Lebedinsky AV, Chernyh NA, Nazina TN, Ivoilov VS, Belyaev SS, Boulygina ES, Lysov YP, Perov AN, Mirzabekov AD, Hippe H, Stackebrandt E, L’Haridon S, Jeanthon C (2003) Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Appl Environ Microbiol 69:6143–6151

    PubMed  CAS  Google Scholar 

  • Bordoloi NK, Konwar BK (2009) Bacterial biosurfactant in enhancing solubility and metabolism of petroleum hydrocarbons. J Hazard Mater 170:495–505

    PubMed  CAS  Google Scholar 

  • Brakstad OG, Kotlar HK, Markussen S (2008) Microbial communities of a complex high-temperature offshore petroleum reservoir. Int J Oil Gas Coal Technol 1:211–228

    CAS  Google Scholar 

  • Cayol JL, Ollivier B, Patel BK, Ravot G, Magot M, Ageron E, Grimont PA, Garcia JL (1995) Description of Thermoanaerobacter brockii subsp. lactiethylicus subsp. nov., isolated from a deep subsurface French oil well, a proposal to reclassify Thermoanaerobacter finnii as Thermoanaerobacter brockii subsp. finnii comb. nov., and an emended description of Thermoanaerobacter brockii. Int J Syst Bacteriol 45:783–789

    PubMed  CAS  Google Scholar 

  • Cetecioglu Z, Ince BK, Kolukirik M, Ince O (2009) Biogeographical distribution and diversity of bacterial and archaeal communities within highly polluted anoxic marine sediments from the Marmara Sea. Mar Pollut Bull 58:384–395

    PubMed  CAS  Google Scholar 

  • Cheng L, Qiu TL, Yin XB, Wu XL, Hu GQ, Deng Y, Zhang H (2007) Methermicoccus shengliensis gen. nov., sp. nov., a thermophilic, methylotrophic methanogen isolated from oil-production water, and proposal of Methermicoccaceae fam. nov. Int J Syst Evol Microbiol 57:2964–2969

    PubMed  CAS  Google Scholar 

  • Cheng L, Qiu TL, Li X, Wang WD, Deng Y, Yin XB, Zhang H (2008) Isolation and characterization of Methanoculleus receptaculi sp. nov. from Shengli oil field, China. FEMS Microbiol Lett 285:65–71

    PubMed  CAS  Google Scholar 

  • Cheng L, Dai L, Li X, Zhang H, Lu Y (2011) Isolation and characterization of Methanothermobacter crinale sp. nov., a novel hydrogenotrophic methanogen from the Shengli oil field. Appl Environ Microbiol 77:5212–5219

    PubMed  CAS  Google Scholar 

  • Christensen B, Torsvik T, Lien T (1992) Immunomagnetically captured thermophilic sulfate-reducing bacteria from North Sea oil field waters. Appl Environ Microbiol 58:1244–1248

    PubMed  CAS  Google Scholar 

  • Coohrane WJ, Jones PS, Sanders PF, HoIt DM, Mosley MJ (1988) Studies on the thermophilic sulfate-reducing bacteria from a souring North Sea oil field. SPE European petroleum conference, London, October 16–19, 1988, SPE 18368

    Google Scholar 

  • Cord-Ruwisch R, Kleinitz W, Widdel F (1987) Sulfate-reducing bacteria and their activities in oil production. J Petrol Technol 39:97–106

    CAS  Google Scholar 

  • Cowan D, Meyer Q, Stafford W, Muyanga S, Cameron R, Wittwer P (2005) Metagenomic gene discovery: past, present and future. Trends Biotechnol 23:321–329

    PubMed  CAS  Google Scholar 

  • Dahle H, Birkeland NK (2006) Thermovirga lienii gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, amino-acid-degrading bacterium isolated from a North Sea oil well. Int J Syst Evol Microbiol 56:1539–1545

    PubMed  CAS  Google Scholar 

  • Dahle H, Garshol F, Madsen M, Birkeland NK (2008) Microbial community structure analysis of produced water from a high-temperature North Sea oil-field. Antonie van Leeuwenhoek 93:37–49

