Skip to main content

Snow Algae: Adaptation Strategies to Survive on Snow and Ice

  • Chapter
  • First Online:
Polyextremophiles

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 27))

Abstract

Snow algae are a group of freshwater microalgae that have encountered the extreme habitats of persistent snow and glacier fields in the polar and high-alpine regions of our earth. In suitable locations they can build up massive blooms resulting in a macroscopically visible pigmentation of the snow (Fig. 1). The dominating species belong to the green algae (Chlorophyta), and depending on the life cycle stages and dominating pigments observed, this results in green and different shades of orange, pink, or red snow – for the latter three hereafter I will use the term “red snow” only. Green snow is caused by the trophic, actively dividing sexual or asexual cells stages, whereas red snow is the result of their carotenoid-rich resting stages, such as hypnospores or hypnozygotes. Other snow tints have been described referring to other taxonomic groups, e.g., purple-grey ice caused by the Zygnematophyceae Mesotaenium berggrenii or Ancylonema nordenskiöldii.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghajari N, Feller G, Gerday C, Haser R (1998) Structures of the psychrophilic Alteromonas haloplanctis a-amylase give insights into cold adaptation at a molecular level. Structure 6:1503–1516

    Article  PubMed  CAS  Google Scholar 

  • Arts MT, Brett MT, Kainz MJ (eds) (2009) Lipids in aquatic ecosystems. Springer, New York

    Google Scholar 

  • Atıcı Ö, Nalbantogˇlu B (2003) Antifreeze proteins in higher plants. Phytochemistry 64:1187–1196

    Article  PubMed  Google Scholar 

  • Barrett J (2001) Thermal hysteresis proteins. Int J Biochem Cell Biol 33:105–117

    Article  PubMed  CAS  Google Scholar 

  • Bauer F (1819) Microscopical observation on the red snow. Q J Lit Sci Arts, Lond VII:222–229 (incl. plate VI)

    Google Scholar 

  • Bayer-Giraldi M, Uhlig C, John U, Mock T, Valentin K (2010) Antifreeze proteins in polar sea ice diatoms: diversity and gene expression in the genus Fragilariopsis. Environ Microbiol 12:1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Bayer-Giraldi M, Weikusat I, Besir H, Dieckmann G (2011) Characterization of an antifreeze protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice. Cryobiology 63:210–219

    Article  PubMed  CAS  Google Scholar 

  • Bidigare RR, Ondrusek ME, Kennicutt MC II, Iturriaga R, Harvey HR, Hoham RW, Macko SA (1993) Evidence for a photoprotective function for secondary carotenoids of snow algae. J Phycol 29:427–434

    Article  CAS  Google Scholar 

  • Bley U (2006) Differentielle Transkriptanalysen an der psychrophilen Schneealge Chloromonas sp. Stamm CCCryo020-99 (Chlamydomonadaceae, Chlorophyta) durch Hitze- und Kälteschockver­suche. Student Internship, Institut für Biologie und Biophysik, Humboldt-Universität zu Berlin, Berlin, Germany

    Google Scholar 

  • Buchheim MA, Buchheim JA, Chapman RL (1997) Phylogeny of Chloromonas (Chlorophyceae): a study of 18S ribosomal RNA gene sequences. J Phycol 33:286–293

    Article  CAS  Google Scholar 

  • Buma AGJ, van Hannen EJ, Roza L, Veldhuis MJW, Gieskes WWC (1995) Monitoring ultraviolet-B-induced DNA damage in individual diatom cells by immunofluorescent thymine dimer detection. J Phycol 31:314–321

    Article  CAS  Google Scholar 

  • Chauhan S, Pandey R, Singhal GS (1998) Ultraviolet-B induced changes in ultrastructure and D1/D2 proteins in cyanobacteria Synechococcus sp. PCC 7942. Photosynthetica 35:161–167

    Article  CAS  Google Scholar 

  • Chen L, DeVries AL, Cheng C-HC (1997) Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc Natl Acad Sci U S A 94:3811–3816

