Skip to main content

Left Out in the Cold: Life in Cryoenvironments

  • Chapter
  • First Online:
Polyextremophiles

Abstract

Cryoenvironments are generally defined as environments that exist continuously and predominately at subzero temperatures. They exist primarily in polar and alpine regions and consist of large-scale geomorphological features such as permafrost, glaciers, ice caps, and sea ice. Cryoenvironments also include relatively rare subzero habitats such as cold lakes and ponds, which can be permanently ice covered, and subzero saline springs, which flow throughout the year, warmed by geothermal gradients, and maintained liquid due to their high salinity (Andersen et al., 2002; Doyle et al., 2012). The primary constraint to life in cryoenvironments is the availability of liquid water; life needs liquid water to survive, mediate biochemical reactions, provide transport of molecules, and act as a solvent. It is not necessarily subzero temperatures that constrain life in cryoenvironments but rather the conditions that are typically found associated with subzero temperatures, which include freezing, desiccation, or high osmolarity. Microorganisms in subzero environments must, however, be able to cope with the thermodynamic effects of low temperatures including lower reaction rates, increased molecule stability, and conformational changes of proteins (Bakermans, 2008). Because the presence of liquid water in cryoenvironments is often facilitated through the freezing-point depression properties of various solutes, microorganisms must also be able to tolerate osmotic stress, usually in the form of high salinity. Despite these harsh environmental conditions, there is a recent and growing body of evidence that cryophilic microorganisms (those able to reproduce at <0 °C) exist and are metabolically active in these cryoenvironments at ambient temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ah Tow L, Cowan D (2005) Dissemination and survival of non-indigenous bacterial genomes in pristine Antarctic environments. Extremophiles 9:385–389

    PubMed  Google Scholar 

  • Aislabie JM, Chhour K-L, Saul DJ, Miyauchi S, Ayton J, Paetzold RF, Balks MR (2006) Dominant bacteria in soils of Marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biol Biochem 38:3041–3056

    CAS  Google Scholar 

  • Allen CC, Oehler DZ (2008) A case for ancient springs in Arabia Terra, Mars. Astrobiology 8:1093–1112

    PubMed  CAS  Google Scholar 

  • Allen MA, Lauro FM, Williams TJ, Burg D, Siddiqui KS, De Francisci D, Chong KWY, Pilak O, Chew HH, De Maere MZ, Ting L, Katrib M, Ng C, Sowers KR, Galperin MY, Anderson IJ, Ivanova N, Dalin E, Martinez M, Lapidus A, Hauser L, Land M, Thomas T, Cavicchioli R (2009) The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the role of genome evolution in cold adaptation. ISME J 3:1012–1035

    PubMed  CAS  Google Scholar 

  • Amato P, Christner BC (2009) Energy metabolism response to low-temperature and frozen conditions in Psychrobacter cryohalolentis. Appl Environ Microbiol 75:711–718

    PubMed  CAS  Google Scholar 

  • Andersen DT, Pollard WH, McKay CP, Heldmann J (2002) Cold springs in permafrost on Earth and Mars. J Geophys Res Planets 107:5015

    Google Scholar 

  • Andersen DT, Sumner DY, Hawes I, Webster-Brown J, McKay CP (2011) Discovery of large conical stromatolites in Lake Untersee, Antarctica. Geobiology 9:280–293

    PubMed  CAS  Google Scholar 

  • Anderson DM (1967) Ice nucleation and substrate-ice interface. Nature 216:563–566

    CAS  Google Scholar 

  • Ayala-del-Río HL, Chain PS, Grzymski JJ, Ponder MA, Ivanova N, Bergholz PW, Di Bartolo G, Hauser L, Land M, Bakermans C, Rodrigues D, Klappenbach J, Zarka D, Larimer F, Richardson P, Murray A, Thomashow M, Tiedje JM (2010) The genome sequence of Psychrobacter arcticus 273-4, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth. Appl Environ Microbiol 76:2304–2312

    PubMed  Google Scholar 

  • Bakermans C (2008) Limits for microbial life at subzero temperatures – psychrophiles. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Biodiversity to biotechnology. Springer, Berlin, pp 17–28

    Google Scholar 

  • Bakermans C, Skidmore ML (2011a) Microbial respiration in ice at subzero temperatures (−4 to −33 °C). Environ Microbiol Rep 3:774–782

    PubMed  CAS  Google Scholar 

  • Bakermans C, Skidmore ML (2011b) Microbial metabolism in ice and brine at −5 °C. Environ Microbiol 13:2269–2278