    PubMed  Google Scholar 

  • Dar SA, Kleerebezem R, Stams AJ, Kuenen JG, Muyzer G (2008) Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio. Appl Microbiol Biotechnol 78:1045–1055

    PubMed  CAS  Google Scholar 

  • Davey ME, Wood WA, Key R, Nakamura K, Stahl DA (1993) Isolation of three species of Geotoga and Petrotoga: two new genera, representing a new lineage in the bacterial line of descent distantly related to the “Thermotogales”. Syst Appl Microbiol 16:191–200

    Google Scholar 

  • DiPippo JL, Nesbo CL, Dahle H, Doolittle WF, Birkland NK, Noll KM (2009) Kosmotoga olearia gen. nov., sp. nov., a thermophilic, anaerobic heterotroph isolated from an oil production fluid. Int J Syst Evol Microbiol 59:2991–3000

    PubMed  CAS  Google Scholar 

  • Duncan KE, Gieg LM, Parisi VA, Tanner RS, Tringe SG, Bristow J, Suflita JM (2009) Biocorrosive thermophilic microbial communities in Alaskan north slope oil facilities. Environ Sci Technol 43:7977–7984

    PubMed  CAS  Google Scholar 

  • Fardeau ML, Cayol JL, Magot M, Ollivier B (1993) H2 oxidation in the presence of thiosulfate, by a Thermoanaerobacter strain isolated from an oil-producing well. FEMS Microbiol Lett 113:327–332

    CAS  Google Scholar 

  • Fardeau ML, Ollivier B, Patel BK, Magot M, Thomas P, Rimbault A, Rocchiccioli F, Garcia JL (1997) Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47:1013–1019

    PubMed  CAS  Google Scholar 

  • Fardeau ML, Magot M, Patel BK, Thomas P, Garcia JL, Ollivier B (2000) Thermoanaerobacter subterraneus sp. nov., a novel thermophile isolated from oilfield water. Int J Syst Evol Microbiol 50:2141–2149

    PubMed  CAS  Google Scholar 

  • Fardeau ML, Bonilla Salinas M, L’Haridon S, Jeanthon C, Verhe F, Cayol JL, Patel BK, Garcia JL, Ollivier B (2004) Isolation from oil reservoirs of novel thermophilic anaerobes phylogenetically related to Thermoanaerobacter subterraneus: reassignment of T. subterraneus, Thermoanaerobacter yonseiensis, Thermoanaerobacter tengcongensis and Carboxydibrachium pacificum to Caldanaero­bacter subterraneus gen. nov., sp. nov., comb. nov. as four novel subspecies. Int J Syst Evol Microbiol 54:467–474

    PubMed  CAS  Google Scholar 

  • Garcia JL, Patel BKC, Ollivier B (2000) Taxonomic phylogenetic and ecological diversity of methanogenic Archaea. Anaerobe 6:205–226

    PubMed  CAS  Google Scholar 

  • Gieg LM, Davidova IA, Duncan KE, Suflita JM (2010) Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields. Environ Microbiol 12:3074–3086

    PubMed  CAS  Google Scholar 

  • Grassia GS, McLean KM, Glénat P, Bauld J, Sheehy AJ (1996) A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS Microbiol Ecol 21:47–58

    CAS  Google Scholar 

  • Gray ND, Sherry A, Larter SR, Erdmann M, Leyris J, Liengen T, Beeder J, Head IM (2009) Biogenic methane production in formation waters from a large gas field in the North Sea. Extremophiles 13:511–519

    PubMed  CAS  Google Scholar 

  • Greene AC, Patel BK, Sheehy AJ (1997) Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Bacteriol 47:505–509

    PubMed  CAS  Google Scholar 

  • Grigoryan A, Voordouw G (2008) Microbiology to help solve our energy needs: methanogenesis from oil and the impact of nitrate on the oil-field sulfur cycle. Ann N Y Acad Sci 1125:345–352