    Article  PubMed  CAS  Google Scholar 

  • Choo DW, Kurihara T, Suzuki T, Soda K, Esaki N (1998) A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11-1: gene cloning and enzyme purification and characterization. Appl Environ Microbiol 64:486–491

    PubMed  CAS  Google Scholar 

  • Clarke CJ, Buckley SL, Lindner N (2002) Ice structuring proteins – a new name for antifreeze proteins. Cryo Letters 23:89–92

    PubMed  CAS  Google Scholar 

  • Connor D (2011) Molekulare Charakterisierung von eisstrukturierenden Proteinen (ISP) aus kryophilen Schneealgen. Master thesis, Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany

    Google Scholar 

  • Demchenko E, Mikhailyuk T, Coleman AW, Pröschold T (2012) Generic and species concepts in Microglena (previously the Chlamydomonas monadina group) revised using an integrative approach. Eur J Phycol 47:264–290

    Google Scholar 

  • Devos N, Ingouff M, Loppes R, Matagne RF (1998) Rubisco adaption to low temperatures: a comparative study in psychrophilic and mesophilic unicellular algae. J Phycol 34:655–660

    Article  CAS  Google Scholar 

  • DeVries AL (1983) Antifreeze peptides and glycopeptides in cold-water fish. Annu Rev Physiol 45:245–260

    Article  PubMed  CAS  Google Scholar 

  • Di Martino Rigano V, Vona V, Lobosco O, Carillo P, Lunn JE, Carfagna S, Esposito S, Caiazzo M, Rigano C (2006) Temperature dependence of nitrate reductase in the psychrophilic unicellular alga Koliella antarctica and the mesophilic alga Chlorella sorokiniana. Plant Cell Environ 29:1400–1409

    Article  Google Scholar 

  • Dolbinow T (2010) Recrystallisation inhibition activity of ice structuring proteins from selected psychrophilic algae. Master thesis, Fachhochschule Lausitz, Senftenberg, Germany

    Google Scholar 

  • Duman JG (2001) Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu Rev Physiol 63:327–357

    Article  PubMed  CAS  Google Scholar 

  • Duman JG, Bennett V, Sformo T, Hochstrasser R, Barnes BM (2004) Antifreeze proteins in Alaskan insects and spiders. J Insect Physiol 50:259–266

    Article  PubMed  CAS  Google Scholar 

  • Duval B, Duval E, Hoham RW (1999) Snow algae of the Sierra Nevada, Spain, and High Atlas mountains of Morocco. Int Microbiol 2:39–42

    PubMed  CAS  Google Scholar 

  • Duval B, Shetty K, Thomas WH (2000) Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to light. J Appl Phycol 11:559–566

    Article  Google Scholar 

  • Eggert A, Karsten U (2010) Low molecular weight carbohydrates in red algae – an ecophysiological and biochemical perspective. In: Seckbach J, Chapman DJ (eds) Red algae in the genomic age 13. Springer, Dordrecht, pp 443–456

    Chapter  Google Scholar 

  • Fletcher GL, Hew CL, Davies PL (2001) Antifreeze proteins of teleost fishes. Annu Rev Physiol 63:359–390

    Article  PubMed  CAS  Google Scholar 

  • Griffith M, Hon WC, Pihakaski-Maunsbach K, Yu XM, Chun JU, Yang DSC (1997) Antifreeze proteins in winter rye. Physiol Plant 100:327–332

    Article  CAS  Google Scholar 

  • Gustavs L, Eggert A, Michalik D, Karsten U (2010) Physiological and biochemical responses of green microalgae from different habitats to osmotic and matric stress. Protoplasma 243:3–14

    Article  PubMed  CAS  Google Scholar 

  • Hoham RW (1974a) Chlainomonas kolii (Hardy et Curl), comb. nov. (Chlorophyta, Volvocales), a revision of the snow alga, Trachelomonas kolii Hardy et Curl, (Euglenophyta, Euglenales). J Phycol 10:392–396