    PubMed  Google Scholar 

  • Bakermans C, Ayala-del-Río HL, Ponder MA, Vishnivetskaya T, Gilichinsky D, Thomashow MF, Tiedje JM (2006) Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost. Int J Syst Evol Microbiol 56:1285–1291

    PubMed  CAS  Google Scholar 

  • Bakermans C, Bergholz PW, Ayala-del-Río H, Tiedje J (2009) Genomic insights into cold adaptation of permafrost bacteria. In: Margesin R (ed) Permafrost soils. Springer, Berlin, pp 159–168

    Google Scholar 

  • Bakermans C, Bergholz PW, Rodrigues D, Vishnevetskaya TA, Ayala-del-Río HL, Tiedje J (2012) Genomic and expression analyses of cold-adapted microorganisms. In: Miller RV, Whyte LG (eds) Polar microbiology: life in a deep freeze. ASM Press, Washington, DC, pp 126–155

    Google Scholar 

  • Barbier BA, Dziduch I, Liebner S, Ganzert L, Lantuit H, Pollard W, Wagner D (2012) Methane-cycling communities in a permafrost-affected soil on Herschel Island, Western Canadian Arctic: active layer profiling of mcrA and pmoA genes. FEMS Microbiol Ecol 82(2):287–302

    PubMed  CAS  Google Scholar 

  • Bartram AK, Lynch MDJ, Stearns JC, Moreno-Hagelsieb G, Neufeld JD (2011) Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end Illumina reads. Appl Environ Microbiol 77:3846–3852

    PubMed  CAS  Google Scholar 

  • Beaty D, Buxbaum K, Meyer M, Barlow N, Boynton W, Clark B, Deming J, Doran P, Edgett K, Hancock S (2006) Findings of the Mars special regions science analysis group. Astrobiology 6:677–732

    Google Scholar 

  • Bell TH, Yergeau E, Martineau C, Juck D, Whyte LG, Greer CW (2011) Identification of nitrogen-incorporating bacteria in petroleum-contaminated Arctic soils by using [15N]DNA-based stable isotope probing and pyrosequencing. Appl Environ Microbiol 77:4163–4171

    PubMed  CAS  Google Scholar 

  • Bowman JP, McCammon SA, Rea SM, McMeekin TA (2000a) The microbial composition of three limnologically disparate hypersaline Antarctic lakes. FEMS Microbiol Lett 183:81–88

    PubMed  CAS  Google Scholar 

  • Bowman JP, Rea SM, McCammon SA, McMeekin TA (2000b) Diversity and community structure within anoxic sediment from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestfold Hills, Eastern Antarctica. Environ Microbiol 2:227–237

    PubMed  CAS  Google Scholar 

  • Breezee J, Cady N, Staley JT (2004) Subfreezing growth of the sea ice bacterium “Psychromonas ingrahamii”. Microb Ecol 47:300–304

    PubMed  CAS  Google Scholar 

  • Brown MV, Bowman JP (2001) A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol Ecol 35:267–275

    PubMed  CAS  Google Scholar 

  • Casanueva A, Tuffin M, Cary C, Cowan DA (2010) Molecular adaptations to psychrophily: the impact of ‘omic’ technologies. Trends Microbiol 18:374–381

    PubMed  CAS  Google Scholar 

  • Catling DC, Claire MW, Zahnle KJ, Quinn RC, Clark BC, Hecht MH, Kounaves S (2010) Atmospheric origins of perchlorate on Mars and in the Atacama. J Geophys Res 115:E00E11

    Google Scholar 

  • Chin JP, Megaw J, Magill CL, Nowotarski K, Williams JP, Bhaganna P, Linton M, Patterson MF, Underwood GJC, Mswaka AY, Hallsworth JE (2010) Solutes determine the temperature windows for microbial survival and growth. Proc Natl Acad Sci U S A 107:7835–7840

    PubMed  CAS  Google Scholar 

  • Christner BC (2002) Incorporation of DNA and protein precursors into macromolecules by bacteria at −15 °C. Appl Environ Microbiol 68:6435–6438

    PubMed  CAS  Google Scholar 

  • Coates JD, Achenbach LA (2004) Microbial perchlorate reduction: rocket-fuelled metabolism. Nat Rev Microbiol 2:569–580

    PubMed  CAS  Google Scholar 

  • Collins RE, Carpenter SD, Deming JW (2008) Spatial heterogeneity and temporal dynamics of particles, bacteria, and pEPS in Arctic winter sea ice. J Mar Syst 74:902–917

    Google Scholar 

  • Collins RE, Rocap G, Deming JW (2010) Persistence of bacterial and archaeal communities in sea ice through an Arctic winter. Environ Microbiol 12:1828–1841