    PubMed  CAS  Google Scholar 

  • Hao R, Lu A, Wang G (2004) Crude-oil-degrading thermophilic bacterium isolated from an oil field. Can J Microbiol 50:175–182

    PubMed  CAS  Google Scholar 

  • Head IM, Jones DM, Roling WFM (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182

    PubMed  CAS  Google Scholar 

  • Illias RMD, Wei OS, Idris AK, Rahman WAWA (2001) Isolation and characterization of halotolerant aerobic bacteria from oil reservoir. Jurnal Teknologi 35:1–10

    Google Scholar 

  • Jayasinghearachchi HS, Lal B (2011) Oceanotoga teriensis gen. nov., sp. nov., a thermophilic bacterium isolated from offshore oil-producing wells. Int J Syst Evol Microbiol 61:554–560

    PubMed  CAS  Google Scholar 

  • Jeanthon C, Reysenbach AL, l’Haridon S, Gambacorta A, Pace NR, Glenat P, Prieur D (1995) Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch Microbiol 164:91–97

    PubMed  CAS  Google Scholar 

  • Jenneman GE, Mcinerney MJ, Knapp RM (1986) Effect of nitrate on biogenic sulfide production. Appl Environ Microbiol 51:1205–1211

    PubMed  CAS  Google Scholar 

  • Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM, Bennett B, Huang H, Brown A, Bowler BF, Oldenburg T, Erdmann M, Larter SR (2008) Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451:176–180

    PubMed  CAS  Google Scholar 

  • Jørgensen BB, D’Hondt S (2006) Ecology. A starving majority deep beneath the seafloor. Science 314:932–934

    PubMed  Google Scholar 

  • Kaster KM, Grigoriyan A, Jenneman G, Voordouw G (2007) Effect of nitrate and nitrite on sulfide production by two thermophilic, sulfate-reducing enrichments from an oil field in the North Sea. Appl Microbiol Biotechnol 75:195–203

    PubMed  CAS  Google Scholar 

  • Kaster KM, Bonaunet K, Berland H, Kjeilen-Eilertsen G, Brakstad OG (2009) Characterisation of culture-independent and -dependent microbial communities in a high-temperature offshore chalk petroleum reservoir. Antonie van Leeuwenhoek 96:423–439

    PubMed  Google Scholar 

  • Korenblum E, Souza DB, Penna M, Seldin L (2012) Molecular analysis of the bacterial communities in crude oil samples from two Brazilian offshore petroleum platforms. Int J Microbiol 2012:156537

    PubMed  Google Scholar 

  • Kotlar HK (2012) Extreme to the 4th power! Oil-, high temperature-, salt- and pressure-tolerant microorganisms in oil reservoirs. What secrets can they reveal? In: Anitori RP (ed) Extremophiles. Microbiology and biotechnology. Caister Academic Press, Norfolk, pp 159–182

    Google Scholar 

  • Kotlar HK, Lewin A, Johansen J, Throne-Holst M, Haverkamp T, Markussen S, Winnberg A, Ringrose P, Aakvik T, Ryeng E, Jakobsen K, Drabløs F, Valla S (2011) High coverage sequencing of DNA from microorganisms living in an oil reservoir 2.5 kilometres subsurface. Environ Microbiol Rep 3:674–681

    PubMed  Google Scholar 

  • L’Haridon S, Reysenbacht AL, Glenat P, Prieur D, Jeanthon C (1995) Hot subterranean biosphere in a continental oil reservoir. Nature 377:223–224

    Google Scholar 

  • L’Haridon SL, Miroshnichenko ML, Hippe H, Fardeau ML, Bonch-Osmolovskaya E, Stackebrandt E, Jeanthon C (2001) Thermosipho geolei sp. nov., a thermophilic bacterium isolated from a continental petroleum reservoir in Western Siberia. Int J Syst Evol Microbiol 51:1327–1334

