Skip to main content

Self-tuning digital Mössbauer detection system

  • Conference paper
  • First Online:
LACAME 2012

Abstract

Long term gamma spectroscopy experiments involving single-channel analyzer equipment depend upon thermal stability of the detector and its associated high-voltage supply. Assuming constant discrimination levels, a drift in the detector gain impacts the output rate, producing an effect on the output spectrum. In some cases (e.g. single-energy resonant absorption experiments) data of interest can be completely lost. We present a digital self-adapting discrimination strategy that tracks emission line shifts using statistical measurements on a predefined region-of-interest of the spectrum. It is developed in the form of a synthesizable module that can be intercalated in the digital processing chain. It requires a moderate to small amount of digital resources and can be easily activated and deactivated.

Thirteenth Latin American Conference on the Applications of the Mössbauer Effect, LACAME 2012, Medellín, Colombia, 11 16 November 2012.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Knoll, G.:Single-channel methods. In: Radiation Detection and Measurement, 3rd edn, pp. 685–690. Willey, New York (2000)

    Google Scholar 

  2. Ahmed, S.: Signal processing. In: Physics and Engineering of Radiation Detection, pp. 463–520. Elsevier, London (2007)

    Google Scholar 

  3. Leo, W.R.: Electronics for pulse signal processing. In: Techniques for Nuclear and Particle Physics Experiments, 2nd edn, pp. 277–301. Springer, Berlin (1994)

    Google Scholar 

  4. Veiga, A., Martínez, N., Mendoza Zélis, P., Pasquevich, GA., Sánchez, F.H.: Advances in constant-velocity Mössbauer instrumentation. Hyperfine Interact. 167, 905–909 (2006)

    Article  ADS  Google Scholar 

  5. Mendoza Zélis, P., Pasquevich, GA., Sánchez, F.H., Veiga, A., Martínez, N.: A new application of Mössbauer effect thermal scans: determination of the magnetic hyperfine field temperature dependence. Phys. Lett. A298, 55–59 (2002)

    Article  ADS  Google Scholar 

  6. Pasquevich, G.A., Mendoza Zélis, P., Fernández van Raap, M.B., Sánchez, F.H.: Hyperfine field temperature dependence of Fe3Si from Mössbauer thermal scans. Ph ysica B354, 369–372 (2004)

    Google Scholar 

  7. Mendoza Zélis, P., Pasquevich, GA., Veiga, A., Fernández van Raap, M.B., Sánchez, F.H.: A quasi-continuous observation of the α-transition of Fe1+xS by Mössbauer line tracking. Hyperfine Interact. 195, 161–165 (2010)

    Google Scholar 

  8. Pasquevich, GA., Mendoza Zélis, P.P., Sánchez, F.H., Fernandez van Raap, M.B., Veiga, A., Martínez, N.: Magnetic and thermal scans: a new Mössbauer effect approach. Hyperfine Interact. 167,839–844 (2006)

    Article  ADS  Google Scholar 

  9. Veiga, A., Pasquevich, GA., Mendoza Zélis, P., Sánchez, F.H., Fernandez van Raap, M.B., Martínez, N.: Experimental design and methodology for a new Mössbauer scan experiment: absorption line tracking. Hyperfine Interact. 188, 137–142 (2009)

    Article  ADS  Google Scholar 

  10. Vanha-Honko, V.: The temperature dependence of the gas gain in sealed proportional counters. Nucl. Instrum. Methods 176, 213–219 (1980)

    Article  ADS  Google Scholar 

  11. Sampietro, M.: A digital system for “optimum” resolution in x-ray spectroscopy. Rev. Sci. Instrum. 66, 975–982 (1995)

    Article  ADS  Google Scholar 

  12. Angelo Geraci, A.: Adaptive digital spectroscopy in programmable logic. IEEE Trans. Nucl. Sci. 47, 2765–2772 (2000)

    Article  ADS  Google Scholar 

  13. Abbiati, R.: Self-configuring digital processor for on-line pulse analysis. IEEE Trans. Nucl. Sci. 51, 826–830 (2004)

    Article  ADS  Google Scholar 

  14. Pasquali, G.: A DSP equipped digitizer for online analysis of nuclear detector signals. Nucl. Instrum. Methods Phys. Res. A 570, 126–132 (2007)

    Article  ADS  Google Scholar 

  15. Pechousek, J.: Virtual instrumentation technique used in the nuclear digital signal processing system d esign: energy and time measurement tests. Nucl. Instrum. Methods Phys. Res. A 637, 200–205 (2011)

    Article  ADS  Google Scholar 

  16. Nagy, S.: SCA window optimization on Mössbauer spectroscopy. J. Radioanal. Nucl. Chern. 137, 389–395 (1989)

    Article  Google Scholar 

  17. Bravo, JA.: Optimization criteria in Mössbauer spectroscopy. Hyperfine Interact. 148, 253–261 (2003)

    Article  ADS  Google Scholar 

  18. Scholefield, P.H.R.:Shift registers generating maximum-length sequences. Electron. Techno!. 37, 389–394 (1960)

    Google Scholar 

  19. Alfke, P.: Efficient shift registers, LFSR counters, and long pseudo-random sequence generators. Xilinx Application Note 052. http://www.xilinx.com/support/documentation/application_notes/xapp052.pdf (1996). Accessed 5 November 2012

  20. Schbnhage, A.: Finding the median. J. Comput. Syst. Sci. 13, 184–199 (1976)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Veiga, A., Grunfeld, C.M., Pasquevich, G.A., Zélis, P.M., Martínez, N., Sánchez, F.H. (2013). Self-tuning digital Mössbauer detection system. In: Meneses, C.A.B., Caetano, E.P., Torres, C.E.R., Pizarro, C., Alfonso, L.E.Z. (eds) LACAME 2012. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6482-8_9

Download citation

Publish with us

Policies and ethics