    PubMed  CAS  Google Scholar 

  • Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1:285–292

    PubMed  CAS  Google Scholar 

  • Cowan D, Russell N, Mamais A, Sheppard D (2002) Antarctic Dry Valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles 6:431–436

    PubMed  CAS  Google Scholar 

  • Davila AF, Duport LG, Melchiorri R, Jänchen J, Valea S, de los Ríos A, Fairén AG, Möhlmann D, McKay CP, Wierzchos J (2010) Hygroscopic salts and the potential for life on Mars. Astrobiology 10:617–628

    PubMed  CAS  Google Scholar 

  • Deming JW (2010) Sea ice bacteria and viruses. In: Thomas DN, Dieckmann GS (eds) Sea ice, 2nd edn. Wiley-Blackwell, Oxford, pp 247–282

    Google Scholar 

  • Doyle S, Dieser M, Broemsen E, Christner B (2012) General characteristics of cold-adapted micro­organisms. In: Miller RV, Whyte LG (eds) Polar microbiology: life in a deep freeze. ASM Press, Washington, DC, pp 103–125

    Google Scholar 

  • Formisano V, Atreya S, Encrenaz T, Ignatiev N, Giuranna M (2004) Detection of methane in the atmosphere of Mars. Science 306:1758–1761

    PubMed  CAS  Google Scholar 

  • Franzmann PD, Springer N, Ludwig W, Conway De Macario E, Rohde M (1992) A methanogenic archaeon from Ace Lake, Antarctica: Methanococcoides burtonii sp. nov. Syst Appl Microbiol 15:573–581

    Google Scholar 

  • Gendrin A, Mangold N, Bibring J-P, Langevin Y, Gondet B, Poulet F, Bonello G, Quantin C, Mustard J, Arvidson R, LeMouélic S (2005) Sulfates in Martian layered terrains: the OMEGA/Mars express view. Science 307:1587–1591

    PubMed  CAS  Google Scholar 

  • Gilichinsky D (2003) Permafrost. In: Encyclopedia of environmental microbiology. Wiley, New York. doi:10.1002/0471263397.ENV147

  • Gilichinsky DA, Soina VS, Petrova MA (1993) Cryoprotective properties of water in the Earth cryolithosphere and its role in exobiology. Origins Life Evol B 23:65–75

    CAS  Google Scholar 

  • Gilichinsky D, Rivkina E, Shcherbakova V, Laurinavichuis K, Tiedje J (2003) Supercooled water brines within permafrost – an unknown ecological niche for microorganisms: a model for astrobiology. Astrobiology 3:331–341

    PubMed  CAS  Google Scholar 

  • Gilichinsky D, Rivkina E, Bakermans C, Shcherbakova V, Petrovskaya L, Ozerskaya S, Ivanushkina N, Kochkina G, Laurinavichuis K, Pecheritsina S, Fattakhova R, Tiedje JM (2005) Biodiversity of cryopegs in permafrost. FEMS Microbiol Ecol 53:117–128

    PubMed  CAS  Google Scholar 

  • Gilichinsky D, Wilson G, Friedmann E, McKay C, Sletten R, Rivkina E, Vishnivetskaya T, Erokhina L, Ivanushkina N, Kochkina G (2007) Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology 7:275–311

    PubMed  CAS  Google Scholar 

  • Hansen CJ, Esposito L, Stewart AIF, Colwell J, Hendrix A, Pryor W, Shemansky D, West R (2006) Enceladus’ water vapor plume. Science 311:1422–1425

    PubMed  CAS  Google Scholar 

  • Hecht MH, Kounaves SP, Quinn RC, West SJ, Young SMM, Ming DW, Catling DC, Clark BC, Boynton WV, Hoffman J, DeFlores LP, Gospodinova K, Kapit J, Smith PH (2009) Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix lander site. Science 325:64–67

    PubMed  CAS  Google Scholar 

  • Hinsa-Leasure SM, Bhavaraju L, Rodrigues JLM, Bakermans C, Gilichinsky DA, Tiedje JM (2010) Characterization of a bacterial community from a Northeast Siberian seacoast permafrost sample. FEMS Microbiol Ecol 74:103–113

    PubMed  CAS  Google Scholar 

  • Jakosky BM, Nealson KH, Bakermans C, Ley RE, Mellon MT (2003) Subfreezing activity of microorganisms and the potential habitability of Mars’ polar regions. Astrobiology 3:343–350

    PubMed  CAS  Google Scholar 

  • Junge K, Krembs C, Deming J, Stierle A, Eicken H (2001) A microscopic approach to investigate bacteria under in situ conditions in sea-ice samples. Ann Glaciol 33:304–310