    Google Scholar 

  • Hoham RW (1974b) New findings in the life history of the snow alga, Chlainomonas rubra (Stein et Brooke) comb. nov. (Chlorophyta, Volvocales). Syesis 7:239–247

    Google Scholar 

  • Hoham RW (1975a) The life history and ecology of the snow alga Chloromonas pichinchae (Chlorophyta, Volvocales). Phycologia 14:213–226

    Article  Google Scholar 

  • Hoham RW (1975b) Optimum temperatures and temperature ranges for growth of snow algae. Arct Alp Res 7:13–24

    Article  Google Scholar 

  • Hoham RW, Duval B (2001) Microbial ecology of snow and freshwater ice with emphasis on snow algae. In: Jones HG, Pomeroy JW, Walker DA, Hoham RW (eds) Snow ecology: an interdisciplinary examination of snow-covered ecosystems. Cambridge University Press, Cambridge, pp 168–228

    Google Scholar 

  • Hoham RW, Mullet JE (1978) Chloromonas nivalis (Chod.) Hoh. & Mull. comb. nov., and additional comments on the snow alga, Scotiella. Phycologia 17:106–107

    Article  Google Scholar 

  • Hoham RW, Roemer SC, Mullet JE (1979) The life history and ecology of the snow alga Chloromonas brevispina comb. nov. (Chlorophyta, Volvocales). Phycologia 18:55–70

    Article  Google Scholar 

  • Hoham RW, Mullet JE, Roemer SC (1983) The life history and ecology of the snow alga Chloromonas polyptera comb. nov. (Chlorophyta, Volvocales). Can J Bot 61:2416–2429

    Article  Google Scholar 

  • Hoham RW, Marcarelli AM, Rogers HS, Ragan MD, Petre BM, Ungerer MD, Barnes JM, Francis DO (2000) The importance of light and photoperiod in sexual reproduction and geographical distribution in the green snow alga, Chloromonas sp.-D (Chlorophyceae, Volvocales). Hydrol Proc 14:3309–3322

    Article  Google Scholar 

  • Hoham RW, Bonome TA, Martin CW, Leebens-Mack JH (2002) A combined 18S rDNA and rbcL phylogenetic analysis of Chloromonas and Chlamydomonas (Chlorophyceae, Volvocales) emphasizing snow and other cold-temperate habitats. J Phycol 38:1051–1064

    Article  CAS  Google Scholar 

  • Hoham RW, Berman JD, Rogers HS, Felio JH, Ryba JB, Miller PR (2006) Two new species of green snow algae from Upstate New York, Chloromonas chenangoensis sp. nov. and Chloromonas tughillensis sp. nov. (Volvocales, Chlorophyceae) and the effects of light on their life cycle development. Phycologia 45:319–330

    Article  Google Scholar 

  • Hoham RW, Filbin RW, Frey FM, Pusack TJ, Ryba JB, McDermott PD, Fields RA (2007) The optimum pH of the green snow algae, Chloromonas tughillensis and Chloromonas chenangoensis, from Upstate New York. Arct Antarct Alp Res 39:65–73

    Article  Google Scholar 

  • Hon WC, Griffith M, Mlynarz A, Kwok YC, Yang DSC (1995) Antifreeze proteins in winter rye are similar to pathogenesis-related proteins. Plant Physiol 109:879–889

    Article  PubMed  CAS  Google Scholar 

  • Jia Z, Davies PL (2002) Antifreeze proteins: an unusual receptor-ligand interaction. Trends Biochem Sci 27:101–106

    Article  PubMed  CAS  Google Scholar 

  • Kawecka B, Eloranta P (1986) Biology and ecology of snow algae. 4. SEM studies on the cell wall structure of “resting cells” of Chloromonas rostafiński (Starmach et Kawecka) Gerloff et Ettl (Chlorophyta, Volvocales). Acta Hydrobiol 28:387–391