    Google Scholar 

  • L’Haridon S, Miroshnichenko ML, Hippe H, Fardeau ML, Bonch-Osmolovskaya EA, Stackebrandt E, Jeanthon C (2002) Petrotoga olearia sp. nov. and Petrotoga sibirica sp. nov., two thermophilic bacteria isolated from a continental petroleum reservoir in Western Siberia. Int J Syst Evol Microbiol 52:1715–1722

    PubMed  Google Scholar 

  • Lan G, Li Z, Zhang H, Zou C, Qiao D, Cao Y (2011) Enrichment and diversity analysis of the thermophilic microbes in a high temperature petroleum reservoir. Afr J Microbiol Res 5:1850–1857

    Google Scholar 

  • Lazar I, Voicu A, Nicolescu C, Mucenica D, Dobrota S, Petrisor IG, Stefanescu M, Sandulescu L (1999) The use of naturally occurring selectively isolated bacteria for inhibiting paraffin deposition. J Petrol Sci Eng 22:161–169

    CAS  Google Scholar 

  • Lazar CS, Parkes RJ, Cragg BA, L’Haridon S, Toffin L (2011) Methanogenic diversity and activity in hypersaline sediments of the centre of the Napoli mud volcano, Eastern Mediterranean Sea. Environ Microbiol 13:2078–2091

    PubMed  CAS  Google Scholar 

  • Leu JY, McGovern-Traa CP, Porter AJ, Harris WJ, Hamilton WA (1998) Identification and phylogenetic analysis of thermophilic sulfate-reducing bacteria in oil field samples by 16S rDNA gene cloning and sequencing. Anaerobe 4:165–174

    PubMed  CAS  Google Scholar 

  • Leu JY, McGovern-Traa CP, Porter AJ, Hamilton WA (1999) The same species of sulphate-reducing Desulfomicrobium occur in different oil field environments in the north sea. Lett Appl Microbiol 29:246–252

    PubMed  CAS  Google Scholar 

  • Lewin A, Johansen J, Wentzel A, Kotlar HK, Drabløs F, Valla S (2013) The microbial communities of two apparently physically separated deep sub-surface oil reservoirs show extensive DNA sequence similarities. Environ Microbiol Rep, submitted for publication

    Google Scholar 

  • Li D, Hendry P (2008) Microbial diversity in petroleum reservoirs. Microbiol Aust 29:25–27

    Google Scholar 

  • Li QX, Kang CB, Wang H, Liu CD, Zhang CK (2002) Application of microbial enhanced oil recovery technique to Daqing Oilfield. Biochem Eng J 11:197–199

    CAS  Google Scholar 

  • Li H, Yang SZ, Mu BZ, Rong ZF, Zhang J (2006) Molecular analysis of the bacterial community in a continental high-temperature and water-flooded petroleum reservoir. FEMS Microbiol Lett 257:92–98

    PubMed  CAS  Google Scholar 

  • Li H, Yang SZ, Mu BZ (2007a) Phylogenetic diversity of the archaeal community in a continental high-temperature, water-flooded petroleum reservoir. Curr Microbiol 55:382–388

    PubMed  CAS  Google Scholar 

  • Li H, Yang SZ, Mu BZ, Rong ZF, Zhang J (2007b) Molecular phylogenetic diversity of the microbial community associated with a high-temperature petroleum reservoir at an offshore oilfield. FEMS Microbiol Ecol 60:74–84

    PubMed  CAS  Google Scholar 

  • Li D, Midgley DJ, Ross JP, Oytam Y, Abell GC, Volk H, Daud WA, Hendry P (2012) Microbial biodiversity in a Malaysian oil field and a systematic comparison with oil reservoirs worldwide. Arch Microbiol 194:513–523

    PubMed  CAS  Google Scholar 

  • Lien T, Madsen M, Rainey FA, Birkeland NK (1998) Petrotoga mobilis sp. nov., from a North Sea oil-production well. Int J Syst Bacteriol 48:1007–1013

    PubMed  CAS  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    PubMed  CAS  Google Scholar 

  • Lysnes K, Bødtker G, Torsvik T, Bjørnestad EO, Sunde E (2009) Microbial response to reinjection of produced water in an oil reservoir. Appl Microbiol Biotechnol 83:1143–1157