    CAS  Google Scholar 

  • Junge K, Imhoff F, Staley T, Deming W (2002) Phylogenetic diversity of numerically important Arctic sea-ice bacteria cultured at subzero temperature. Microb Ecol 43:315–328

    PubMed  CAS  Google Scholar 

  • Junge K, Eicken H, Deming JW (2004) Bacterial activity at −2 to −20 °C in Arctic wintertime sea ice. Appl Environ Microbiol 70:550–557

    PubMed  CAS  Google Scholar 

  • Junge K, Eicken H, Swanson BD, Deming JW (2006) Bacterial incorporation of leucine into protein down to −20 °C with evidence for potential activity in sub-eutectic saline ice formations. Cryobiology 52:417–429

    PubMed  CAS  Google Scholar 

  • Katayama T, Tanaka M, Moriizumi J, Nakamura T, Brouchkov A, Douglas TA, Fukuda M, Tomita F, Asano K (2007) Phylogenetic analysis of bacteria preserved in a permafrost ice wedge for 25,000 years. Appl Environ Microbiol 73:2360–2363

    PubMed  CAS  Google Scholar 

  • Keppler F, Vigano I, McLeod A, Ott U, Fruchtl M, Rockmann T (2012) Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere. Nature 486:93–96

    PubMed  CAS  Google Scholar 

  • Kerr RA (2011) Enceladus now looks wet, so it may be ALIVE! Science 332:1259

    PubMed  CAS  Google Scholar 

  • Kivelson MG, Khurana KK, Russell CT, Volwerk M, Walker RJ, Zimmer C (2000) Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. Science 289:1340–1343

    PubMed  CAS  Google Scholar 

  • Kraal ER, van Dijk M, Postma G, Kleinhans MG (2008) Martian stepped-delta formation by rapid water release. Nature 451:973–976

    PubMed  CAS  Google Scholar 

  • Lacelle D, Radtke K, Clark ID, Fisher D, Lauriol B, Utting N, Whyte LG (2011) Geomicrobiology and occluded O2–CO2–Ar gas analyses provide evidence of microbial respiration in ancient terrestrial ground ice. Earth Planet Sci Lett 306:46–54

    CAS  Google Scholar 

  • Lauro FM, DeMaere MZ, Yau S, Brown MV, Ng C, Wilkins D, Raftery MJ, Gibson JAE, Andrews-Pfannkoch C, Lewis M, Hoffman JM, Thomas T, Cavicchioli R (2011) An integrative study of a meromictic lake ecosystem in Antarctica. ISME J 5:879–895

    PubMed  CAS  Google Scholar 

  • Lay C-Y, Mykytczuk N, Niederberger T, Martineau C, Greer C, Whyte L (2012) Microbial diversity and activity in hypersaline high Arctic spring channels. Extremophiles 16:177–191

    PubMed  CAS  Google Scholar 

  • Lefevre F, Forget F (2009) Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature 460:720–723

    PubMed  CAS  Google Scholar 

  • Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL, Blazewicz SJ, Rubin EM, Jansson JK (2011) Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480:368–371

    PubMed  CAS  Google Scholar 

  • Mader HM, Pettitt ME, Wadham JL, Wolff EW, Parkes RJ (2006) Subsurface ice as a microbial habitat. Geology 34:169–172

    CAS  Google Scholar 

  • Malin MC, Edgett KS, Posiolova LV, McColley SM, Dobrea EZN (2006) Present-day impact cratering rate and contemporary gully activity on Mars. Science 314:1573–1577

    PubMed  CAS  Google Scholar 

  • Marinova M, McKay C, Heldmann J, Davila A, Andersen D, Jackson W, Lacelle D, Paulson G, Pollard W, Zacny K (2011) Dry soils: the highlands of the Antarctic Dry Valleys and the defining environmental conditions. EPSC-DPS Joint Meeting, Nantes, France, EPSC Abstracts

    Google Scholar 

  • Marx JG, Carpenter SD, Deming JW (2009) Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. Can J Microbiol 55:63–72

    PubMed  CAS  Google Scholar 

  • McEwen AS, Ojha L, Dundas CM, Mattson SS, Byrne S, Wray JJ, Cull SC, Murchie SL, Thomas N, Gulick VC (2011) Seasonal flows on warm Martian slopes. Science 333:740–743

    PubMed  CAS  Google Scholar 

  • McKay CP (2009) Snow recurrence sets the depth of dry permafrost at high elevations in the McMurdo Dry Valleys of Antarctica. Antarct Sci 21:89–94