    Google Scholar 

  • Kirst GO (1990) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Physiol Plant Mol Biol 41:21–53

    Article  CAS  Google Scholar 

  • Knight CA, Duman JG (1986) Inhibition of recrystallization of ice by insect thermal hysteresis proteins: a possible cryoprotective role. Cryobiology 23:256–262

    Article  CAS  Google Scholar 

  • Kol E (1968) Kryobiologie: Biologie und Limnologie des Schnees und Eises, I. Kryovegetation. In: Elster HJ, Ohle W (eds) Die Binnengewässer. Einzeldarstellungen aus der Limnologie und ihren Nachbargebieten XXIV. E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart, Germany

    Google Scholar 

  • Kuiper MJ, Lankin C, Gauthier SY, Walker VK, Davies PL (2003) Purification of antifreeze proteins by adsorption to ice. Biochem Biophys Res Commun 300:645–648

    Article  PubMed  CAS  Google Scholar 

  • Lee JK, Park KS, Park S, Park H, Song YH, Kang S-H, Kim HJ (2010) An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiology 60:222–228

    Article  PubMed  CAS  Google Scholar 

  • Leya T (2004) Feldstudien und genetische Untersuchungen zur Kryophilie der Schneealgen Nordwestspitzbergens. Shaker, Aachen

    Google Scholar 

  • Leya T, Müller T, Ling HU, Fuhr GR (2004) Snow algae from north-western Spitsbergen (Svalbard). Rep Polar Mar Res 492:46–54

    Google Scholar 

  • Leya T, Rahn A, Lütz C, Remias D (2009) Response of arctic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology. FEMS Microbiol Ecol 67:432–443

    Article  PubMed  CAS  Google Scholar 

  • Ligowski R, Jordan R, Assmy P (2012) Morphological adaptation of a planktonic diatom to growth in Antarctic sea ice. Mar Biol 159:817–827

    Article  Google Scholar 

  • Ling HU (1996) 10. Snow algae of the Windmill Islands region, Antarctica. Hydrobiologia 336:99–106

    Article  Google Scholar 

  • Ling HU, Seppelt RD (1998) Snow algae of the Windmill Islands, continental Antarctica 3. Chloromonas polyptera (Volvocales, Chlorophyta). Polar Biol 20:320–324

    Article  Google Scholar 

  • Loppes R, Devos N, Willem S, Barthélemy P, Matagne RF (1996) Effect of temperature on two enzymes from a psychrophilic Chloromonas (Chlorophyta). J Phycol 32:276–278

    Article  CAS  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    PubMed  CAS  Google Scholar 

  • Müller T, Bleiß W, Martin C-D, Rogaschewski S, Fuhr G (1998) Snow algae from northwest Svalbard: their identification, distribution, pigment and nutrient content. Polar Biol 20:14–32

    Article  Google Scholar 

  • Müller T, Leya T, Fuhr G (2001) Persistent snow algal fields in Spitsbergen: field observations and a hypothesis about the annual cell circulation. Arct Antarct Alp Res 33:42–51

    Article  Google Scholar 

  • Nedbalová L, Sklenár P (2008) New records of snow algae from the Andes of Ecuador. Arnaldoa 15:17–20

    Google Scholar 

  • Novis PM, Hoham RW, Beer T, Dawson M (2008) Two snow species of the quadriflagellate green alga Chlainomonas (Chlorophyta, Volvocales): ultrastructure and phylogenetic position within the Chloromonas clade. J Phycol 44:1001–1012

    Article  Google Scholar 

  • Pawella L (2008) Differentielle Proteomanalyse löslicher und membranständiger Proteine psychrophiler Schneealgen mittels 2D-SDS-PAGE. Diploma thesis, Fakultät III – Prozesswissenschaften, Technische Universität Berlin, Berlin, Germany

    Google Scholar 

  • Petasch J (2008) Gefrierschutzsubstanzen in Schneealgen. Bachelor thesis, Institut für Biochemie und Biologie, Mathematisch-Naturwissenschaftliche Fakultät, Universität Potsdam, Potsdam, Germany