    PubMed  CAS  Google Scholar 

  • Magot M, Ollivier B, Patel BK (2000) Microbiology of petroleum reservoirs. Antonie van Leeuwenhoek 77:103–116

    PubMed  CAS  Google Scholar 

  • Magot M, Basso O, Tardy-Jacquenod C, Caumette P (2004) Desulfovibrio bastinii sp. nov. and Desulfovibrio gracilis sp. nov., moderately halophilic, sulfate-reducing bacteria isolated from deep subsurface oilfield water. Int J Syst Evol Microbiol 54:1693–1697

    PubMed  CAS  Google Scholar 

  • Mayumi D, Mochimaru H, Yoshioka H, Sakata S, Maeda H, Miyagawa Y, Ikarashi M, Takeuchi M, Kamagata Y (2011) Evidence for syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis in the high-temperature petroleum reservoir of Yabase oil field (Japan). Environ Microbiol 13:1995–2006

    PubMed  CAS  Google Scholar 

  • Mbadinga SM, Li KP, Zhou L, Wang LY, Yang SZ, Liu JF, Gu JD, Mu BZ (2012) Analysis of alkane-dependent methanogenic community derived from production water of a high-temperature petroleum reservoir. Appl Microbiol Biotechnol 96:531–542

    PubMed  CAS  Google Scholar 

  • McInerney MJ, Bryant MP (1981) Anaerobic degradation of lactate by syntrophic associations of Methanosarcina barkeri and Desulfovibrio species and effect of H2 on acetate degradation. Appl Environ Microb 41:346–354

    CAS  Google Scholar 

  • McInerney MJ, Sieber JR, Gunsalus RP (2009) Synthropy in anaerobic global carbon cycles. Curr Opin Biotechnol 20:623–632

    PubMed  CAS  Google Scholar 

  • Miranda-Tello E, Fardeau ML, Thomas P, Ramirez F, Casalot L, Cayol JL, Garcia JL, Ollivier B (2004) Petrotoga mexicana sp. nov., a novel thermophilic, anaerobic and xylanolytic bacterium isolated from an oil-producing well in the Gulf of Mexico. Int J Syst Evol Microbiol 54:169–174

    PubMed  CAS  Google Scholar 

  • Miranda-Tello E, Fardeau ML, Joulian C, Magot M, Thomas P, Tholozan JL, Ollivier B (2007) Petrotoga halophila sp. nov., a thermophilic, moderately halophilic, fermentative bacterium isolated from an offshore oil well in Congo. Int J Syst Evol Microbiol 57:40–44

    PubMed  CAS  Google Scholar 

  • Miroshnichenko ML, Hippe H, Stackebrandt E, Kostrikina NA, Chernyh NA, Jeanthon C, Nazina TN, Belyaev SS, Bonch-Osmolovskaya EA (2001) Isolation and characterization of Thermococcus sibiricus sp. nov. from a Western Siberia high-temperature oil reservoir. Extremophiles 5:85–91

    PubMed  CAS  Google Scholar 

  • Morono Y, Terada T, Nishizawa M, Ito M, Hillion F, Takahata N, Sano Y, Inagaki F (2011) Carbon and nitrogen assimilation in deep subseafloor microbial cells. Proc Natl Acad Sci U S A 108:18295–18300

    PubMed  CAS  Google Scholar 

  • Mukherjee AK, Das K (2005) Correlation between diverse cyclic lipopeptides production and regulation of growth and substrate utilization by Bacillus subtilis strains in a particular habitat. FEMS Microbiol Ecol 54:479–489

    PubMed  CAS  Google Scholar 

  • Myhr S, Lillebo BL, Sunde E, Beeder J, Torsvik T (2002) Inhibition of microbial H2S production in an oil reservoir model column by nitrate injection. Appl Microbiol Biotechnol 58:400–408

    PubMed  CAS  Google Scholar 

  • Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int J Syst Evol Microbiol 51:433–446