    Google Scholar 

  • Mikucki JA, Priscu JC (2007) Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier, Antarctica. Appl Environ Microbiol 73:4029–4039

    PubMed  CAS  Google Scholar 

  • Mikucki JA, Pearson A, Johnston DT, Turchyn AV, Farquhar J, Schrag DP, Anbar AD, Priscu JC, Lee PA (2009) A contemporary microbially maintained subglacial ferrous “ocean”. Science 324:397–400

    PubMed  CAS  Google Scholar 

  • Miteva VI, Brenchley JE (2005) Detection and isolation of ultrasmall microorganisms from a 120,000-year-old Greenland glacier ice core. Appl Environ Microbiol 71:7806–7818

    PubMed  CAS  Google Scholar 

  • Miteva V, Sowers T, Brenchley J (2007) Production of N2O by ammonia oxidizing bacteria at subfreezing temperatures as a model for assessing the N2O anomalies in the Vostok ice core. Geomicrobiol J 24:451–459

    CAS  Google Scholar 

  • Miteva V, Teacher C, Sowers T, Brenchley J (2009) Comparison of the microbial diversity at different depths of the GISP2 Greenland ice core in relationship to deposition climates. Environ Microbiol 11:640–656

    PubMed  CAS  Google Scholar 

  • Mock T, Junge K (2007) Psychrophilic diatoms: mechanisms for survival in freeze-thaw cycles. In: Seckbach J (ed) Extremophilic algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 345–364

    Google Scholar 

  • Mock T, Thomas DN (2005) Recent advances in sea-ice microbiology. Environ Microbiol 7:605–619

    PubMed  CAS  Google Scholar 

  • Mumma MJ, Villanueva GL, Novak RE, Hewagama T, Bonev BP, DiSanti MA, Mandell AM, Smith MD (2009) Strong release of methane on Mars in northern summer 2003. Science 323:1041–1045

    PubMed  CAS  Google Scholar 

  • Mustard JF, Murchie SL, Pelkey SM, Ehlmann BL, Milliken RE, Grant JA, Bibring JP, Poulet F, Bishop J, Dobrea EN, Roach L, Seelos F, Arvidson RE, Wiseman S, Green R, Hash C, Humm D, Malaret E, McGovern JA, Seelos K, Clancy T, Clark R, Marais DD, Izenberg N, Knudson A, Langevin Y, Martin T, McGuire P, Morris R, Robinson M, Roush T, Smith M, Swayze G, Taylor H, Titus T, Wolff M (2008) Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature 454:305–309

    PubMed  CAS  Google Scholar 

  • Mykytczuk NCS, Trevors JT, Foote SJ, Leduc LG, Ferroni GD, Twine SM (2011) Proteomic insights into cold adaptation of psychrotrophic and mesophilic Acidithiobacillus ferrooxidans strains. Antonie van Leeuwenhoek 100:259–277

    PubMed  CAS  Google Scholar 

  • Mykytczuk NC, Wilhelm RC, Whyte LG (2012) Planococcus halocryophilus sp. nov., an extreme sub-zero species from high Arctic permafrost. Int J Syst Evol Microbiol 62(8):1937–1944

    PubMed  CAS  Google Scholar 

  • Mykytczuk NC, Foote SJ, Omelon CR, Southam G, Greer CW, Whyte LG (2013) Bacterial growth at −15° C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J. doi:10.1038/ismej.2013.8

    PubMed  Google Scholar 

  • Naganuma T, Hua P, Okamoto T, Ban S, Imura S, Kanda H (2005) Depth distribution of euryhaline halophilic bacteria in Suribati Ike, a meromictic lake in East Antarctica. Polar Biol 28:964–970

    Google Scholar 

  • Ng C, DeMaere MZ, Williams TJ, Lauro FM, Raftery M, Gibson JAE, Andrews-Pfannkoch C, Lewis M, Hoffman JM, Thomas T, Cavicchioli R (2010) Metaproteogenomic analysis of a dominant green sulfur bacterium from Ace Lake, Antarctica. ISME J 4:1002–1019

    PubMed  CAS  Google Scholar 

  • Niederberger TD, Perreault NN, Lawrence JR, Nadeau JL, Mielke RE, Greer CW, Andersen DT, Whyte LG (2009) Novel sulfur-oxidizing streamers thriving in perennial cold saline springs of the Canadian High Arctic. Environ Microbiol 11:616–629

    PubMed  CAS  Google Scholar 

  • Niederberger TD, Perreault NN, Tille S, Lollar BS, Lacrampe-Couloume G, Andersen D, Greer CW, Pollard W, Whyte LG (2010) Microbial characterization of a subzero, hypersaline methane seep in the Canadian High Arctic. ISME J 4:1326–1339