    Google Scholar 

  • Piorreck M, Baasch K-H, Pohl P (1984) Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry 23:207–216

    Article  CAS  Google Scholar 

  • Pocock T, Lachance M-A, Pröschold T, Priscu JC, Kim SS, Huner NPA (2004) Identification of a psychrophilic green alga from Lake Bonney Antarctica: Chlamydomonas raudensis Ettl. (UWO 241) Chlorophyceae. J Phycol 40:1138–1148

    Article  Google Scholar 

  • Poerschmann J, Spijkerman E, Langer U (2004) Fatty acid patterns in Chlamydomonas sp. as a marker for nutritional regimes and temperature under extremely acidic conditions. Microb Ecol 48:78–89

    Article  PubMed  CAS  Google Scholar 

  • Pröschold T, Marin B, Schlösser UG, Melkonian M (2001) Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and description of Oogamochlamys gen. nov. and Lobochlamys gen. nov. Protist 152:265–300

    Article  PubMed  Google Scholar 

  • Pudney PDA, Buckley SL, Sidebottom CM, Twigg SN, Sevilla MP, Holt CB, Roper D, Telford JH, McArthur AJ, Lillford PJ (2003) The physico-chemical characterization of a boiling stable antifreeze protein from a perennial grass (Lolium perenne). Arch Biochem Biophys 410:238–245

    Article  PubMed  CAS  Google Scholar 

  • Rajagopal S, Murthy SDS, Mohanty P (2000) Effect of ultraviolet-B radiation on intact cells of the cyanobacterium Spirulina platensis: characterization of the alterations in the thylakoid membranes. J Photochem Photobiol B Biol 54:61–66

    Article  CAS  Google Scholar 

  • Raymond JA (2000) Distribution and partial characterization of ice-active molecules associated with sea-ice diatoms. Polar Biol 23:721–729

    Article  Google Scholar 

  • Raymond JA, Fritsen CH (2001) Semipurification and ice recrystallization inhibition activity of ice-active substances associated with Antarctic photosynthetic organisms. Cryobiology 43:63–70

    Article  PubMed  CAS  Google Scholar 

  • Raymond JA, Janech MG (2009) Ice-binding proteins from enoki and shiitake mushrooms. Cryobiology 58:151–156

    Article  PubMed  CAS  Google Scholar 

  • Raymond JA, Knight CA (2003) Ice binding, recrystallization inhibition, and cryoprotective properties of ice-active substances associated with Antarctic sea ice diatoms. Cryobiology 46:174–181

    Article  PubMed  CAS  Google Scholar 

  • Raymond JA, Janech MG, Fritsen C (2009) Novel ice-binding proteins from a psychrophilic Antarctic alga (Chlamydomonadaceae, Chlorophyceae). J Phycol 45:130–136

    Article  CAS  Google Scholar 

  • Regand A, Goff HD (2006) Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass. J Dairy Sci 89:49–57

    Article  PubMed  CAS  Google Scholar 

  • Remias D (2012) Cell structure and physiology of alpine snow and ice algae. In: Lütz C (ed) Plants in alpine regions: cell physiology of adaptation and survival strategies. Springer, Wien, pp 175–185

    Chapter  Google Scholar 

  • Remias D, Lütz C (2007) Characterisation of esterified secondary carotenoids and of their isomers in green algae: a HPLC approach. Algol Stud 124:85–94

    Article  CAS  Google Scholar 

  • Remias D, Lütz-Meindl U, Lütz C (2005) Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol 40:259–268

    Article  CAS  Google Scholar 

  • Remias D, Karsten U, Lütz C, Leya T (2010) Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma 243:73–86

    Article  PubMed  Google Scholar 

  • Remias D, Aigner S, Leya T, Lütz C, Stuppner H, Schwaiger S (2012) Characterization of an UV- and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers. FEMS Microbiol Ecol 79:638–648