    PubMed  CAS  Google Scholar 

  • Nazina TN, Shestakova NM, Grigor’ian AA, Mikhailova EM, Turova TP, Poltaraus AB, Feng C, Ni F, Beliaev SS (2006) Phylogenetic diversity and activity of anaerobic microorganisms of high-temperature horizons of the Dagang Oilfield (China). Microbiology (Russia) 75:70–81

    CAS  Google Scholar 

  • Nemati M, Mazutinec TJ, Jenneman GE, Voordouw G (2001) Control of biogenic H2S production with nitrite and molybdate. J Ind Microbiol Biotechnol 26:350–355

    PubMed  CAS  Google Scholar 

  • Nilsen RK, Torsvik T (1996) Methanococcus thermolithotrophicus isolated from North Sea oil field reservoir water. Appl Environ Microbiol 62:728–731

    PubMed  CAS  Google Scholar 

  • Nilsen RK, Torsvik T, Lien T (1996a) Desulfotomaculum thermocisternum sp. nov., a sulfate reducer isolated from a hot north sea oil reservoir. Int J Syst Bacteriol 46:397–402

    Google Scholar 

  • Nilsen RK, Beeder J, Thorstenson T, Torsvik T (1996b) Distribution of thermophilic marine sulfate reducers in North Sea oil field waters and oil reservoirs. Appl Environ Microbiol 62:1793–1798

    PubMed  CAS  Google Scholar 

  • Ollivier B, Fardeau ML, Cayol JL, Magot M, Patel BK, Prensier G, Garcia JL (1998) Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well. Int J Syst Bacteriol 48:821–828

    PubMed  Google Scholar 

  • Orphan VJ, Taylor LT, Hafenbradl D, Delong EF (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66:700–711

    PubMed  CAS  Google Scholar 

  • Pernthaler A, Dekas AE, Brown CT, Goffredi SK, Embaye T, Orphan VJ (2008) Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc Natl Acad Sci U S A 105:7052–7057

    PubMed  CAS  Google Scholar 

  • Pineda-Flores G, Boll-Arguello G, Lira-Galeana C, Mesta-Howard AM (2004) A microbial consortium isolated from a crude oil sample that uses asphaltenes as a carbon and energy source. Biodegradation 15:145–151

    PubMed  CAS  Google Scholar 

  • Podar M, Reysenbach AL (2006) New opportunities revealed by biotechnological explorations of extremophiles. Curr Opin Biotechnol 17:250–255

    PubMed  CAS  Google Scholar 

  • Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci U S A 101:4631–4636

    PubMed  CAS  Google Scholar 

  • Quince C, Curtis TP, Sloan WT (2008) The rational exploration of microbial diversity. ISME J 2:997–1006

    PubMed  CAS  Google Scholar 

  • Rabus R, Fukui M, Wilkes H, Widdel F (1996) Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulphate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil. Appl Environ Microbiol 62:3605–3613

    PubMed  CAS  Google Scholar 

  • Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394

    PubMed  Google Scholar 

  • Ravot G, Magot M, Fardeau ML, Patel BK, Prensier G, Egan A, Garcia JL, Ollivier B (1995) Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int J Syst Bacteriol 45:308–314

    PubMed  CAS  Google Scholar 

  • Reeder J, Knight R (2009) The ‘rare biosphere’: a reality check. Nat Methods 6:636–637

    PubMed  CAS  Google Scholar 

  • Rees GN, Grassia GS, Sheehy AJ, Dwivedi PP, Patel BKC (1995) Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from petroleum reservoir. Int J Syst Bacteriol 45:85–89

    Google Scholar 

  • Rees GN, Patel BK, Grassia GS, Sheehy AJ (1997) Anaerobaculum thermoterrenum gen. nov., sp. nov., a novel, thermophilic bacterium which ferments citrate. Int J Syst Bacteriol 47:150–154