    PubMed  CAS  Google Scholar 

  • Osterloo MM, Anderson FS, Hamilton VE, Hynek BM (2010) Geologic context of proposed chloride-bearing materials on Mars. J Geophys Res 115:E10012

    Google Scholar 

  • Pappalardo RT, Belton MJS, Breneman HH, Carr MH, Chapman CR, Collins GC, Denk T, Fagents S, Geissler PE, Giese B, Greeley R, Greenberg R, Head JW, Helfenstein P, Hoppa G, Kadel SD, Klaasen KP, Klemaszewski JE, Magee K, McEwen AS, Moore JM, Moore WB, Neukum G, Phillips CB, Prockter LM, Schubert G, Senske DA, Sullivan RJ, Tufts BR, Turtle EP, Wagner R, Williams KK (1999) Does Europa have a subsurface ocean? Evaluation of the geological evidence. J Geophys Res 104:24015–24055

    CAS  Google Scholar 

  • Perreault NN, Andersen DT, Pollard WH, Greer CW, Whyte LG (2007) Characterization of the prokaryotic diversity in cold saline perennial springs of the Canadian High Arctic. Appl Environ Microbiol 73:1532–1543

    PubMed  CAS  Google Scholar 

  • Perreault NN, Greer CW, Andersen DT, Tille S, Lacrampe-Couloume G, Lollar BS, Whyte LG (2008) Heterotrophic and autotrophic microbial populations in cold perennial springs of the high Arctic. Appl Environ Microbiol 74:6898–6907

    PubMed  CAS  Google Scholar 

  • Piette F, D’Amico S, Mazzucchelli G, Danchin A, Leprince P, Feller G (2011) Life in the cold: a proteomic study of cold-repressed proteins in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Appl Environ Microbiol 77:3881–3883

    PubMed  Google Scholar 

  • Pollard W, Haltigin T, Whyte L, Niederberger T, Andersen D, Omelon C, Nadeau J, Ecclestone M, Lebeuf M (2009) Overview of analogue science activities at the McGill Arctic Research Station, Axel Heiberg Island, Canadian High Arctic. Planet Sp Sci 57:646–659

    CAS  Google Scholar 

  • Postberg F, Schmidt J, Hillier J, Kempf S, Srama R (2011) A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474:620–622

    PubMed  CAS  Google Scholar 

  • Potter EG, Bebout BM, Kelley CA (2009) Isotopic composition of methane and inferred methanogenic substrates along a salinity gradient in a hypersaline microbial mat system. Astrobiology 9:383–390

    PubMed  CAS  Google Scholar 

  • Price PB (2000) A habitat for psychrophiles in deep Antarctic ice. Proc Natl Acad Sci U S A 97:1247–1251

    PubMed  CAS  Google Scholar 

  • Price PB (2007) Microbial life in glacial ice and implications for a cold origin of life. FEMS Microbiol Ecol 59:217–231

    PubMed  CAS  Google Scholar 

  • Price PB (2012) Low-temperature limits of microbial growth and metabolism. In: Miller RV, Whyte LG (eds) Polar microbiology: life in a deep freeze. ASM Press, Washington, DC, pp 243–264

    Google Scholar 

  • Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci U S A 101:4631–4636

    PubMed  CAS  Google Scholar 

  • Qiu Y, Vishnivetskaya TA, Lubman DM (2009) Proteomic insights: cryoadaptation of permafrost bacteria. In: Margesin R (ed) Permafrost soils. Springer, Berlin, pp 169–181

    Google Scholar 

  • Reigstad LJ, Jorgensen SL, Lauritzen SE, Schleper C, Urich T (2011) Sulfur-oxidizing chemolithotrophic proteobacteria dominate the microbiota in High Arctic thermal springs on Svalbard. Astrobiology 11:665–678

    PubMed  CAS  Google Scholar 

  • Rennó NO, Bos BJ, Catling D, Clark BC, Drube L, Fisher D, Goetz W, Hviid SF, Keller HU, Kok JF, Kounaves SP, Leer K, Lemmon M, Madsen MB, Markiewicz WJ, Marshall J, McKay C, Mehta M, Smith M, Zorzano MP, Smith PH, Stoker C, Young SMM (2009) Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site. J Geophys Res 114:E00E03

    Google Scholar 

  • Riley M, Staley J, Danchin A, Wang TZ, Brettin T, Hauser L, Land M, Thompson L (2008) Genomics of an extreme psychrophile, Psychromonas ingrahamii. BMC Genomics 9:210