    Article  PubMed  CAS  Google Scholar 

  • Řezanka T, Nedbalová L, Sigler K (2008) Unusual medium-chain polyunsaturated fatty acids from the snow alga Chloromonas brevispina. Microbiol Res 163:373–379

    Article  PubMed  Google Scholar 

  • Roessler PG (1990) Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions. J Phycol 26:393–399

    Article  CAS  Google Scholar 

  • Roser DJ, Melick DR, Ling HU, Seppelt RD (1992) Polyol and sugar content of terrestrial plants from continental Antarctica. Antarct Sci 4:413–420

    Google Scholar 

  • Sicheri F, Yang DSC (1995) Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature 375:427–431

    Article  PubMed  CAS  Google Scholar 

  • Speth J (2010) Aktivität eisstrukturierender Proteine (ISP) ausgewählter Schneealgen – Analyse der Stabilität isolierter ISP aus Chlamydomonas pseudopulsatilla. Bachelor thesis, Biotechnologie, Beuth Hochschule für Technik, Berlin, Germany

    Google Scholar 

  • Spijkerman E, Wacker A (2011) Interactions between P-limitation and different C conditions on the fatty acid composition of an extremophile microalga. Extremophiles 15:597–609

    Article  PubMed  CAS  Google Scholar 

  • Spijkerman E, Wacker A, Weithoff G, Leya T (2012) Elemental and fatty acid composition of snow algae in Arctic habitats. Front Microbiol 3:380

    Article  PubMed  Google Scholar 

  • Stibal M, Elster J (2005) Growth and morphology variation as a response to changing environmental factors in two Arctic species of Raphidonema (Trebouxiophyceae) from snow and soil. Polar Biol 28:558–567

    Article  Google Scholar 

  • Stibal M, Elster J, Sabacka M, Kastovska K (2007) Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry. FEMS Microbiol Ecol 59:265–273

    Article  PubMed  CAS  Google Scholar 

  • Sung D-Y, Kaplan F, Lee K-J, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8:179–187

    Article  PubMed  CAS  Google Scholar 

  • Szyszka B, Ivanov AG, Huner NP (2007) Psychrophily is associated with differential energy partitioning, photosystem stoichiometry and polypeptide phosphorylation in Chlamydomonas raudensis. Biochim Biophys Acta 1767:789–800

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi N, Koshima S (2004) A snow algal community on Tyndall Glacier in the Southern Patagonia icefield, Chile. Arct Antarct Alp Res 36:92–99

    Article  Google Scholar 

  • Tazaki K, Fyfe WS, Iizumi S, Sampei Y, Watanabe H, Goto M, Miyake Y, Noda S (1994) Clay aerosols and Arctic ice algae. Clays Clay Miner 42:402–408

    Article  CAS  Google Scholar 

  • Teoh M-L, Chu W-L, Marchant H, Phang S-M (2004) Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. J Appl Phycol 16:421–430

    Article  CAS  Google Scholar 

  • Urrutia ME, Duman JG, Knight CA (1992) Plant thermal hysteresis proteins. Biochim Biophys Acta 1121:199–206

    Article  PubMed  CAS  Google Scholar 

  • Wathen B, Kuiper M, Walker V, Jia Z (2003) A new model for simulating 3-D crystal growth and its application to the study of antifreeze proteins. J Am Chem Soc 125:729–737

    Article  PubMed  CAS  Google Scholar 

  • Wille N (1903) Algologische Notizen IX-XIV. Nyt Magazin for Naturvidenskaberne 41:89–185

    Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    Article  PubMed  CAS  Google Scholar 

  • Zacke T (2007) Untersuchungen zu Aktivitätsmaxima von Enzymen aus Schneealgen. Diploma thesis, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Leya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Leya, T. (2013). Snow Algae: Adaptation Strategies to Survive on Snow and Ice. In: Seckbach, J., Oren, A., Stan-Lotter, H. (eds) Polyextremophiles. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6488-0_17

Download citation

Publish with us

Policies and ethics