    PubMed  CAS  Google Scholar 

  • Ren HY, Zhang XJ, Song ZY, Rupert W, Gao GJ, Guo SX, Zhao LP (2011) Comparison of microbial community compositions of injection and production well samples in a long-term water-flooded petroleum reservoir. PLoS One 6:e23258

    PubMed  CAS  Google Scholar 

  • Rosnes JT, Torsvik T, Lien T (1991) Spore-forming thermophilic sulfate-reducing bacteria isolated from North Sea oil field waters. Appl Environ Microbiol 57:2302–2307

    PubMed  CAS  Google Scholar 

  • Rozanova EP, Borzenkov IA, Tarasov AL, Suntsova LA, Dong CL, Belyaev SS, Ivanov MV (2001a) Microbiological processes in a high-temperature oil field. Microbiology (Russia) 70:102–110

    CAS  Google Scholar 

  • Rozanova EP, Tourova TP, Kolganova TV, Lysenko AM, Mityushina LL, Yusupov SK, Belyaev SS (2001b) Desulfacinum subterraneum sp nov., a new thermophilic sulfate-reducing bacterium isolated from a high-temperature oil field. Microbiology 70:466–471

    CAS  Google Scholar 

  • Salehi M, Johnson SJ, Liang JT (2008) Mechanistic study of wettability alteration using surfactants with applications in naturally fractured reservoirs. Langmuir 24:14099–14107

    PubMed  CAS  Google Scholar 

  • Salinas MB, Fardeau ML, Thomas P, Cayol JL, Patel BK, Ollivier B (2004) Mahella australiensis gen. nov., sp. nov., a moderately thermophilic anaerobic bacterium isolated from an Australian oil well. Int J Syst Evol Microbiol 54:2169–2173

    PubMed  CAS  Google Scholar 

  • Scholten JC, Culley DE, Brockman FJ, Wu G, Zhang W (2007) Evolution of the syntrophic interaction between Desulfovibrio vulgaris and Methanosarcina barkeri: involvement of an ancient horizontal gene transfer. Biochem Biophys Res Commun 352:48–54

    PubMed  CAS  Google Scholar 

  • Sen R (2008) Biotechnology in petroleum recovery: the microbial EOR. Prog Energy Combust Sci 34:714–724

    CAS  Google Scholar 

  • Sette LD, Simioni KC, Vasconcellos SP, Dussan LJ, Neto EV, Oliveira VM (2007) Analysis of the composition of bacterial communities in oil reservoirs from a southern offshore Brazilian basin. Antonie van Leeuwenhoek 91:253–266

    PubMed  CAS  Google Scholar 

  • Shestakova N, Korshunova A, Mikhailova E, Sokolova D, Tourova T, Belyaev S, Poltaraus A, Nazina T (2011) Characterization of the aerobic hydrocarbon-oxidizing enrichments from a high-temperature petroleum reservoir by comparative analysis of DNA- and RNA-derived clone libraries. Microbiology 80:60–69

    CAS  Google Scholar 

  • Sleator RD, Shortall C, Hill C (2008) Metagenomics. Lett Appl Microbiol 47:361–366

    PubMed  CAS  Google Scholar 

  • Slobodkin AI, Jeanthon C, L’Haridon S, Nazina T, Miroshnichenko M, Bonch-Osmolovskaya E (1999) Dissimilatory reduction of Fe(III) by thermophilic bacteria and archaea in deep subsurface petroleum reservoirs of Western Siberia. Curr Microbiol 39:99–102

    PubMed  CAS  Google Scholar 

  • Spark I, Patey I, Duncan B, Hamilton A, Devine C, McGovern-Traa C (2000) The effects of indi­genous and introduced microbes on deeply buried hydrocarbon reservoirs, North Sea. Clay Miner 35:5–12

    CAS  Google Scholar 

  • Stetter KO, Huber R, Blöchl E, Kurr M, Eden RD, Fielder M, Cash H, Vance I (1993) Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365:743–745

    Google Scholar 

  • Takahata Y, Nishijima M, Hoaki T, Maruyama T (2000) Distribution and physiological characteristics of hyperthermophiles in the Kubiki oil reservoir in Niigata, Japan. Appl Environ Microbiol 66:73–79