    PubMed  Google Scholar 

  • Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233

    PubMed  CAS  Google Scholar 

  • Rivkina E, Laurinavichius K, McGrath J, Tiedje J, Shcherbakova V, Gilichinsky D (2004) Microbial life in permafrost. Adv Sp Res 33:1215–1221

    CAS  Google Scholar 

  • Rohde RA, Price PB (2007) Diffusion-controlled metabolism for long-term survival of single isolated microorganisms trapped within ice crystals. Proc Natl Acad Sci U S A 104:16592–16597

    PubMed  CAS  Google Scholar 

  • Rohde RA, Price PB, Bay RC, Bramall NE (2008) In situ microbial metabolism as a cause of gas anomalies in ice. Proc Natl Acad Sci U S A 105:8667–8672

    PubMed  CAS  Google Scholar 

  • Rossi AP, Neukum G, Pondrelli M, van Gasselt S, Zegers T, Hauber E, Chicarro A, Foing B (2008) Large-scale spring deposits on Mars? J Geophys Res 113:E08016

    Google Scholar 

  • Samarkin VA, Madigan MT, Bowles MW, Casciotti KL, Priscu JC, McKay CP, Joye SB (2010) Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica. Nat Geosci 3:341–344

    CAS  Google Scholar 

  • Sattler B, Storrie-Lombardi MC (2010) L.I.F.E. in Antarctic lakes. In: Bej AK, Aislabie J, Atlas RM (eds) Polar microbiology: the ecology, biodiversity, and bioremediation potential of micro­organisms in extremely cold environments. CRC Press, Boca Raton, pp 95–114

    Google Scholar 

  • Sattley WM, Madigan MT (2007) Cold-active acetogenic bacteria from surficial sediments of perennially ice-covered Lake Fryxell, Antarctica. FEMS Microbiol Lett 272:48–54

    PubMed  CAS  Google Scholar 

  • Schmidt BE, Blankenship DD, Patterson GW, Schenk PM (2011) Active formation of ‘chaos terrain’ over shallow subsurface water on Europa. Nature 479:502–505

    PubMed  CAS  Google Scholar 

  • Simon C, Wiezer A, Strittmatter AW, Daniel R (2009) Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microbiol 75:7519–7526

    PubMed  CAS  Google Scholar 

  • Singleton AC, Osinski GR, Samson C, Williamson M-C, Holladay S (2010) Electromagnetic characterization of polar ice-wedge polygons: implications for periglacial studies on Mars and Earth. Planet Sp Sci 58:472–481

    CAS  Google Scholar 

  • Skidmore M, Jungblut A, Urschel M, Junge K (2012) Cryospheric environments in polar regions (glaciers and ice sheets, sea ice, and ice shelves). In: Miller RV, Whyte LG (eds) Polar microbiology: life in a deep freeze. ASM Press, Washington, DC, pp 218–239

    Google Scholar 

  • Smith J, Tow L, Stafford W, Cary C, Cowan D (2006) Bacterial diversity in three different Antarctic cold desert mineral soils. Microb Ecol 51:413–421

    PubMed  Google Scholar 

  • Smith PH, Tamppari LK, Arvidson RE, Bass D, Blaney D, Boynton WV, Carswell A, Catling DC, Clark BC, Duck T, DeJong E, Fisher D, Goetz W, Gunnlaugsson HP, Hecht MH, Hipkin V, Hoffman J, Hviid SF, Keller HU, Kounaves SP, Lange CF, Lemmon MT, Madsen MB, Markiewicz WJ, Marshall J, McKay CP, Mellon MT, Ming DW, Morris RV, Pike WT, Renno N, Staufer U, Stoker C, Taylor P, Whiteway JA, Zent AP (2009) H2O at the Phoenix landing site. Science 325:58–61

    PubMed  CAS  Google Scholar 

  • Soare R, Conway S, Pearce G, Costard F (2012) Ice-enriched loess and the formation of periglacial terrain in Mid-Utopia Planitia, Mars. In: 43rd Lunar and Planetary Science conference, 19–23 March, The Woodlands, Texas. LPI Contribution No. 1659, id. 1311

    Google Scholar 

  • Sowers T (2001) N2O record spanning the penultimate deglaciation from the Vostok ice core. J Geophys Res D Atmos 106:31903–31914

    CAS  Google Scholar 

  • Steven B, Leveille R, Pollard WH, Whyte LG (2006) Microbial ecology and biodiversity in permafrost. Extremophiles 10:259–267

    PubMed  Google Scholar 

  • Steven B, Briggs G, McKay CP, Pollard WH, Greer CW, Whyte LG (2007a) Characterization of the microbial diversity in a permafrost sample from the Canadian High Arctic using culture-dependent and culture-independent methods. FEMS Microbiol Ecol 59:513–523

    PubMed  CAS  Google Scholar 

  • Steven B, Niederberger TD, Bottos EM, Dyen MR, Whyte LG (2007b) Development of a sensitive radiorespiration method for detecting microbial activity at subzero temperatures. J Microbiol Method 71:275–280

    CAS  Google Scholar 

  • Steven B, Pollard WH, Greer CW, Whyte LG (2008) Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian High Arctic. Environ Microbiol 10:3388–3403

    PubMed  CAS  Google Scholar 

  • Steven B, Niederberger TD, Whyte LG (2009) Bacterial and archaeal diversity in permafrost soils. In: Margesin R (ed) Permafrost soils. Springer, Berlin, pp 59–72

    Google Scholar 

  • Stoker CR, Zent A, Catling DC, Douglas S, Marshall JR, Archer D Jr, Clark B, Kounaves SP, Lemmon MT, Quinn R, Renno N, Smith PH, Young SMM (2010) Habitability of the Phoenix landing site. J Geophys Res 115:E00E20

    Google Scholar 

  • Stomeo F, Makhalanyane TP, Valverde A, Pointing SB, Stevens MI, Cary CS, Tuffin MI, Cowan DA (2012) Abiotic factors influence microbial diversity in permanently cold soil horizons of a maritime-associated Antarctic Dry Valley. FEMS Microbiol Ecol 82(2):326–340

    PubMed  CAS  Google Scholar 

  • Takacs-Vesbach C, Zeglin L, Barrett J, Goseff MN, Priscu JC (2010). Factors promoting microbial diversity in the McMurdo Dry Valleys. In: Doran P, Lyons WB, McKnight DM (eds) Antarctica. Life in Antarctic deserts and other cold dry environments: astrobiological analogs. Astrobiology series. Cambridge University Press, Cambridge, pp 221–257

    Google Scholar 

  • Tung HC, Price PB, Bramall NE, Vrdoljak G (2006) Microorganisms metabolizing on clay grains in 3-km-deep Greenland basal ice. Astrobiology 6:69–86

    PubMed  CAS  Google Scholar 

  • Ulrich M, Wagner D, Hauber E, de Vera JP, Schirrmeister L (2012) Habitable periglacial landscapes in Martian mid-latitudes. Icarus 219:345–357

    Google Scholar 

  • Wilhelm RC, Niederberger TD, Greer C, Whyte LG (2011) Microbial diversity of active layer and permafrost in an acidic wetland from the Canadian High Arctic. Can J Microbiol 57:303–315

    PubMed  CAS  Google Scholar 

  • Wilhelm RC, Radtke KJ, Mykytczuk NCS, Greer CW, Whyte LG (2012) Life at the wedge: the activity and diversity of Arctic ice wedge microbial communities. Astrobiology 12:347–360

    PubMed  CAS  Google Scholar 

  • Willerslev E, Hansen AJ, Poinar HN (2004) Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol Evol 19:141–147

    PubMed  Google Scholar 

  • Williams TJ, Lauro FM, Ertan H, Burg DW, Poljak A, Raftery MJ, Cavicchioli R (2011) Defining the response of a microorganism to temperatures that span its complete growth temperature range (−2 °C to 28 °C) using multiplex quantitative proteomics. Environ Microbiol 13:2186–2203

    PubMed  CAS  Google Scholar 

  • Wright SW, Burton HR (1981) The biology of Antarctic saline lakes. Hydrobiologia 81–82:319–338

    Google Scholar 

  • Yergeau E, Schoondermark-Stolk SA, Brodie EL, Dejean S, DeSantis TZ, Goncalves O, Piceno YM, Andersen GL, Kowalchuk GA (2008) Environmental microarray analyses of Antarctic soil microbial communities. ISME J 3:340–351

    PubMed  Google Scholar 

  • Yergeau E, Hogues H, Whyte LG, Greer CW (2010) The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. ISME J 4:1206–1214

    PubMed  CAS  Google Scholar 

  • Zahnle K, Freedman RS, Catling DC (2011) Is there methane on Mars? Icarus 212:493–503

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Goordial .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Goordial, J., Lamarche-Gagnon, G., Lay, CY., Whyte, L. (2013). Left Out in the Cold: Life in Cryoenvironments. In: Seckbach, J., Oren, A., Stan-Lotter, H. (eds) Polyextremophiles. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6488-0_14

Download citation

Publish with us

Policies and ethics