    PubMed  CAS  Google Scholar 

  • Takahata Y, Nishijima M, Hoaki T, Maruyama T (2001) Thermotoga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. Int J Syst Evol Microbiol 51:1901–1909

    PubMed  CAS  Google Scholar 

  • Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci U S A 105:10949–10954

    PubMed  CAS  Google Scholar 

  • Tang YQ, Li Y, Zhao JY, Chi CQ, Huang LX, Dong HP, Wu XL (2012) Microbial communities in long-term, water-flooded petroleum reservoirs with different in situ temperatures in the Huabei Oilfield, China. PLoS One 7:e33535

    PubMed  CAS  Google Scholar 

  • Tardy-Jacquenod C, Caumette P, Matheron R, Lanau C, Arnauld O, Magot M (1996) Characterization of sulfate-reducing bacteria isolated from oil-field waters. Can J Microbiol 42:259–266

    PubMed  CAS  Google Scholar 

  • Telang AJ, Ebert S, Foght JM, Westlake DWS, Jenneman GE, Gevertz D, Voordouw G (1997) Effect of nitrate injection on the microbial community in an oil field as monitored by reverse sample genome probing. Appl Environ Microbiol 63:1785–1793

    PubMed  CAS  Google Scholar 

  • Teske A, Dhillon A, Sogin ML (2003) Genomic markers of ancient anaerobic microbial pathways: sulfate reduction, methanogenesis, and methane oxidation. Biol Bull 204:186–191

    PubMed  CAS  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    PubMed  Google Scholar 

  • Voordouw G, Grigoryan AA, Lambo A, Lin S, Park HS, Jack TR, Coombe D, Clay B, Zhang F, Ertmoed R, Miner K, Arensdorf JJ (2009) Sulfide remediation by pulsed injection of nitrate into a low temperature Canadian heavy oil reservoir. Environ Sci Technol 43:9512–9518

    PubMed  CAS  Google Scholar 

  • Wang L, Tang Y, Wang S, Liu RL, Liu MZ, Zhang Y, Liang FL, Feng L (2006) Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes. Extremophiles 10:347–356

    PubMed  CAS  Google Scholar 

  • Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB, Throne-Holst M (2007) Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76:1209–1221

    PubMed  CAS  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583

    PubMed  CAS  Google Scholar 

  • Wintermute EH, Silver PA (2010) Emergent cooperation in microbial metabolism. Mol Syst Biol 6:407

    PubMed  Google Scholar 

  • Yamane K, Maki H, Nakayama T, Nakajima T, Nomura N, Uchiyama H, Kitaoka M (2008) Diversity and similarity of microbial communities in petroleum crude oils produced in Asia. Biosci Biotechnol Biochem 72:2831–2839

    PubMed  CAS  Google Scholar 

  • Yamane K, Hattori Y, Ohtagaki H, Fujiwara K (2011) Microbial diversity with dominance of 16S rRNA gene sequences with high GC contents at 74 and 98 °C subsurface crude oil deposits in Japan. CORD Conf Proc 76:220–235

    CAS  Google Scholar 

  • Yarza P, Richter M, Peplies J, Euzéby J, Amann R, Schleifer KH, Ludwig W, Glockner FO, Rossello-Mora R (2008) The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250

    PubMed  CAS  Google Scholar 

  • Youssef N, Elshahed MS, McInerney MJ (2009) Microbial processes in oil fields: culprits, problems, and opportunities. Adv Appl Microbiol 66:141–251

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Council of Norway (grant numbers 187317/S30 and 208541/O10) and Statoil ASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Wentzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wentzel, A., Lewin, A., Cervantes, F.J., Valla, S., Kotlar, H.K. (2013). Deep Subsurface Oil Reservoirs as Poly-extreme Habitats for Microbial Life. A Current Review. In: Seckbach, J., Oren, A., Stan-Lotter, H. (eds) Polyextremophiles. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6488-0_19

Download citation

Publish with us

Policies and ethics